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Abstract Cervical cancer is the second most common cancer in women worldwide. 36	
  

We set out to determine whether attenuated total reflection Fourier-transform infrared 37	
  

(ATR-FTIR) spectroscopy combined with principal component analysis-linear 38	
  

discriminant analysis (PCA-LDA) or, variable selection techniques employing 39	
  

successive projection algorithm or genetic algorithm (GA) could classify cervical 40	
  

cytology according to human papilloma virus (HPV) infection [high-risk (hr) vs. low-41	
  

risk (lr)]. Histopathological categories for squamous intraepithelial lesion (SIL) were 42	
  

segregated into grades (low-grade vs. high-grade) of cervical intraepithelial neoplasia 43	
  

(CIN) expressing different HPV infection (16/18, 31/35 or HPV Others). Risk 44	
  

assessment for HPV infection was investigated using age (≤29 y vs. >30 y) as the 45	
  

distinguishing factor. Liquid-based cytology (LBC) samples (n=350) were collected 46	
  

and interrogated employing ATR-FTIR spectroscopy. Accuracy test results including 47	
  

sensitivity and specificity were determined. Sensitivity in hrHPV category was high 48	
  

(≈87%) using a GA-LDA model with 28 wavenumbers. Sensitivity and specificity 49	
  

results for >30 y for HPV, using 28 wavenumbers by GA-LDA, were 70% and 67%, 50	
  

respectively. For normal cervical cytology, accuracy results for ≤29 y and >30 y were 51	
  

high (up to 81%) using a GA-LDA model with 27 variables. For the low-grade 52	
  

cervical cytology dataset, 83% specificity for ≤29 y was achieved using a GA-LDA 53	
  

model with 33 wavenumbers. HPV16/18 vs. HPV31/35 vs. HPV Others were 54	
  

segregated with 85% sensitivity employing a GA-LDA model with 33 wavenumbers. 55	
  

We show that ATR-FTIR spectroscopy of cervical cytology combined with variable 56	
  

selection techniques is a powerful tool for HPV classification, which would have 57	
  

important implications for the triaging of patients. 58	
  

 59	
  
Keywords: Biospectroscopy; Cervical cytology; Classification; Human papilloma 60	
  
virus; Variable selection; Wavenumber 61	
  
 62	
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Introduction 63	
  

 Extensive laboratory and epidemiological evidence demonstrates that human 64	
  

papilloma virus (HPV) is a major cause of cervical squamous cell carcinoma (SCC), 65	
  

its precursor lesions [cervical intraepithelial neoplasia (CIN)], and other benign or 66	
  

malignant clinical manifestations including genital warts1. HPV is a small virus that is 67	
  

≈55 nm in diameter and comprises a double-stranded circular DNA of nearly 8,000 68	
  

bp. Its genome encodes eight proteins: early proteins E5, E6 and E7 are involved in 69	
  

cell proliferation and survival, whilst E6 and E7 also play a key role in HPV-70	
  

associated carcinogenesis2. More than 200 genotypes have been identified and 71	
  

associated with benign (low-risk, lrHPV) or malignant (high-risk, hrHPV) cutaneous 72	
  

or mucosal lesions. The hrHPV subtypes 16, 18, 31, 33, and 51 have been recovered 73	
  

from more than 95% of cervical cancers3. Studies aimed at describing the distribution 74	
  

of HPV types in invasive cervical cancer strongly implicate subtypes 16 and 18 in 75	
  

approximately 70% of all cervical cancers4-6. Worldwide, cancer of the cervix is the 76	
  

second leading cause of cancer death in women: each year, an estimated 493,000 new 77	
  

cases are diagnosed7. 78	
  

The distribution of genital HPV types varies and is related to the degree of 79	
  

cervical dysplasia present8. HPV6 and 11 are frequently found in sexually-active 80	
  

adults, and are associated with low-grade (LG) squamous intraepithelial lesions (L-81	
  

SIL). HPV16, 18, 31 and 45 are less frequently found and are associated with 82	
  

progression to invasive cancer. Detection of particular HPV types could be useful in 83	
  

the diagnosis and management of cervical cancer in older women, and for resolving 84	
  

equivocal cytology. HPV assays, which can distinguish between high-grade (HG) and 85	
  

LG disease, may also have a role in routine cervical screening9. 86	
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Early detection and treatment of precancerous lesions can prevent progression 87	
  

to cervical cancer. Identification of precancerous lesions has been primarily achieved 88	
  

by cytologic screening. The modal time is 7-10 y between HPV infection occurring in 89	
  

the late teens or early 20’s and pre-cancer peaking around 30 y of age. Invasive cancer 90	
  

arises over many years, even decades, in a minority of women with a peak or plateau 91	
  

in risk at ≈35-55 y of age. Each genotype of HPV is an independent infection, with 92	
  

different carcinogenic risks linked to evolutionary species10. Technologies for HPV 93	
  

DNA testing11 and liquid-based cytology (LBC)12 are more likely to detect cytologic 94	
  

abnormalities in young women who are at lrHPV for actual invasive cervical disease, 95	
  

opening up a requirement for better triage. 96	
  

Biospectroscopy techniques include vibrational spectroscopy [infrared (IR) or 97	
  

Raman]13, laser-induced fluorescent spectroscopy14, optical coherence tomography15 98	
  

and confocal imaging16. In particular, attenuated total reflection Fourier-transform IR 99	
  

spectroscopy (ATR-FTIR) has shown potential in the field of cervical cancer 100	
  

screening, as an inexpensive but robust technique capable of segregating grades of 101	
  

cytology17,18. The fingerprint spectra generated by ATR-FTIR spectroscopy reflects 102	
  

the compositional and quantitative differences of biochemical constituents in cells19,20. 103	
  

