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Savitzky−Golay (SG) method and moving-window waveband screening are applied to a coupling model 

of principal component (PCA) and linear discriminant analysis (LDA). An SG-pretreatment-based 

method (MW−PCA−LDA) for spectral pattern recognition is proposed, which is successfully employed 

for the non-destructive recognition of transgenic sugarcane leaves using visible (Vis) and near-infrared 

(NIR) diffuse reflectance spectroscopy. A Kennard-Stone-algorithm-based process of calibration, 10 

prediction and validation in consideration of uniformity and representative was performed to produce 

objective models. A total of 456 samples of sugarcane leaves in the elongating stage were collected from 

a planted field. These samples were composed of 306 transgenic samples containing both bacillus 

thuringiensis (Bt) and biolaphos resistance (Bar) genes, and 150 non-transgenic samples. According to the 

spectral recgonition effects, two parallel optimal SG modes were selected. The one of 1st order derivative, 15 

3rd degree polynomial and 25 smoothing points was taken as an example to pretreat the diffuse reflectance 

spectra. Based on MW−PCA−LDA method, the optimal waveband was 768 nm to 822 nm, the optimal 

PC combination was PC1−PC3 and the corresponding validation recognition rates of transgenic and non-

transgenic samples achieved 99.1% and 98.0%, respectively. The results show that Vis−NIR spectroscopy 

combined with SG pretreatment and MW−PCA−LDA method can be used for accurate recognition of 20 

transgenic sugarcane leaves and provides a quick and convenient means of screening transgenic 

sugarcane breeding for large-scale agricultural production. 

Introduction 

Sugarcane is the major sugar crop and cane sugar accounts for 

approximately 70% of total world sugar production. China’s 25 

sugar production ranks third in the world. In addition to sugar 

refining, sugarcane is also used for the production of paper and 

fuel ethanol. Sugarcane is usually grown under conditions of high 

temperature and humidity and its productivity is challenged by a 

wide array of biotic and abiotic stresses, with insects being one of 30 

the major causes of economic losses. With the development of 

agricultural biotechnology, transgenic sugarcane breeding is 

increasingly receiving attention. This increases the yield, 

resistance and added value of sugarcane by transferring insect-

resistant and herbicide-tolerant genes into the sugarcane1. The 35 

microorganism bacillus thuringiensis (Bt), a gram-positive, spore-

forming soil bacterium, produces a crystalline parasporal body 

during sporulation, which shows biocidal activity against some 

invertebrate orders such as lepidopteran, dipteran, and 

coleopteran insects at larval stage, as well as against nematodes. 40 

And biolaphos resistance (Bar) gene, which was cloned from 

streptomyces hygroscopicus, can code phosphinothricin 

acetyltransferase to avoid the damage that L-phosphinothricin 

from herbcide could do to the plants2. In transgenic sugarcane 

breeding, it is necessary to determine whether the exogenous 45 

gene is successfully expressed in a sugarcane plant. Molecular 

biology detection technologies, such as polymerase chain reaction  

and enzyme-linked immunosorbent assay (ELISA), are mainly 

used for genetic screening3. These methods are complicated, 

require expertise and cannot meet the needs of large-scale 50 

production. It is therefore of applied value to develop a simple 

and rapid method of transgenic sugarcane breeding screening. 

 Near-infrared (NIR) electromagnetic radiation has frequencies 

between the visible (Vis) and mid-infrared ranges. It primarily 

reflects absorption of overtones and combinations of vibrations of 55 

X−H functional groups (such as C−H, O−H and N−H). Because 

NIR absorption strength is weak, most sample types can be 

measured directly without preprocessing. This rapid, simple and 

non-destructive technique therefore has obvious advantages and 

is commonly used in many areas, including agriculture4−6, food7, 60 

environment8 and biological medicine9−12. Furthermore, NIR 

spectra capture absorption information from the protein 

molecules related to genetic variations and this is applied in the 

fields of genetic disorders13 and genetically modified crops14, 15. 
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 In parallel with NIR spectroscopy and chemometrics 

developments, non-destructive NIR spectroscopy shows 

substantial potential as a pattern recognition tool for transgenic 

sugarcane breeding screening. Differences in protein molecule 

structures between transgenic and non-transgenic sugarcane 5 

contain large numbers of X−H functional groups that have 

significant NIR absorption. However, the application of NIR 

spectroscopy to transgenic sugarcane breeding screening has not 

previously been proposed.  

