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Direct determination of tannin in Acacia mearnsii bark 

using near infrared spectroscopy 

Caren Machado Menezesa, Adilson Ben da Costaa, Ricardo Rocha Rennera, Lucas 
Ferreira Bastosb, Marco Flôres Ferrãoc,d and Valderi Luiz Dresslere 

This study aimed to investigate the application of the near infrared spectroscopy (NIRS) and 
multivariate calibration methods for direct determination of tannin content in the Acacia 

mearnsii bark, in order to improve control during the tannin content extraction process. For 
this purpose, 89 bark samples were collected in the industrial plant of an extractive tannin 
industry. The spectra in the near infrared were acquired using a FT-NIR spectrometer with an 
integrating sphere, an Indium-Gallium-Arsenic detector in the range of 7,500 to 4,000 cm-1, 
resolution of 16 cm-1 and 23 scans divided in two different ways: a) in natura samples (no 
sample processing); and, b) dried and milled samples. The partial least squares models (PLS) 
were developed and different strategies were investigated during the infrared spectra 
preprocessing. The results of the prediction were compared to the ones obtained through the 
reference methodology (NBR 11131), showing values for the root mean square error of 
prediction (RMSEP) between 2.11 and 2.42% for the dried and milled bark samples, and 2.31 
and 2.54% for the in natura samples. These results show that NIRS combined with 
multivariate calibration methods may be used for direct determination of tannin content in 
Acacia mearnsii bark. Low need of sample preparation, short analysis time, no reagent 
consumption and, consequently, no waste generation are the main characteristics of the 
proposed method. 
 

 

Introduction 

Native from Australia, the Acacia mearnsii De Wild is a medium 
sized tree which comes from the Fabaceae (Leguminosae) family. 
Due to its high productivity and fast adaptation to different 
environmental conditions, the plant was introduced in other regions 
worldwide.1 The major commercial plantations - aimed primarily at 
the production of wood, coal and tannins - are located in Eastern and 
Southern Africa, India and Southern Brazil.1,2  
The bark from Acacia mearnsii is the most commonly used raw 
material in the extraction of tannin substances worldwide.3 They are 
used for manufacturing adhesives, flocculants and, also, for skin 
tanning.3,4 The tannin contents extracted from Acacia mearnsii are 
condensed tannins and they consist of high molecular weight 
oligomers or polymers, built by flavonoids (flavan-3-ol, catequin), 
which oxidative condensation takes place between carbons C-4 and 
C-6 or C-8. When in low degree of polymerization tannins are 
soluble in polar solvents, while in a high degree they are soluble in 
alkaline solutions.5,6 
The concentration of tannins in the Acacia mearnsii bark may reach 
values above 45% (w/w), however this output may vary significantly 
according to the weather and pedological conditions of the growing 

site, plant morphology and the cultivation techniques used.1,3 In 
Brazil, some studies show outputs of approximately 20 to 28%.7,8 

Nowadays, the commercialization of Acacia mearnsii is based only 
in this material mass and not in the concentration of tannins. This is 
justified by the industrial sector, because of the slowness of the 
method used in the determination of the amount of tannin content 
accepted by the standard NBR 11131.9 This procedure may take up 
to 20 hours for each determination (with a maximum of 6 
determinations in each shift), making it difficult to apply for quality 
control routine procedures, especially when a large amount of 
samples must be analyzed. 
In this regard, different studies have been conducted in order to 
develop alternative analytical methodologies. Lopes et al.10 applied a 
reversed phase-high-performance liquid chromatography (RP-
HPLC) to determine the amount of flavan-3-ols present in semi-
purified bark extract from three different species of 
Stryphnodendron. Prasad11 applied near-infrared spectroscopy 
(NIRS) and a multiple linear regression in order to determine the 
total tannin and phenol content in dried and milled bark sample of 
Leucaena mimosine and Acacia sp. Using reflectance values 
measured in only four wavelengths (2152, 2178, 2183 e 2295 nm), 
the results obtained for the tannin content in Acacia sp. bark samples 
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showed a deviation of 1.12% and a correlation coefficient of  0.9632. 
Derkyi et al.12 also used NIRS and multivariate calibration methods 
in the analysis of dried and milled Pinus caribaea bark samples. The 
authors obtained correlation coefficient of 0.95 and 0.98, and root 
mean square error of cross-validation values (RMSECV) of 0.72 and 
0.23%, respectively, during the determination of extractable 
substances and polyphenols. 
Nevertheless, neither of these studies resulted in a practical 
methodology to be used in the industrial production process, or even 
in the reforestation industry sector.  Due to these circumstances, this 
study aimed to investigate NIRS applications and multivariate 
calibration methods for direct determination of tannin content in the 
Acacia mearnsii bark, in order to improve control during tannin 
extraction process. 
The NIRS is a valuable tool for identification of organic and 
inorganic compounds13,14, showing a great applicability in 
quantitative determinations of compounds presenting functional 
groups with hydrogen linked to carbon, nitrogen and oxygen. 
However, the great variety of chemical compounds presents in a 
sample result in the overlapping and disturbance of near-infrared 
spectrum absorption bands. Thereby, rarely there are spectrum bands 
clean enough to allow a simple correlation (univariate) with the 
concentration of analyte and, that is why, multivariate calibration 
methods are frequently used.14,15  
The spectroscopy has stood out as a powerful analytical tool, mainly, 
when associated to chemometrics. This tool is highly used in 
development of analytical methodologies for quantitative and 
qualitative evaluation of different types of material, like petroleum 
and its derivates13,16,17, vegetable oils and biofuels18-22, wood and 
cellulose12,23-26. 