Peaks within the “biochemical-cell fingerprint” region (1800 cm-1 to 900 cm-1) 104	
  

contains spectral features associated with lipids (≈1750 cm-1), Amide I (≈1650 cm-1), 105	
  

Amide II (≈1550 cm-1), methyl groups of lipids and proteins (≈1400 cm-1), Amide III 106	
  

(≈1260 cm-1), asymmetric phosphate stretching vibrations (vasPO2
-; ≈1225 cm-1), 107	
  

symmetric phosphate stretching vibrations (vsPO2
-; ≈1080 cm-1), C-OH groups of 108	
  

serine, threonine and tyrosine and C-O groups of carbohydrates (≈1155 cm-1), 109	
  

glycogen (≈1030 cm-1) and protein phosphorylation (≈970 cm-1)21-24. 110	
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The principle is that the “biochemical-cell fingerprint” of a liquid-based 111	
  

cytology (LBC) normal (benign) sample is different from that of a dysplastic one, 112	
  

based on alterations in DNA-, RNA-, lipid-, phosphate- and carbohydrate-associated 113	
  

chemical bonds. Furthermore, the spectral fingerprint of a cervical cytology sample 114	
  

could provide a dichotomous biomarker of LG cytology that is committed to 115	
  

progression13. The application of chemometric tools to extract discriminating variance 116	
  

from this spectral fingerprint is largely responsible for the advancement of 117	
  

biospectroscopy25. For the analysis of biological samples (biofluids, cells or tissues) 118	
  

with IR spectroscopy, principal component analysis (PCA) is often used for initial 119	
  

data reduction26; otherwise, hierarchical cluster analysis (HCA) may be applied to 120	
  

analyse groups in a dataset on the basis of their spectral similarities27, or linear 121	
  

discriminant analysis (LDA) to classify unknown samples into predetermined 122	
  

groups28. Many studies employ the entire spectrum in the construction of these 123	
  

mathematical models; herein, many variables are redundant and/or non-informative. 124	
  

A well-developed approach to identify biomarkers or wavenumbers is the successive 125	
  

projection algorithm (SPA) or genetic algorithm (GA) in conjunction with LDA29,30. 126	
  

Basically, SPA-LDA and GA-LDA employ a cost function associated with the 127	
  

average risk of misclassification in a validation set and can also reduce the 128	
  

generalization problems often associated with collinearity and avoid over-fitting. 129	
  

As HPV infection causes changes in expression of cervical cell-cycle 130	
  

regulatory proteins and nucleic acids, a non-invasive biomarker-free analytical 131	
  

technique for identification of alterations in LBC samples associated with lrHPV and 132	
  

hrHPV as a function of age in women would assist our ability to triage cytological 133	
  

atypia. There is a need for an automated, cost-effective tool capable of segregating 134	
  

grades of dysplasia related with age with higher sensitivity and specificity31. 135	
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This study applies IR spectra, or combinations of variables, that reflect a 136	
  

specific biochemical feature of histopathological categories for squamous 137	
  

intraepithelial lesion (SIL), divided into different grades of CIN (low-grade and high-138	
  

grade) containing different HPV infection (16/18, 31/35 and HPV Others) and 139	
  

subsequently combined into two groups: lrHPV vs. hrHPV. In addition, risk 140	
  

assessment of cervical cytology for HPV infection based on age (≤29 y vs. >30 y) as a 141	
  

distinguishing factor is an important determinant of a requirement for intervention. 142	
  

We employed SPA and GA to select an appropriate subset of wavenumbers for LDA, 143	
  

allowing the discrimination of different categories of cytology, to identify potential 144	
  

biomarkers and detect dysplasia stages. Cytology samples were categorised into 145	
  

different grades of CIN (LG vs. HG) containing different HPV infection (16/18, 31/35 146	
  

and HPV Others) in order to elucidate altered variables in their spectral fingerprint. 147	
  

This novel approach as a diagnostic tool could be applied to improve accuracy and 148	
  

reduce subjectivity in cervical screening. Lastly, measures of test accuracy, such as 149	
  

sensitivity and specificity were calculated as an important quality standard in test 150	
  

evaluation studies. 151	
  

 152	
  

Materials and Methods 153	
  

A retrospective cross-sectional study (October 2009 and August 2012) was 154	
  

coordinated by the University General Hospital of Ioannina, Institutional Review 155	
  

Board (i.e., Ethics Committee) [protocol 28/9-7-2009(s.22)], to estimate the 156	
  

prevalence of HPV DNA types in women with invasive cervical cancer. Ethics 157	
  

committee approval was also obtained from the Institutional Review Board of 158	
  

Hippokration Hospital at University of Thessaloniki [approval number 3715/21-03-159	
  

2011] for collection of cytology samples at the Second Department of Obstetrics and 160	
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Gynaecology, Hippokration Hospital (University of Thessaloniki, Greece). Study 161	
  

participants were fully informed regarding the purposes of the study and consent was 162	
  

obtained. Participants were referred with cervical smear abnormalities or for 163	
  

symptoms such as post-coital bleeding. All underwent a repeat LBC sample collection 164	
  

prior to colposcopic assessment. Decisions regarding no treatment, punch biopsies for 165	
  

suspected intraepithelial lesions or treatment were made by colposcopists. In cases 166	
  

where both the referral cytology and colposcopy were suggestive of high-grade 167	
  

disease (CIN2+), punch biopsies were not considered necessary and treatment with 168	
  