 Linear discriminant analysis (LDA) is an effective method of 10 

pattern recognition. To overcome high-dimension and co-

linearity (singularity) problems of NIR spectral data, principal 

component analysis (PCA) is commonly used to reduce 

dimensionality and eliminate data singularity. The processed data 

are then input to an LDA model for spectral pattern recognition. 15 

The PCA−LDA method is successfully used in many applications 

of spectral discriminant analysis16, 17.  

 Non-destructive spectroscopic detection of crops has obvious 

application advantages, but also offers a challenge to calculation 

methods. Because crops, such as sugarcane leaves, are complex 20 

systems with multiple components, their absorption spectra can 

be disturbed by various types of noise. To improve the horizontal 

and vertical quality of spectral data, spectral preprocessing and 

wavelength selection are necessary to eliminate noise and to 

extract information, respectively. 25 

 Savitzky−Golay (SG) method18 is an effective spectral 

preprocessing method with a wide scope of application and a 

variety of different SG modes7, 8, 11, 19–21. The moving-window 

partial least squares (MW−PLS) method9 has proven effective for 

waveband selection in spectroscopic quantitative analysis 4, 5, 7, 8, 
30 

10, 13. SG method combined with moving-window waveband 

screening is applied to PCA−LDA models to improve pattern 

recognition by simultaneously optimising both smoothing modes 

and wavebands. In the present study, an MW−PCA−LDA 

algorithm platform is established and applied to non-destructive 35 

Vis−NIR spectroscopic recognition of transgenic sugarcane 

leaves. 

Materials and methods 

Experimental materials, instruments and measurement 

methods 40 

Transgenic sugarcane materials: Transgenic sugarcane strains 

contained both Bt and Bar genes genetically modified from three 

types of sugarcane receptors, ROC 20th, ROC 22th and Yuetang 

No.00-236, giving a total of 306 samples. Non-transgenic 

sugarcane materials: Non-transgenic sugarcane strains of seven 45 

types, ROC 1st, ROC 2nd, ROC 3rd, ROC 4th, ROC 20th, ROC 22th 

and Yuetang NO.00-236, gave a total of 150 samples. ELISA was 

used to check the integrity of copies of the genes introduced 

during the breeding phase and the expression of the exogenous 

gene was guaranteed. The equipment used was ELISA kit BT-50 

Cry1Ab/1Ac (AGDIA, Inc., USA) and microplate reader iMark 

(Bio-rad, Inc., USA). 

 All sugarcane plants were field-grown to the elongation stage. 

A total of 456 samples of sugarcane leaves were collected, 

comprising the 306 transgenic samples (positive) with Bt and Bar 55 

genes and 150 non-transgenic samples (negative), and at least one 

leaf was collected from each plant. The collected samples were 

cleaned and stored at room temperature for 2 h to equilibrate to 

the experimental environment before collection of the Vis−NIR 

diffuse reflectance spectra. 60 

 Spectra were collected using an XDS Rapid ContentTM grating 

spectrometer (FOSS, Denmark) equipped with a diffuse reflection 

accessory and a round sample cell. The scanning range spanned 

400 nm to 2498 nm with a 2 nm wavelength gap, which includes 

the entire NIR region and a large part of the visible region. 65 

Wavebands of 400 nm to 1100 nm and 1100 nm to 2498 nm were 

selected for Si and PbS detection, respectively. The samples were 

placed directly in the diffuse reflection accessory. Each sample 

was measured in triplicate, and the mean value of three 

measurements was used for modeling. The spectra were 70 

measured at 25 ± 1 °C and 46% ± 1% relative humidity. 

