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In the analysis of food, the ratio of reproducibility standard deviation to repeatability standard deviation 

is usually close to 2.0. This has implications in estimating uncertainty and detection capability. 
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Abstract 
 
This paper examines precision statistics from collaborative trials (interlaboratory method performance 
studies) reported between 1990 and 2000. The principal focus is on the ‘Horwitz ratio’ ( rR ss ), the 
ratio of the estimated standard deviations of reproducibility ( )Rs and repeatability ( )rs found for 
individual analytical procedures. A predictable ratio would be a valuable tool in assessing uncertainty 
and detection limit. While the median ratio observed was close to 2.0, a significant variation with a 
strong positive skew was observed, much of which could be attributed to particular types of analyte, 
test material, and analytical procedure. 
 
Introduction 
 
The study reported here is concerned mainly with the ‘Horwitz ratio’ rR ss between estimates of 
standard deviations of reproducibility ( )Rs  and repeatability ( )rs  in analytical procedures. In 
collaborative trials (interlaboratory method performance studies) in the food sector, it is recognised that 
the ratio is typically close to 2.0. A mean value of 2.05 was found in a comprehensive survey of the 
statistics up to 1990 and a value between 1.5 and 2.0 is often assumed by default1. In certain 
legislation2 it is assumed that 5.1=rR ss . A comparable relationship may hold in application sectors 
other than food analysis. Individual values of the ratio among trials must deviate to a degree from the 
typical value, because both statistics Rs  and rs are random variables based on small numbers of 
observations and have correspondingly wide confidence intervals. It is also likely that individual trials, 
each characterising a different analytical procedure (comprising an analyte, matrix, procedure, and 
measurement principle), have inherently different true ratios, although the existence and causes of this 
putative systematic effect have not been investigated hitherto.  
 
The magnitude of the ratio, both within and among trials, is an important feature to characterise if it can 
be predicted reasonably accurately. A broadly constant average ratio would be a useful quantity 
because it would enable analysts to form a rough estimate of Rs  from rs  in instances where 
information from a collaborative trial was unavailable. (A value of  rs  can be obtained during single 
laboratory validation.) In turn, a good estimate of Rs is a valuable benchmark that can help analysts to 
avoid unrealistically small estimates of uncertainty.  It is therefore of considerable interest to examine 
the variability of the Horwitz ratio to see whether it could be used reliably in this context. 
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The value of a Horwitz ratio may be relevant also to describing the detection capability of an analytical 
procedure. A detection limit is in effect a small multiple k  ( 42 << k ) of the standard deviation of 
results replicated at or close to zero concentration. But what are the appropriate conditions of 
replication for estimating this standard deviation? This is a debated issue as a variety of conceivably 
relevant options are available, in particular instrumental, repeatability, and reproducibility conditions3. 
But as reproducibility standard deviation provides the best approximation to uncertainty, the 
appropriate conditions for characterising detection capability in routine analysis might best be a 
reproducibility standard deviation estimated at zero concentration.  
 
That statistic would be difficult, often impossible, to obtain directly. In principle, however, it could be 
estimated by extrapolation to zero concentration of standard deviations estimated at higher 
concentrations. It is therefore is of interest to determine whether the Horwitz ratios rR ss  found in 
individual collaborative trials is maintained at a constant level down to zero concentration. As 
repeatability-based detection limits are readily obtained, that information would assist analysts in 
avoiding unduly low estimates in analytical procedures where no collaborative trial had been 
conducted. There has been speculation that 0as1 →→ css rR , which would greatly simplify matters 
if found to be true, and that conjecture also needs investigation.  
 
(Note: the ratio rR ss is difficult to determine directly at zero concentration. An authentic test material 
containing effectively zero concentration of analyte would be nearly always unobtainable. Moreover, 
organisers of collaborative trials tend to avoid low concentrations of the analyte because of problems in 
the statistical handling of the results. These problems are an outcome of common data recording 
practices, namely (a) recording too few significant figures for an adequate statistical analysis and (b) 
censoring results falling below zero concentration. Sub-zero results have no corresponding physical 
realisation, of course, but are important in forming unbiased estimates of location and dispersion.) 
 