Loop Electrosurgical Excision Procedure (LEEP) was offered to the women. 169	
  

 LBC samples were collected with RoversTM Cervex-brush in a ThinPrep® 170	
  

solution (Cytyc, USA) and each sample underwent cytological and biomolecular 171	
  

analysis by resident qualified cytopathologists within quality-assured laboratories in 172	
  

two University Hospitals. Cervical cytology is graded as negative, atypical squamous 173	
  

cells of undetermined significance (ASCUS), low-grade squamous intraepithelial 174	
  

lesion (LSIL), high-grade squamous intraepithelial lesion (HSIL) or cancer. 175	
  

Specimens exhibiting viral changes without atypia were classed as HPV or 176	
  

koilocytosis. 177	
  

In addition to cytology, HPV DNA tests (Clinical arrays HPV, Genomica, 178	
  

Spain) were carried out after extracting DNA from the residuum of the LBC sample 179	
  

using a commercial kit (Purelink, Invitrogen). The analysis for different HPV 180	
  

genotypes was performed with PCR amplification using the CLART® (Clinical Array 181	
  

Technology) HPV2 Kit. This technique is based on the amplification of specific 182	
  

fragments of the viral genome and their hybridization with specific probes for each 183	
  

HPV type. The method assessed the following hrHPV types: 16, 18, 26, 31, 33,35, 39, 184	
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43, 45, 51, 52, 53, 56, 58, 59, 66, 68, 70, 73, 82 and 85; and, lrHPV types 6, 11, 40, 185	
  

42, 44, 54, 61, 62, 71, 72, 81, 83, 84 and 89. 186	
  

The cytology specimens were categorised as follows: n=23 lrHPV and n=37 187	
  

hrHPV types (set A); n=90 ≤29 y and n=239 >30 y for HPV infection (set B); n=32 188	
  

≤29 y and n=82 >30 y for normal cervical cytology (set C); n=29 ≤29 y and n=49 >30 189	
  

y for LG cervical cytology (set D); n=42 HPV16/18, n=21 HPV31/35, n=50 HPV 190	
  

6/33/39/45/51/52/54/58/59/61/62/66/70/83 (set E). 191	
  

Samples were sent for spectroscopy analysis after cytological diagnosis was 192	
  

obtained. Six mL of Thin-Prep® from each specimen was analysed. Samples were 193	
  

centrifuged at 1500 rpm for 5 min. The resultant cell pellet, after discarding the 194	
  

methanol (i.e., fixative in Thin-Prep®) was washed with distilled H2O and 195	
  

centrifuged; this process was repeated three times. The resulting cell pellet was 196	
  

suspended in 0.5 mL of distilled H2O. The suspensions were applied and left to dry on 197	
  

IR-reflective slides (Low-E; Kevley Technologies Inc., OH, USA). Once dry, samples 198	
  

were desiccated for a further 24 h. This was to remove any possibility of H2O 199	
  

contaminating specimen spectra. In the event of H2O contamination, the 3400 cm-1 200	
  

peak tends to become more ‘rounded’. In addition, the Amide I lefthand shoulder 201	
  

would be spikey and split with H2O contamination. The ATR-FTIR spectra are 202	
  

exactly as we would have hoped in terms of being minimally influenced by aqueous 203	
  

and requiring minimal pre-processing (see Electronic Supplementary Information 204	
  

[ESI] Figs. S1 to S5). A Tensor 27 FTIR Spectrometer with Helios ATR attachment 205	
  

(Bruker Optik GmbH) was used to obtain IR spectra (10 per specimen). Instrument 206	
  

settings were 32 scans, spectral resolution of 8 cm-1, and interferogram zero-filling of 207	
  

2×. Prior to analysing each sample, the diamond crystal was washed and a background 208	
  

spectrum obtained to account for atmospheric composition. 209	
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The data import, pre-treatment and construction of chemometric classification 210	
  

models (PCA-LDA, SPA-LDA and GA-LDA) were implemented in MATLAB 211	
  

R2010a software (Mathworks Inc, Natick, MA, USA). IR spectra were pre-processed 212	
  

by cutting between 1,800 and 900 cm-1 (235 wavenumbers; a spectral resolution of 8 213	
  

cm-1 gives a data spacing of ≈4 cm-1 after a 2× zero-filling of the interferogram), 214	
  

rubberband baseline-corrected and normalized to the Amide I peak (i.e., ≈1,650 cm-1). 215	
  

For PCA-LDA, SPA-LDA and GA-LDA model, the samples were divided 216	
  

into training (70%), validation (15%) and prediction sets (15%) by applying the 217	
  

classic Kennard-Stone (KS) uniform sampling algorithm to the IR spectra32. Sample 218	
  

numbers in each set are presented in Table 1. Training samples were used in the 219	
  

modelling procedure (including variable selection for LDA), whereas the prediction 220	
  

set was only used in the final evaluation of the classification. The optimum number of 221	
  

variables for SPA-LDA and GA-LDA was determined from the minimum cost 222	
  

function G calculated for a given validation dataset: 223	
  

∑
=

=
VN

n
n

V

g
N

G
1

,
1                                                                                                              (1) 224	
  

where ng  is defined as 225	
  

),(min
),(

)(
2

)()(

)(
2

mInnlmI

nIn
n mxr

mxr
g

≠

=                                                                                       (2) 226	
  

and )(nI  is the index of the true class for the nth validation object nx . ng is defined as 227	
  

risk of misclassification of the nth validation object nx , n=1, ..., VN ). In this 228	
  

definition, the numerator is the squared Mahalanobis distance between object nx (of 229	
  

class index nI ) and the sample mean )(nIm  of its true class. The denominator in Eq. 230	
  