Sample division and calibration, prediction and validation 

process 

A framework of calibration, prediction and validation based on 

uniformity and representative was developped to produce 75 

objective models. Some samples were randomly selected from all 

samples as validation samples and were not subjected to the 

modeling optimisation process. The remaining samples were used 

as modeling samples and were divided into calibration and 

prediction sets using Kennard-Stone (K−S) algorithm22. The 80 

MW−PCA−LDA models were established for calibration and 

prediction sets, and model parameters were optimised depending 

on the recognition rate of prediction set. Finally, the selected 

optimal models were revalidated against the validation samples. 

K−S algorithm is a well-performed method for sample division 85 

in experiment planning22, 23. The goal of the K-S algorithm is to 

select a maximally diverse subset from a large set of candidate 

samples, so the subset can represent the whole sample space 

uniformly and sufficiently. The algorithm assumes that one can 

define a ‘distance’ between two samples, which is low when the 90 

two samples are similar and high otherwise. 
In this study, the calibration samples were selected from all of 

the modeling samples using K−S algorithm while the 

remainings were used as prediction samples. For the spectral 

data
)(iA  (absorbance vector) of n samples with K variables 95 

(wavelength),  

niAAAA i

K

iii  , ,2 ,1 , , , , 21

)(   ）（ ）（）（）（ .                (1) 

The Euclidean distance is employed to be the distance measure 

between any two samples i, j, which is difined as the follows: 

2

1

 , )(



K

ji

ji AAD



）（）（ .                            (2) 100 

Given this distance measure, the K−S algorithm works as follows. 

One starts with the modeling set being the candidate set. The first 

two selected samples are the two candidates with the maximal 

pair distance. All subsequent samples are selected in an iterative 

way until the number of selected samples reaches the desired 105 

number of calibration samples. In one iteration, every candidates’ 

minimum distances to all of the previously selected are calculated, 

the one with the largest minimum distance is selected. 

 To ensure modeling representativeness and integrity, all 

calibration, prediction and validation sets must contain negative 110 

and positive samples, so the negative and positive samples should 

be divided into these three sets. The specific procedure was as 

follows. Firstly, for 150 negative samples, 50 samples were 
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randomly selected for validation. The remaining 100 samples 

were used as modeling samples. Fifty samples were further 

selected from modeling samples using K−S algorithm as 

calibration samples while the remainings as predicion samples. 

Secondly, for 306 positive samples, 106 samples were randomly 5 

selected for validation. The remaining 200 samples were used as 

modeling samples. One hundred samples were further selected 

from modeling samples using K−S algorithm as calibration 

samples  while the remainings as predicion samples. Finally, the 

positive and negative samples used for validation were merged 10 

into one validation set (156 samples). Similarly, the positive and 

negative samples used for calibration and prediction were merged 

into calibration (150 samples) and prediction (150 samples) sets, 

respectively. Fig. 1 shows the type and number of samples in the 

calibration, prediction and validation sets. 15 

SG method 

SG method’s parameters include order of derivatives d, degree of 

polynomial p and number of smoothing points m (odd)19. Any m 

consecutive spectral data are considered as a smoothing window 

and the data in the window were fitted using a polynomial 20 

function. The values of dth derivative at the centre of the window 

can be then calculated and expressed as a linear combination of 

all data within the window, in which the coefficients are uniquely 

determined and called SG smoothing coefficients. The dth 

derivative spectra were obtained by moving the window across 25 

the entire spectral range. Each combination of parameters 

corresponds to an SG mode and a set of SG smoothing 

coefficients. In the original paper of SG method19, the paremeters 

d, p, m were set to be: d = 0, 1, 2, 3, 4, 5; p = 2, 3, 4, 5, 6; 

25 , ,7 ,5 m , which corresponded to a total of 117 SG 30 

modes. 