 
 
THE DATA  
 
The primary dataset in this study comprised relevant statistics from all collaborative trials in the food 
sector that were reported between 1990 and 2000. To qualify for the present study, however, the trials 
had further to comply with the minimal IUPAC recommendation4 of eight participant laboratories and 
five different test materials. After elimination of the non-qualifying studies, the working dataset 
comprised 782 corresponding values of Rs , rs , and concentration, derived from 95 collaborative trials 
relating to food analysis. The median size of the trials in the qualifying subset was 11 laboratories and 
6 test materials. 
 
 
RESULTS AND DISCUSSION 
 
Variation of reproducibility standard deviation with mass fraction of analyte 
This dataset provides an interesting opportunity to compare moderately recent statistics with Horwitz’s 
databases of collaborative trials dating back to the 1930s, on which the original Horwitz function was 
based. These were re-examined in detail in 19971. Then it was found that the trend of the 
reproducibility statistics followed the Horwitz function closely at mass fractions (c) between 10-7 and 
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0.1. A closely similar observation applies over the same concentration range to the statistics in the 
current study (Fig 1), where the trend of the data is modelled by a “lowess” function (locally weighted 
scatterplot smoother—a model-free description of the data5). The logtransformed Rs  values seemed to 
be reasonably close to homoscedastic, so an unweighted regression fit was applied to those with mass 
fractions c falling between 10-7 and 10-1. The outcome was as follows: 
 
• the original Horwitz function; 8495.002.0 cH =σ ; 
• the 1997 study;   824.00166.0 csR = ; 
• the present investigation:  .039.0= 8891.0csR  
 
The recent trend shows a significantly higher sR than either the original Horwitz function or the 1997 
investigation over that part of the range, a trend visible in Fig 1.  
 
Below a mass fraction of 10-7 the trend of the precision statistics conforms closely to an underlying 
constant reproducibility relative standard deviation of 0.22 (Fig 2), which is consistent with other 
findings, specifications for fitness for purpose, and constraints imposed by detection capability6. The 
deviation of the lowess fit from constant relative standard deviation below 10-9.2 in Fig 2 is of no 
consequence given the sparseness of the data. 
 
 
The Horwitz ratio – summary behaviour 
A boxplot of the log-transformed Horwitz ratios (Fig 3) shows a clearly visible variation among the 
individual collaborative trials. Log-transformation, as well as making a summary plot possible, serves 
to stabilise (to some extent) the variance of the ratio among trials. Despite the remaining 
heteroscedasticity, a one-way analysis of variance (ANOVA) on the whole transformed dataset, that is, 
between trials and within trials, shows a highly significant between-trial effect with a variance 
amounting to 40% of the total. This outcome shows immediately that there are real systematic 
variations among the ratios as well as random, in short, that the mean ratio depends on the particular 
analytical procedure. While no stronger inference is possible from this ANOVA, the outcome suggests 
that it would be worth searching for meaningful subsets of trials with overall differing properties, a 
possibility investigated below.  
 
The within-trial mean ratios are summarised in Fig 4. Some degree of positive skew would be 
expected, inter alia because the ratio is bounded at 1.0 on the low side, as rR σσ ≥ . The long positive 
tail on the observed means cannot (as might be thought) be attributed to random deviations. Large 
simulations, from a model with 11 laboratories, a true ratio of 2=σσ rR (bearing in mind that the two 
standard deviations are not independent), and the random normal assumption of measurement variation, 
show that the dispersion of rR ss is indeed long tailed on the positive side. However, the distribution of 
the mean ratios (rather than individual values of the ratio) in median-sized trials, that is with six test 
materials, was only slightly skewed. Random variation therefore does not account for the observed 
dispersion of trial means. 
 