(2) corresponds to the squared Mahalanobis distance between object nx  and the centre 231	
  

of the closest incorrect class. 232	
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The GA routine was carried out during 100 generations with 200 233	
  

chromosomes each. Crossover and mutation probabilities were set to 60% and 10%, 234	
  

respectively. Moreover, the algorithm was repeated three times, starting from 235	
  

different random initial populations. The best solution (in terms of the fitness value) 236	
  

resulting from three realizations of the GA was employed. For this study, LDA scores, 237	
  

loadings and discriminant function (DF) values were obtained for the specimens. 238	
  

Usually, the first LDA factor (LD1) was used to visualize the alterations in the sample 239	
  

in 1-dimensional (D) scores plots that indicate the main biochemical alterations. SPA-240	
  

LDA and GA-LDA were used to detect alterations relative to HPV infection in LBC 241	
  

samples based of age of participants. 242	
  

Receiver-operating characteristic (ROC) analysis is recommended standard 243	
  

practice for test evaluation studies for non-binary tests28. For this study, measures of 244	
  

test accuracy, such as sensitivity (probability that a test result will be positive when 245	
  

the disease is present), specificity (probability that a test result will be negative when 246	
  

the disease is not present) were calculated as important quality standards in test 247	
  

evaluation. Both have a maximum value of 1 and a minimum of 0. Sensitivity and 248	
  

specificity can be calculated using the following the equations: 249	
  

Sensitivity (%) = 100x
FNTP

TP
+

 250	
  

Specificity (%) = 100x
FPTN

TN
+

 251	
  

where FN is defined as a false negative and FP as a false positive. TP is defined as 252	
  

true positive and TN is defined as true negative. 253	
  

 254	
  

 255	
  

 256	
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Results 257	
  

Dataset A: lrHPV vs. hrHPV 258	
  

Figure 1A shows mean IR spectra obtained from all grades segregated into 259	
  

lrHPV vs. hrHPV. As can be seen, discriminating the two categories on the basis of 260	
  

ATR-FTIR spectral measurements is not straightforward, owing to the complexity of 261	
  

the dataset. Thus, pattern classification (PCA-LDA) or variable selection techniques 262	
  

(SPA-LDA and GA-LDA) were applied to the dataset and comparisons made between 263	
  

classification rates (Table 2) and interpretability. Figure 1B is a 2-D PCA-LDA scores 264	
  

plot of the derived spectral points from each category, and shows that there is 265	
  

‘crossover’ between the two categories; this hints at minimal segregation. However, 266	
  

as can be seen in Table 2, the PCA-LDA models for lrHPV generated a sensitivity and 267	
  

specificity of 48% and 61%, respectively, using six PC scores from PCA, which 268	
  

account for >90% of the variance for both categories. For hrHPV, the PCA-LDA 269	
  

model achieved a sensitivity and specificity of 76% and 77%, respectively. Then, 270	
  

SPA-LDA was applied to the dataset to obtain the optimum number of variables by 271	
  

the minimum cost function G. Using only five selected wavenumbers (Table 3), 272	
  

Fisher scores were obtained and this improved segregation between classes (Figure 273	
  

1C) when compared with PCA-LDA. The SPA-LDA model achieved a sensitivity and 274	
  

specificity of 50% and 50%, respectively, for lrHPV. For hrHPV, SPA-LDA, using 275	
  

the five wavenumbers selected, achieved a sensitivity and specificity of 76% and 276	
  

76%, respectively. The GA-LDA model for comparison achieved an improvement in 277	
  

segregation between lrHPV vs. hrHPV (Figure 1D). The GA resulted in the selection 278	
  

of 28 wavenumbers (of 235 available) (Table 3). 279	
  

 280	
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Dataset B: ≤29 y and >30 y for HPV types 281	
  

Figure 2A shows mean IR spectra obtained from ≤29 y and >30 y for HPV 282	
  

types. A PCA-LDA model was built using six PCs, together explaining 90.5% of 283	
  

variance in the data. In Fig. 2B one can see that the PC scores plot does not show 284	
  

category separation. The PCA-LDA model for ≤29 y obtained a sensitivity and 285	
  

specificity of 58% and 56%, respectively (Table 2). For >30 y, the PCA-LDA model 286	
  

achieved a sensitivity and specificity of 48% and 48%, respectively. Figure 2C is a 287	
  

scores plot that shows SPA-LDA generates some segregation between the two 288	
  

categories, ≤29 y and >30 y, for HPV; the cost function minimum point was obtained 289	
  

with four wavenumbers (Table 3). By using these selected wavenumbers, SPA-LDA 290	
  

yielded a sensitivity and specificity of 60% and 60%, respectively, for ≤29 y; for >30 291	
  

y, a sensitivity and specificity of 63% and 60% were obtained, respectively. For GA-292	
  

LDA (Table 2), the accuracy showed an improvement in comparison with PCA-LDA 293	
  

and SPA-LDA results, especially for >30 y category, using 20 selected wavenumbers 294	
  

(Table 3), with sensitivity and specificity of 70% and 67%, respectively. Finally, 295	
  

Figure 2D is a scores plot that shows GA-LDA (cost function minimum point 296	
  

obtained with 20 wavenumbers) generates better segregation for the two categories, 297	
  