 Considering that the absolute values of the fourth and fifth 

derivatives were very small (which meant a large amount of 

spectral information was missing), the SG modes using these 

derivatives were not used for screening in this study. Furthermore, 35 

if both the wavelength gap and number of smoothing points were 

small, then the smoothing window was narrow and the 

information in the window for smoothing was insufficient, and it 

was difficult to get satisfactory preprocessing effects. Hence, it 

was necessary to expand the number of smoothing points m. In 40 

this paper, m was expanded to 51 , ,7 ,5  (odd). The 

corresponding polynomial coefficients of the new modes were 

determined based on the original method18. A total of 264 SG 

modes were obtained. 

 Taking the SG mode with 1st order derivative, 3rd degree 45 

polynomial and 25 smoothing points as an example, namely (d, p, 

m)= (1, 3, 25), the calculation process of SG smoothing 

coefficient is presented as follows. In fact, 3rd degree polynomial 

and 25 smoothing points are employed to calculate the 1st 

derivative spectra. Firstly, serial number i of 25 continuous 50 

wavelengths in the window is 12 , ,2 ,1 ,0  i , the 

corresponding absorbance value is Ai, 3rd degree polynomial is 

defined by the following equation: 

3

33

2

323130

3

0

3 ibibibbibf
k

k

ki 


.                 (3) 

Polynomial coefficients b3k, k=0, 1, 2, 3, are fitted using Ai. Then 55 

the value of the 1st order derivative of the centre point (i=0) is 

calculated as the follows: 

31b
di

dfi 






 .                                    (4) 

Therefore, only b31 needs to be determined. According to least 

square method, there are the equations:  60 
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12
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which can be reduced to:  

3 ,2 ,1 ,0 ,
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3
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
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k
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.             (6) 

This a system of constant coefficient linear equations about b3k 

(k= 0, 1, 2, 3), whose coefficient determinant is not zero. So b31 65 

can be uniquely determined and represented as the linear 

combination of Ai as the follows:  





12

12

31

i

ii Ab  ,                                    (7) 

in which, 
i is called SG smoothing coefficient. The 25 obtained  

smoothing coefficients are presented as the follows: 1.7379, 70 

0.4843, −0.4800, −1.1814, −1.6461, −1.9005, −1.9708, −1.8834, 

−1.6645, −1.3404, −0.9374, −0.4819, 0, 0.4819, 0.9374, 1.3404, 

1.6645, 1.8834, 1.9708, 1.9005, 1.6461, 1.1814, 0.4800, −0.4843, 

−1.7379. 

 Other SG modes were calculated in the similar way. In this 75 

study, the specific computer algorithms platform was built up by 

using MATLAB v7.6, the combination of smoothing coefficients 

for every SG mode was obtained. All of the 264 SG modes were 

employed in modeling, and the most appropriate SG mode was 

screened based on modeling effects. 80 

Waveband screening with moving window 

Consecutive spectral data for N adjacent wavelengths were 

designated as a window. By moving and varying the size of the 

window in a predetermined search region of the spectrum, each 

analytical waveband corresponding to a window was determined 85 

for modeling. By considering the position and length of the 

wavebands, the search parameters were set as follows: (1) initial 

wavelength (I) and (2) number of wavelengths (N). 

 The search range covered the entire scan region from 400 nm 

to 2498 nm using 1050 wavelengths. Further, I was set to  90 

 1050 , 402, 400, I . To reduce workload and ensure 

representativeness, N was set to 

       1050860 , ,240 ,220200 , 70, 60,50 , 2, 1, N  

PCA-LDA method 

The PCA−LDA calibration and prediction modeling process was 95 

as follows: (1) Principal component analysis was performed 

based on a matrix of the absorbance spectra of the calibration set, 

and the loading and score matrices were obtained. (2) By 

projecting the high-dimensional spectral data to a two-

dimensional principal component plane and plotting the results, it 100 

is possible to visualise the structure of the investigated data set. 