Another worthwhile observation is that the value of the mean ratio within-trial shows no apparent 
dependence on the mean mass fraction of the analyte (Fig 5).  
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Variation of the Horwitz ratio with mass fraction within individual trials 
A further possibility is that the Horwitz ratio varies systematically with mass fraction within some 
individual trials. As a first step, the working dataset was further screened to exclude individual trials 
that were unsuitable for study by regression analysis. Grounds for this exclusion were as follows: (a) all 
of the concentrations were in a small range—in such instances regression would be meaningless; and 
(b) the ratios were very erratic or outlier-prone. From other trials, data from individual test materials 
were deleted before regression because they would have exerted unduly high leverage on the outcome 
or because they were obvious outliers as judged by a preliminary robust regression using Theil’s 
complete method7. In any event the regression coefficients were usually strongly correlated, largely 
because of the relatively large scatter of the dependent variable (that is, the observed ratios). An 
example dataset is shown in Fig 6. (Note: the correlation arises because variation in the position of the 
fitted line affects the slope and intercept simultaneously.) 
 
The outcomes individually were not of great information content because of the (statistically) small 
number of test materials within each trial. Taken together though, some worthwhile conclusions can be 
drawn. In the majority of instances (44/50 trials) the slope of the regression line was not significantly 
different from zero at 95% confidence, that is, there was no suggestion that the Horwitz ratio was 
linearly dependent on the concentration of the analyte. This outcome hardly differs from an overall null 
hypothesis (i.e., that there is never a variation with concentration), under which assumption we would 
on average expect between 47 and 48 instances from 50 trials to be non-significant. This is shown by 
the near-uniform distribution of the p-values derived from the slope coefficient (Fig 7). The intercepts 
show a different pattern, with 16 instances (32 %) significantly different from 2.0.  (Note: Strictly 
speaking, in instances like these, where there tends to be a strong correlation between the estimated 
regression coefficients, we should consider their joint confidence region rather than the individual 
confidence limits. Figure 8 shows the example previously-used in Fig 6, where the null hypotheses 
( 2=α,0=β ) fall within the individual 95% confidence limits of the estimates (b, a) but outside the 
95% joint confidence region. This refinement would not affect the broad conclusions in this study.)  
 
Among the 50 trials included in this part of the study, there was no suggestion of the ratios changing 
radically at concentrations approaching zero.  
 
 
 
Dependence of the ratio on analyte type 
Given that the distribution of intercepts shows a mode close to 2.0 but a strong positive skew, it is of 
interest to find whether the value depends on the analyte type, the test material type, or the physical 
principle on which the measurement procedure is based. Figure 9 shows variation among the mean 
Horwitz ratios, each from a separate trial, classified by analyte type. It is clear that the majority of the 
types give ratios located near 2.0, but two types, trace elements and individual fatty acids, have much 
higher tendencies and account for the positive skew.  
 
 
It is interesting to consider the origin of these anomalously high ratios, which could result from either 
exceptionally low  sr or unusually high sR. The former would be expected of a simple procedure 
involving say only a few high-precision measurements and no complex chemistry or skilful 
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manipulations. (Loss on drying would be an example.) The latter would be expected when 
environmental or organisational factors affecting the results might differ substantially between 
laboratories. In the present study we see both circumstances in play, as shown below in the following 
average values of the standard deviations for the two anomalous subsets relative to those of the other 
types. 
 
 
 
Analyte type sr sR 

Oil/fat 0.45 1.16 
Element 0.78 1.44 

 
Both analyte types show a lower-than-typical sr , and a higher-than-typical sR. In the former instance, as 
sR is only slightly above average, no great problem exists for the quality of analysis, despite the high 
Horwitz ratio.  For trace elements, however, the elevated value of sR suggests that an investigation of 
the causes might lead to a useful improvement of quality in that area. In this instance the high values of 
Rs have been found often to be caused by contamination or variable recovery, while the within-

laboratory variation is small because the procedures are largely instrumental. However, the reverse 
effect is noted when considering methods of analysis for crude fibre.  Here the procedure is usually 
very manipulation-dependent so the within-laboratory results tend not to be very consistent.  If the 
value of sr is equal to sR, as can occasionally happen by chance, then the ratio is set conventionally to 
unity.  This is most likely to occur when very manipulation-dependent procedures are being considered. 
 
This particular classification by analyte type correlates strongly with classification based on test 
material type and type of analytical method, as the fatty acids were determined exclusively in oily test 
materials by gas chromatography, but the individual elements were determined largely by atomic 
spectrometric methods after destruction of the organic matrix.  In short, there is no further information 
to be gained by alternative classifications of the ratios by matrix or physical principles of analysis. 
 