≤29 y vs. >30 y for HPV. 298	
  

Dataset C: ≤29 y and >30 y based on normal cervical cytology (NCC) 299	
  

 Figure 3A shows mean IR spectra from categories divided into ≤29 y and >30 300	
  

y from NCC. As before, pattern classification (PCA-LDA) and variable selection 301	
  

techniques (SPA-LDA and GA-LDA) were applied to this condition and comparisons 302	
  

were made between classification rates (Table 2) and interpretability. Figure 3B 303	
  

shows that there is a ‘crossover’ between ≤29 y and >30 y from NCC using the PCA-304	
  

Page 13 of 32 Analytical Methods

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
tic

al
M

et
ho

ds
A

cc
ep

te
d

M
an

us
cr

ip
t



14	
  
	
  

LDA model. As can be seen in Table 2, the PCA-LDA model for ≤29 y produced a 305	
  

sensitivity and specificity of 48% and 47%, respectively, using seven PC scores from 306	
  

PCA, which accounts for >93% of the variance for both categories. For >30 y, the 307	
  

PCA-LDA model exhibited an improved sensitivity and specificity of 63% and 62%, 308	
  

respectively. The optimum number of variables for the SPA-LDA model was 309	
  

determined from the minimum cost function G, resulting in five wavenumbers (Table 310	
  

3). Accuracy of SPA-LDA for ≤29 y was 40% and 45% for sensitivity and specificity, 311	
  

respectively. However, for >30 y, a sensitivity and specificity by the SPA-LDA model 312	
  

of 64% and 65%, respectively, was achieved. Performing LDA on the GA selected 313	
  

variable ≤29 y dataset, the accuracy of the model was 53% and 81% for sensitivity 314	
  

and specificity, respectively. The accuracy of GA-LDA for >30 y was 78% and 77% 315	
  

for sensitivity and specificity, respectively. The GA employed for comparison 316	
  

resulted in the selection of 23 wavenumbers (Table 3). Figure 3D shows the scores 317	
  

plot associated with GA-LDA variable selection, whose cost function minimum point 318	
  

was obtained with 20 wavenumbers, highlighting improvement over previous models. 319	
  

Dataset D: ≤29 y and >30 y based on low-grade cervical cytology (LG-CC) 320	
  

Figure 4A shows mean IR spectra following categorisation into ≤29 y and >30 321	
  

y from LG-CC. Figure 4B details the graphical representation of Fisher scores 322	
  

obtained from the PCA-LDA model, using six PCs with a cumulative variance of 323	
  

91%, allowing one to observe a separation of the categories albeit with some overlap. 324	
  

In Table 2, the PCA-LDA models for ≤29 y associated LG-CC generated a sensitivity 325	
  

and specificity of 53% and 58%, respectively. For >30 y from LG-CC, the PCA-LDA 326	
  

model achieved a sensitivity and specificity of 38% and 37%, respectively. SPA-LDA 327	
  

was subsequently employed to analyse the differences between two categories (≤29 y 328	
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vs. >30 y based on LG cervical cytology). Figure 4C is a scores plot that shows SPA-329	
  

LDA results in slight segregation between the two categories, whose cost function 330	
  

minimum point was obtained with two wavenumbers (Table 3). By using these 331	
  

selected wavenumbers, SPA-LDA showed a sensitivity and specificity of 56% and 332	
  

52%, respectively, for ≤29 y. For >30 y, a sensitivity and specificity of 57% and 48%, 333	
  

respectively, were obtained. GA was applied to the dataset and resulted in the 334	
  

selection of 33 variables (Table 3). Figure 4D is a scores plot that shows GA-LDA 335	
  

improved segregation between the two categories, ≤29 y and >30 y for LG-CC. 336	
  

Furthermore, the accuracy of GA-LDA for ≤29 y was 88% and 83% for sensitivity 337	
  

and specificity, respectively. On the other hand, the accuracy of GA-LDA for >30 y 338	
  

was 68% and 73% for sensitivity and specificity, respectively. 339	
  

Dataset E: Segregate all spectra into categories HPV16/18 vs. HPV31/35 vs. HPV 340	
  

Others 341	
  

Figure 5A shows mean IR spectra from the dataset split into three categories 342	
  

(HPV16/18 vs. HPV31/35 vs. HPV Others). Table 2 shows the accuracy tests 343	
  

achieved for PCA-LDA, SPA-LDA and GA-LDA models for the three categories 344	
  

(HPV16/18 vs. HPV31/35 vs. HPV Others). Figure 5B is the graphical representation 345	
  

of Fisher scores (DF1 × DF2) obtained by PCA-LDA from each category, using six 346	
  

PCs with a cumulative variance of 90%; DF1 × DF2 does not discriminate between 347	
  

HPV samples. As can be seen in Table 2, sensitivity and specificity of 55% and 53%, 348	
  

respectively, were achieved by PCA-LDA models for HPV16/18. For HPV 31/35, the 349	
  

sensitivity and specificity obtained were 61% and 58%, respectively. Furthermore, for 350	
  

HPV Others, the sensitivity and specificity obtained were 57% and 54%, respectively. 351	
  