Specifically, based on spectra of the calibration set, the first, 

second and third components (PC1, PC2 and PC3) with maximum 

contribution values were derived and normalised. Any two of 

these together defined a model plane, namely PC1−PC2, PC1−PC3 105 
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and PC2−PC3 planes. (3) Linear discriminant analysis was 

performed on each principal component plane based on spectra of 

calibration set. A straight cut-off line was determined which 

optimally classified transgenic and non-transgenic sugarcane 

leaves samples. (4) On the basis of absorbance matrices of the 5 

prediction set and the acquired loading matrices of the calibration 

set, the score matrix of the prediction set was calculated. The first, 

second and third components of prediction samples were derived 

and normalised. According to the cut-off line, the genotypes of 

the prediction samples were further recognised. (5) Referring to 10 

genuine genotypes of the prediction samples, the prediction 

recognition rate was calculated, and the optimal combination of 

principal components was determined according to the 

recognition rate. 

Optimization frame of MW-PCA-LDA and evaluation indices 15 

Step 1 Screening of SG modes based on PCA−LDA models for 

the entire scan region: (1) the derivative spectra corresponding to 

each SG mode were calculated for the entire scan region, 400 nm 

to 2498 nm. (2) PCA−LDA was established on the basis of each 

SG mode. The recognition rate (REC) among prediction samples 20 

were calculated and denoted as P_REC, which is defined by the 

following equation: 

%  100

~

 REC_
Pre

Pre 
N

N
P ,                         (8) 

Where 
PreN  is the number of prediction samples and 

Pre

~
N  is the 

number of correctly recognised prediction samples. The optimal 25 

SG mode’s parameters (d, p and m) and the combination of 

principal components for the PCA−LDA model were selected to 

maximise P_REC. 

 Step2 Screening of wavebands with moving-window mode: 

Using derivative spectra by the optimal SG mode selected in Step 30 

1, MW−PCA−LDA models were established for all combinations 

of parameters I, N and combinations of principal components, 

and the corresponding P_RECs were calculated. The optimal 

waveband was sequentially selected according to the maximum 

P_REC. 35 

 Step3 Model validation: The optimal MW−PCA−LDA model 

was validated using the validation samples that were excluded 

from the modeling optimisation process. The validation 

recognition rate of transgenic and non-transgenic samples were 

calculated and denoted as V_REC+ and V_REC–, respectively, 40 

which are defined by the following equations: 

%  100

~

 REC_
Val

Val 





N

N
V ,                        (9) 

%  100

~

 REC_
Val

Val 





N

N
V ,                      (10) 

where 

ValN and 

ValN are the numbers of transgenic and non-

transgenic samples in the validation set, respectively, and 45 



Val

~
N and 

Val

~
N  are the numbers of correctly recognised transgenic 

and non-transgenic samples in the validation set, respectively. 

 The computer algorithms for the abovementioned method were 

designed using the MATLAB  version 7.6 software. 

Results and discussion 50 

PCA-LDA based on the entire scanning region without SG 

pretreatment 

The Vis−NIR diffuse reflection spectra of 456 samples of 

sugarcane leaves for the entire scan region (400 nm to 2498 nm), 

covering the entire NIR region and part of visible region, are 55 

shown in Fig. 2. And Fig. 3 shows the average spectra of the 

transgenic and non-transgenic sugarcane leaves samples. Obvious 

differences are found from a visual observation of the two spectra, 

especially around three spectral peaks at 678 nm, 1450 nm and 

1928 nm and four spectral valleys at 552 nm, 800 nm, 1666 nm 60 

and 2216 nm. The peak at 678 nm represents pigment absorption 

where a gap is indicated between these lines. In Fig. 3, it is 

interestingly revealed that, around the valley at 800 nm, the 

absorption of transgenic sugarcane leaves is remarkably lower 

than that of non-transgenic sugarcane leaves, however, at those 65 

three peaks and other three valleys, the absorption of transgenic 

sugarcane leaves is remarkably higher than that of non-transgenic 

sugarcane leaves. Even though chlorophyll content might 

partially explain the observed spectral difference between types 

of leaf, the difference might arise from other facts. 70 

 For comparison, PCA−LDA models without pretreatment of 

SG method were first established using the entire scan region. 