 
CONCLUSIONS 
 
The following have been established in relation to the Horwitz ratio in the food analysis sector. 
 
• In the great majority of procedures the ratio does not change significantly with the concentration of 

the analyte. In particular there was no evidence that the ratio changed abruptly at concentrations 
near zero, so that mean values (robustified if necessary) within a trial were valid estimates of the 
zero-point ratio in most instances. When, in the small proportion of instances, significant 
dependence between the ratio and concentration was observed, regression intercepts would be 
alternative valid estimates of the zero-point ratio.  

• There was no evidence to support the idea that the ratio tended towards unity at concentrations near 
zero. 

• The mode of the ratios was close to 2.0. The strong positive skew in the observed mean ratios was 
apparently due to special circumstances prevailing in specific types of analysis. In a majority of 
individual trials the mean ratio observed was not greatly different from 2.0. An assumption of a 
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value of 2.0 for the purpose of gauging the value of sR from sr would be safe in most instances in 
food analysis, but not in the determination of trace elements or constituents of oils and fats. 

• Whether the assumption of a ratio close to 2.0 would be valid in application sectors other than food 
is unknown, as the relevant statistics (that is, obtained from collaborative trials of specific 
procedures) are not currently produced in sufficient numbers to allow generalisation. Proficiency 
test statistics mostly cannot be considered as alternatives as they do not characterise procedures but 
the performance of participants free to use any measurement principle or procedure. 

                                                
1 M Thompson and P J Lowthian. J AOAC Int, 1997, 80, 676-679. 
2COMMISSION REGULATION (EC) No 333/2007 Laying down the methods of sampling and analysis for the official 
control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs  OJ L88/29 of 
29.3.2007 
3 M Thompson. Analytical Methods, 2012, 4, 1598-1611. 
4 W Horwitz. Pure Appl Chem, 1995, 67, 331-343. 
5 W S Cleveland. J Amer Stats Assoc, 1979, 74, 829-836. 
6 M Thompson. Analytical Methods, 2013, 5, 4518-4519. 
7 W Bablok and H Passing. J Automat Chem, 1985, 7, 74-79.  
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Fig 1. Reproducibility standard deviation vs. mass fraction above 10-7, showing the present study data 
(circles), the original Horwitz function (black line), and a lowess fit (red line). Logarithms are base 10. 
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Fig 2. Reproducibility standard deviation vs. mass fraction below 10-7, showing the data from the 
present study (circles), a constant relative standard deviation of 0.22 (black line), and a lowess fit (red 
line). Logarithms are base 10. 
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Fig 3. Boxplot of log10 Horwitz ratios. Boxes show ratios observed within individual trials, arranged in 
order of increasing mean ratio. 
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Fig 4. Observed mean ratios from the 95 qualifying trials (some outliers not shown), and 95 simulated 
mean ratios calculated for an assumed six laboratories under 2=σσ:0 rRH  and the assumption of the 
normal distribution of analytical error. 
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Fig 5. Plot of mean ratios found within trials vs. the mean mass fraction of the analyte. Each point 
represents a single trial. 
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Fig 6. An example dataset from a single collaborative trial, ‘insoluble dietary fibre’ in animal feeding 
stuff, showing the Horwitz ratio vs. mass fraction of the analyte and the relationship (line) fitted by 
regression. Each point represents a different test material. 
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Fig 7. Marginal histogram plot of the probabilities (p(a), p(b)) associated with the estimates of intercept 
(a) and slope (b) of the regression line of ratio vs. concentration, in relation to the null hypotheses 

2=α,0=β . In the general absence of effects, a random uniform 2-space distribution ( )1,0U  would be 
expected. 
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Fig 8. Strongly correlated regression coefficients (cross) showing the null hypotheses 2,0:0 == αβH  
(solid circle), which in this instance falls outside the joint 95 % confidence boundary (ellipse) of the 
coefficients but inside their individual 95 % confidence limits (dashed lines). Same data as Fig 6. 
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Fig 9. Boxplot of mean Horwitz ratios from all 95 trials, classified by the type of analyte. The width of 
the boxes is proportional to the number of collaborative trials in each class. 
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