SPA was applied to the dataset and resulted in the selection of four variables (Table 352	
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3). Using the four wavenumbers selected by SPA-LDA, DF1 × DF2 was obtained for 353	
  

all the samples in the dataset (Figure 5C). As can be seen, there is a positive effect of 354	
  

homogeneity among categories, using only the four wavenumbers selected by SPA in 355	
  

the LDA modelling. For HPV16/18 (Table 2), the sensitivity and specificity obtained 356	
  

were 64% and 58%, respectively. For HPV31/35, the sensitivity and specificity 357	
  

obtained were 66% and 62%, respectively. For HPV Others, the sensitivity and 358	
  

specificity obtained were 54% and 52%, respectively. Finally, Fig. 5D shows the 359	
  

scores plot associated with variable selection using GA-LDA, whose cost function 360	
  

minimum point was obtained with 33 wavenumbers (Table 3). There is an even larger 361	
  

effect of homogeneity between categories, using these 33 wavenumbers selected by 362	
  

GA in the LDA modelling. The accuracy of GA-LDA for the three categories 363	
  

(HPV16/18 vs. HPV31/35 vs. HPV Others) achieved positive values. For HPV16/18, 364	
  

the sensitivity and specificity obtained were 85% and 66%, respectively. For 365	
  

HPV31/35, the sensitivity and specificity obtained were 77% and 71%, respectively. 366	
  

For HPV Others, the sensitivity and specificity obtained were 56% and 55%, 367	
  

respectively. 368	
  

Discussion 369	
  

 The objective of cervical cancer screening is to reduce incidence and mortality 370	
  

by detecting and treating precancerous lesions. Development of methods for preparing 371	
  

cytology specimens as well as many other screening techniques suggests that current 372	
  

practices may be modified in the future. The implementation of new approaches such 373	
  

as LBC and/or spectroscopy (IR or Raman) may permit more conservative 374	
  

management of women with self-limited lesions related to HPV exposure, improve 375	
  

detection of serious cancer precursors, and provide more cost-effective screening. 376	
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Adjunctive diagnostic procedures for the detection of HPV infection could 377	
  

increase the sensitivity of primary and secondary screening of cervical cancer. HPV 378	
  

testing could improve the specificity of screening programmes resulting in avoidance 379	
  

of overtreatment and saving costs for confirmatory procedures. When ATR-FTIR 380	
  

spectroscopy was employed to predict lrHPV and hrHPV, it was observed that using 381	
  

GA-LDA-associated variables (28 selected) gives better segregation than PCA-LDA 382	
  

and SPA-LDA together. The GA-LDA model increases the sensitivity (87%) and 383	
  

specificity (92%) of screening for lrHPV and hrHPV lesions. Examination of the 384	
  

selected wavenumbers following GA-LDA showed that the main biochemical 385	
  

alterations discriminating lrHPV vs. hrHPV were lipids, proteins, nucleic acids, 386	
  

carbohydrates and, to a lesser extent, DNA vibrations. Several selected wavenumbers 387	
  

appear to be of particular interest, namely, the variables at 1755 and 1720 cm-1, 388	
  

associated with C=O stretching vibrations of aldehydes and lipids, respectively. These 389	
  

variables (1755 and 1720 cm-1) appear associated with transition from normal to LSIL 390	
  

to HSIL and result in alterations mainly in intracellular and/or membrane 391	
  

proteins/lipids. Even though they are not always markedly altered, they appear 392	
  

consistently as distinct segregating wavenumbers. The wavenumbers between 900 and 393	
  

1000 cm-1 represent the spectral region of DNA/RNA vibrations. Oncogenic virus 394	
  

particles or commitment to transformation would be expected to alter DNA/RNA as 395	
  

would be found in this spectral region (Figs. 2 and 5). 396	
  

The natural history of HPV suggests that there is little risk of a significant 397	
  

precancerous lesion going undetected within the first 3-5 years from the onset of 398	
  

sexual activity33. Annual screening is recommended also by the American College of 399	
  

Obstetricians and Gynecologists (ACOG), although in women aged ≥30 y with 400	
  

negative Pap tests, screening may be conducted every 2-3 y. Herein, ATR-FTIR 401	
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spectral data was discriminated into three case studies for HPV infection (all risks, 402	
  

NCC and LG-CC) into ≤29 y and >30 y. Age was employed as a categorisation factor. 403	
  

GA-LDA was employed on all ATR-FTIR spectra (all risks, NCC and LG-CC) into 404	
  

≤29 y and >30 y, it was observed that this approach results in better segregation than 405	
  

PCA-LDA and SPA-LDA. Several selected wavenumbers represent the spectral 406	
  

region of lipids, proteins, fatty acid, corresponding to the fingerprint region34. 407	
  

A variety of ancillary tests useful in the diagnosis of HPV infection are 408	
  

currently at the clinician’s disposal. Use of laboratory-based tests is gaining 409	
  

popularity as an adjunctive measure, particularly in combination with Pap smears, for 410	
  

the detection of CIN or carcinoma. When ATR-FTIR spectroscopy was investigated 411	
  

within three HPV infection types (16/18, 31/35 and HPV Others), the alternative 412	
  

approach would be compared. Sensitivity and specificity for HPV16/18, using 33 413	
  

selected wavenumbers by GA-LDA, of 85% and 66%, respectively, were achieved. 414	
  

 However, with the introduction of cervical cancer screening programmes, 415	
  

incidence and mortality has been drastically reduced. Techniques such as the 416	
  

traditional Pap test with/without LBC allows for the early detection of cervical 417	
  

abnormalities prior to the development of invasive cancer. HPV DNA testing has also 418	
  

been proposed as a routine screening method for the general population. Screening 419	
  

limitations, such as adherence, test sensitivity and specificity, access, and cost-420	
  

effectiveness are reflected in current screening guidelines35. The metabolic fingerprint 421	
  

generated by ATR-FTIR spectroscopy combining with variable selection methods 422	
  

(SPA-LDA and GA-LDA) is a powerful adjunct for cervical screening programmes, 423	
  

emerging as an alternative for rapid and cost-effective identification of specimens. 424	
  