The P_REC is 81.3%. The result shows that spectral recognition 

without pretreatment of SG method is unsatisfactory and it is 

necessary to pretreat the spectral data. 75 

Screening of SG modes 

A total of 264 different SG modes were used to preprocess each 

spectrum to establish PCA−LDA models based on the entire scan 

region. The modeling effects (P_REC) of local optimal models 

corresponding to each m (number of smoothing points) are 80 

plotted in Fig. 4 distinguished by different d (orders of derivative). 

Furthermore, the P_REC and parameters of local optimal models 

corresponding to each d  are summarised in Table 1. For the case 

of 1st order of derivative (d=1), there are two parallel local 

optimal models. The two models are just the global optimal 85 

models. For the cases of 2nd , 3rd order  derivative and no 

derivative (d=0, 2, 3), there are also multiple models tied for local 

optimal models with poor modeling effects, so only the models 

with the least m are listed  in Table 1. As shown in Table 1 and 

Fig. 4, the maximum P_REC was 93.3%. The spectral 90 

recognition is obviously better than that without SG pretreatment. 

Derivatives are an alternative, among others, to correct baseline 

deviations (drifts) caused by the multiplicative light scattering 

observed in diffuse reflectance measurements. SG method uses a 

smoothing of the spectra prior to calculating the derivative in 95 

order to decrease the detrimental effect on the signal-to-noise 

ratio that conventional finite-difference derivatives would have.[21] 

These results indicate that SG method can reduce spectrum noise 

and enhance spectral recognition ability, which can be attributed 

more to the use of derivative than to the smoothing. There are 100 

also differences in spectral recognition for different SG modes, so 

screening of SG  modes is necessary. 
Table 1 Comparison of PCA−LDA modeling effects with and without SG 

pretreatment based on the entire scan region (400 nm to 2498 nm) 

d p m PCC P_REC 

No SG pretreatment -- -- 1-2 81.3% 
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0 2, 3 5 1-2 81.3% 

1 3, 4 25 1-3 93.3% 

5, 6 43 1-3 

2 2, 3 31 1-3 92.7% 

3 3, 4 45 1-3 92.0% 

Note: d: order of derivatives; p: degree of polynomial; m: number of 

smoothing points; PCC: principal component combination.  

Screening of wavebands with MW-PCA-LDA 

The entire scan region, 400 nm to 2500 nm, contains numerous 

wavelengths (i.e. N = 1050), which leads to high modeling 5 

complexity. To extract further information, reduce model 

complexity and improve spectral recognition, waveband 

optimisation was performed with MW−PCA−LDA, which is 

illustrated by the example of the optimal SG mode with d = 1, p = 

3 and m = 25. The SG derivative spectra of 456 samples for this 10 

mode are shown in Fig. 5.  

 Using the methods mentioned in Step 2, the optimal values of I 

and N are 768 and 28, respectively. The corresponding waveband 

was 768 nm to 822 nm, which covers part of the Vis−NIR 

combined region. The optimal PC combination is PC1−PC3. The 15 

corresponding P_REC is 98.0%. The result is obviously better 

than that obtained from the full scan region. In addition, only a 

small number of wavelengths (i.e. N = 28) are adopted in the 

selected model and model complexity is significantly reduced. 