 425	
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Legends to Figures 527	
  

Figure 1: Comparison of lrHPV and hrHPV cervical cytology specimens. The panel 528	
  
shows mean IR spectra (for standard deviation of entire spectral categories, see ESI 529	
  
Figs. S1A and S1B) obtained from all grades segregated into lrHPV vs. hrHPV (A). 530	
  
The spectra from patients with lrHPV and hrHPV are shown in blue and red, 531	
  
respectively. The application of principal component analysis (PCA) - linear 532	
  
discriminant analysis (LDA) or variable selection techniques [successive projection 533	
  
algorithm (SPA) and genetic algorithm (GA)] to the segregation of retrospectively 534	
  
categorised lrHPV and hrHPV specimens. PCA-LDA results: (B) DF1 × samples 535	
  
calculated by PCA-LDA model from lrHPV (blue) vs. hrHPV (red). SPA-LDA 536	
  
results: (C) DF1 × samples calculated using the 5 selected wavenumbers by SPA-537	
  
LDA model from lrHPV (blue) vs. hrHPV (red). GA-LDA results: (D) DF1 × samples 538	
  
calculated using the 28 selected wavenumbers by GA-LDA model from lrHPV (blue) 539	
  
vs. hrHPV (red). 540	
  

Figure 2: Comparison of ≤29 y and >30 y for HPV types. The panel shows mean IR 541	
  
spectra (for standard deviation of entire spectral categories, see ESI Figs. S2A and 542	
  
S2B) obtained from all grades segregated into ≤29 y and >30 y (A). The spectra from 543	
  
patients with ≤29 y and >30 y are shown in blue and red, respectively. The application 544	
  
of principal component analysis (PCA) - linear discriminant analysis (LDA) or 545	
  
variable selection techniques [successive projection algorithm (SPA) and genetic 546	
  
algorithm (GA)] to the segregation of retrospectively categorised ≤29 y and >30 y 547	
  
specimens. PCA-LDA results: (B) DF1 × samples calculated by PCA-LDA model 548	
  
from ≤29 y (blue) vs.>30 y (red). SPA-LDA results: (C) DF1 × samples calculated 549	
  
using the 5 selected wavenumbers by SPA-LDA model from ≤29 y (blue) vs. >30 y 550	
  
(red). GA-LDA results: (D) DF1 × samples calculated using the 28 selected 551	
  
wavenumbers by GA-LDA model from ≤29 y (blue) vs.>30 y (red). 552	
  

Figure 3: Comparison of ≤29 y and >30 y based on normal cervical cytology (NCC). 553	
  
The panel shows mean IR spectra (for standard deviation of entire spectral categories, 554	
  
see ESI Figs. S3A and S3B) obtained from all grades segregated into ≤29 y and >30 y 555	
  
NCC (A). The spectra from patients with ≤29 y and >30 y NCC are shown in blue and 556	
  
red, respectively. The application of principal component analysis (PCA) - linear 557	
  
discriminant analysis (LDA) or variable selection techniques [successive projection 558	
  
algorithm (SPA) and genetic algorithm (GA)] to the segregation of retrospectively 559	
  
categorised ≤29 y and >30 y NCC specimens. PCA-LDA results: (B) DF1 × samples 560	
  
calculated by PCA-LDA model from ≤29 y (blue) vs.>30 y (red) NCC. SPA-LDA 561	
  
results: (C) DF1 × samples calculated using the 5 selected wavenumbers by SPA-562	
  
LDA model from ≤29 y (blue) vs.>30 y (red) NCC. GA-LDA results: (D) DF1 × 563	
  
samples calculated using the 28 selected wavenumbers by GA-LDA model from ≤29 564	
  
y (blue) vs. >30 y (red) NCC. 565	
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Figure 4: Comparison of ≤29 y and >30 y based on low-grade cervical cytology (LG-566	
  
CC). The panel shows mean IR spectra (for standard deviation of entire spectral 567	
  
categories, see ESI Figs. S4A and S4B) obtained from all grades segregated into ≤29 568	
  
y and >30 y LG (A). The spectra from patients with ≤29 y and >30 y LG-CC are 569	
  
shown in blue and red, respectively. The application of principal component analysis 570	
  
(PCA) - linear discriminant analysis (LDA) or variable selection techniques 571	
  
[successive projection algorithm (SPA) and genetic algorithm (GA)] to the 572	
  
segregation of retrospectively categorised ≤29 y and >30 y LG-CC specimens. PCA-573	
  
LDA results: (B) DF1 × samples calculated by PCA-LDA model from ≤29 y (blue) 574	
  
vs. >30 y (red) LG. SPA-LDA results: (C) DF1 × samples calculated using the 5 575	
  
selected wavenumbers by SPA-LDA model from ≤29 y (blue) vs.>30 y (red) LG-CC. 576	
  
GA-LDA results: (D) DF1 × samples calculated using the 28 selected wavenumbers 577	
  
by GA-LDA model from ≤29 y (blue) vs. >30 y (red) LG-CC. 578	
  

 579	
  

Figure 5: Comparison of HPV16/18 vs. HPV31/35 vs. HPV Others for HPV types. 580	
  
The panel shows mean IR spectra (for standard deviation of entire spectral categories, 581	
  
see ESI Figs. S5A to S5C) obtained from all HPV types segregated into HPV16/18 vs. 582	
  
HPV31/35 vs. HPV Others (A). The spectra from patients with HPV 16/18, HPV 583	
  
31/35 and HPV Others are shown in red, black and blue, respectively. The application 584	
  
of principal component analysis (PCA) - linear discriminant analysis (LDA) or 585	
  
variable selection techniques [successive projection algorithm (SPA) and genetic 586	
  
algorithm (GA)] to the segregation of retrospectively categorised HPV16/18 vs. 587	
  
HPV31/35 vs. HPV Others. PCA-LDA results: (B) DF1 × DF2 discriminant function 588	
  
values calculated by PCA-LDA model into three categories: HPV16/18 (red) vs. 589	
  
HPV31/35 (black) vs. HPV Others (blue). SPA-LDA results (C) DF1 × DF2 590	
  
discriminant function values calculated using the 4 selected wavenumbers by SPA-591	
  
LDA model from HPV16/18 (red) vs. HPV31/35 (black) vs. HPV Others (blue) 592	
  
specimens. PCA-LDA results (D) DF1 × DF2 discriminant function values calculated 593	
  
using the 33 selected wavenumbers by GA-LDA model from HPV16/18 (red) vs. 594	
  
HPV31/35 (black) vs. HPV Others (blue) specimens. 595	
  

	
    596	
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Figure 1 597	
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Figure 2 601	
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Figure 3 606	
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Figure 4 610	
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Figure 5 614	
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Table 1: Number of training, validation and prediction specimens (or spectra) in each 619	
  

category 620	
  

Category Set training Validation Prediction 
lrHPV 160 35 35 
hrHPV 260 55 55 
≤29 y HPV 631 135 135 
>30 y HPV 1679 360 360 
≤29 y NCC 224 48 48 
>30 y NCC 579 125 125 
≤29 y LG-CC 201 45 45 
>30 y LG-CC 340 75 75 
HPV16/18 290 65 65 
HPV31/35 140 35 35 
HPV Others 350 75 75 

621	
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Table 2: Sensibility (%) and specificity (%) together with multivariate classification 622	
  
methods (PCA-LDA, SPA-LDA or GA-LDA) results for lrHPV vs. hrHPV, ≤29 y 623	
  
vs.>30 y HPV, ≤29 y vs. >30 y NCC, ≤29 y vs. >30 y LG-CC and HPV16/18 vs. HPV 624	
  
31/35 vs. HPV Others 625	
  

Models  lrHPV vs. hrHPV ≤29 y vs. >30 y HPV  ≤29 y vs. >30 y NCC 
Sen Spec Sen Spec Sen Spec 

PCA-LDA 48/76 61/77 58/48 56/48 48/63 47/62 
SPA-LDA 50/76 50/76 60/63 60/60 40/64 45/65 
GA-LDA 54/87 54/92 65/70 60/67 53/78 81/77 
Models  ≤29 y vs.>30 y LG-CC HPV16/18 vs. HPV 31/35 vs. HPV Others 

Sen Spec Sen Spec 
PCA-LDA 53/38 58/37 55/61/57 53/58/54 
SPA-LDA 56/57 52/48 64/66/54 58/62/52 
GA-LDA 88/68 83/73 85/77/56 66/71/55 

Sen = sensitivity (%); Spec = specificity (%); HPV, human papilloma virus; LG-CC, low-grade 626	
  
cervical cytology; NCC, normal cervical cytology; lr, low-risk; hr, high-risk 627	
  
  628	
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Table 3: Variables for SPA-LDA and GA-LDA determined from the minimum cost 629	
  
function G calculated for a given validation dataset 630	
  

 631	
  

Computational 

algorithm 

Minimal cost function - optimum number of variables (cm-1) 

Dataset A Dataset B Dataset C Dataset D Dataset E 

SPA-LDA 1018, 1064, 
1504, 1597, 

1643 

1018, 1064, 
1435, 1504 

1018, 1064, 
1504, 1751 

1018, 1751 1018, 1500, 
1589, 1620 

GA-LDA 914, 921, 
925, 945, 
948, 979, 
999, 1014, 
1026, 1030, 
1099, 1149, 
1161, 1184, 
1207, 1215, 
1300, 1330, 
1454, 1469, 
1481, 1489, 
1577, 1608, 
1681, 1697, 
1720, 1755 

948, 968, 
995, 1014, 
1026, 1030, 
1037, 1134, 
1145, 1188, 
1238, 1273, 
1315, 1381, 
1384, 1415, 
1435, 1462, 
1589, 1708 

918, 925, 
937, 945, 

1003, 1014, 
1018, 1064, 
1095, 1222, 
1369, 1411, 
1431, 1458, 
1500, 1512, 
1523, 1531, 
1558, 1593, 
1624, 1708, 

1778 

910, 925, 
933, 972, 

1022, 1080, 
1114, 1134, 
1149, 1161, 
1172, 1180, 
1184, 1207, 
1242, 1280, 
1311, 1315, 
1342, 1365, 
1377, 1423, 
1427, 1485, 
1500, 1531, 
1562, 1612, 
1620, 1635, 
1647, 1658, 

1747 

898, 902, 
925, 948, 
960, 964, 
968, 1003, 
1022, 1041, 
1049, 1091, 
1192, 1195, 
1219, 1222, 
1226, 1257, 
1269, 1307, 
1369, 1427, 
1431, 1450, 
1462, 1477, 
1550, 1566, 
1593, 1597, 
1654, 1782, 

1797 

 632	
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