The position of the selected waveband is also shown in Fig. 3 and 20 

Fig. 5, which is just located in the interesting spectral valley at 

800 nm . This region is related to fourth overtones of C−H (CH 

and CH2) and third overtones of O-H (H2O and Ar−OH).24 

 For fixed I and changing N, the local optimal model 

corresponding to a single parameter I (initial wavelength) was 25 

selected according to maximum P_REC; P_REC values for all I 

are shown in Fig. 6(a). For fixed N and changing I, the local 

optimal model corresponding to a single parameter N (number of 

wavelengths) was selected according to maximum P_REC; 

P_REC values for all N are shown in Fig. 6(b). 30 

 Fig. 6(a) and 6(b) show the maximum P_REC achieved when I 

= 768 nm and N = 28. These data may serve as a valuable 

reference for designing splitting systems for spectroscopic 

instruments. Local optimal models with prediction parameters 

close to those of the global optimal model remain good choices. 35 

These models address restrictions such as cost and material 

properties as well as the position and number of wavelengths in 

instrument design.  

 The results show that SG method combined with moving-

window waveband screening can be applied to PCA−LDA 40 

models to well improve spectral pattern recognition. In fact, there 

are also other well-performed methods for wavelength selection, 

such as competitive adaptive reweighted sampling (CARS)25, 

Monte Carlo uninformative variable elimination (MC−UVE)26, 

randomization test (RT)27, 28 and so on. These methods could also 45 

be combined with the algorithm platform proposed in this paper. 

Considering the limitation of article length, further discussion 

was omitted. 

Model validation 

The randomly selected validation samples, which were excluded 50 

in the modeling optimisation process, were used to validate the 

optimal MW−PCA−LDA model (d = 1, p = 3, m = 25, I = 766, N 

= 28 and PC1−PC3). The validation process was based on the 

methods mentioned above. From a total of 156 validation samples, 

154 were correctly recognised while one of the positives and one 55 

of the negatives were wrongly recognised. The validation 

recognition rates V_REC+ and V_REC– achieved 99.1% and 

98.0%, respectively. As shown in Fig. 7, the validation samples 

plot on the principal component plane PC1−PC3 and are clearly 

classified into two groups. 60 

 The genotypes of samples that recognised by Vis-NIR spectral 

analysis are highly consistent with those of genetic diagnosis, 

indicating that spectral prediction is highly accurate for 

determining negative and positive samples in transgenic 

sugarcane breeding screening. The proposed wavelength 65 

selection may also provide valuable references for designing 

specialised spectrometers. 

Conclusions 

SG pretreatment method combined with moving-window 

waveband screening is applied to a PCA−LDA model, and a SG- 70 

pretreatment-based method (MW−PCA−LDA) for spectral 

pattern recognition is proposed, which is successfully used for the 

non-destructive recognition of transgenic sugarcane leaves using 

Vis-NIR spectroscopy. In addition, a Kennard-Stone-algorithm-

based process of calibration, prediction and validation in 75 

consideration of uniformity and representative was performed to 

produce objective models. 

 Vis-NIR spectral prediction is highly accurate for determining 

genotypes of sugarcane leaves samples. The proposed wavelength 

selection may also provide valuable references for designing 80 

specialised spectrometers. 

 Comparing with conventional methods, the proposed method 

is rapid and simple. This technique is a potential and promising 

tool for transgenic sugarcane breeding screening of large-scale 

agricultural production. 85 
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Figure legend 

Figure. 1 Type and number of samples in the calibration, 45 

prediction and validation sets. 

 
 

Figure. 2 Vis−NIR diffuse reflection spectra of 456 samples of 

sugarcane leaves. 50 

 
 
Figure. 3 Average spectra of the transgenic and non-transgenic 

sugarcane leaf samples. 

 55 

 
Figure. 4 P_REC corresponding to each number of smoothing 
points distinguished by different orders of derivative. 

 

 60 

Figure. 5 SG derivative spectra of 456 samples with first-order 

derivative, third degree polynomial and twenty-five smoothing 
points. 
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Figure. 6 P_REC corresponding to (a) initial wavelength I and (b) 
number of wavelengths N. 

 

 5 

 
Figure. 7 Validation recognition of the optimal model with first-

order derivative, third degree polynomial and twenty-five 

smoothing points on principal component plane PC1−PC3 based 
on the waveband from 768 nm to 822 nm. 10 
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