2. Materials and methods 

2.1 Sample collection and processing  

The samples of Acacia mearnsii bark were collected at the raw 
materials department of the Seta S/A Extrativa de Tanino de Acácia 
company (www.setaonline.com/) located in Estância Velha, RS, 
Brazil. The collections were performed in different days, during a 
period of 8 months, gathering 89 samples. These samples were 
identified from Am1 to Am89, keeping the order they were 
collected. 
About 250 g of each sample were taken, in order to acquire the 
infrared spectra and determine the tannin content using the reference 
methodology.9  
In order to acquire the NIR spectra, the samples were treated in two 
different ways: in natura samples and dried and milled samples. The 
first set of spectra was acquired in the in natura samples (original 
samples, no treatments applied). For this purpose, the samples were 
divided in 3 subsamples and identified as Am1-1, Am1-2 Am1-3 up 
to Am89-1, Am89-2, Am89-3 and NIR spectra were acquired direct 
in internal face to the bark, in triplicate, placed on a sapphire 
windows located on the top of the equipment. Thus, for the tests 
with in natura samples, it was used 267 subsamples of 15 cm2 area 
each were used.  
The second set was built from previously dried bark. The samples 
were oven dried at 105 oC, until they reached a constant weight. 
After then, they were milled using a mill (Quimis, model Q298A), 

generating 89 samples (with no subsamples). The samples were 

milled in order to obtain particle size average lower than 50 µm. 
Particle size were determined by using a Mastersizer 2000 (Micro 
Particle Analyzer, Malvern Instruments). Therefore the infrared 
spectra acquisition, these samples were transferred to quartz 
cuvettes. 
 
2.2 Reference methods for tannin determination  

The standard method (NBR 111319) was used as reference method to 
determine the tannin content in Acacia mearnsii bark samples. This 
method may be divided in three main steps. The first step was the 
extraction of the tannin and non-tannin contents from the bark 
samples.  On the next step, the tannin and non-tannin contents were 
separated by filtration in skin powder and, finally, quantified by 
gravimetry. This procedure was performed in duplicate and the final 
result matched the arithmetic average. 
  
2.3 Infrared spectra acquisition 

The spectra were obtained using a FT-NIR spectrometer with an 
integrating sphere (PerkinElmer, model Spectrum 400) and an 
Indium-Gallium-Arsenic (InGaAs) detector set in the range of 7,500 
to 4,000 cm-1, resolution of 16 cm-1 and 32 scans. The determinations 
were performed using a NIRA accessory.  
 

2.4. Data modeling 

The infrared spectra were registered in Comma Separated Values 
(CSV) and later moved to a spreadsheet created using Microsoft 
Excel®, corresponding to the data matrix X. A spreadsheet built on 
Microsoft Excel® was also used to register the average value of 
tannin contents, corresponding to the data vector Y. The data were 
modeled in the software Solo 6.5.3 (Eigenvector Research, Inc.), an 
environment in which all multivariate calibration models by Partial 
least squares (PLS), Interval partial least squares (iPLS) and Synergy 
interval partial least squares (siPLS) were developed. 
For the PLS models, the entire range of the infrared spectra, between 
7,500 to 4,000 cm-1, was used. The iPLS and siPLS were built from 
the best preprocessing technique selected in the PLS models and 
dividing the infrared spectrum in 2, 3, 4, 8, 16 and 32 intervals. The 
siPLS models were developed in the software’s auto mode, 
expressing the best combination of ranges (with maximum of 32 
ranges) to create calibration models.27 
The algorithm Kennard-Stone28 was used in the Matlab version 7.0 
(Mathworks Inc.) to select the calibration and prediction sets. This 
step was conducted in such a way that 2/3 of the samples were 
bound to the calibration set and 1/3 of them to prediction set. 
For the identification and exclusion of outliers in the calibration set, 
it was used a waste chart of Students versus Leverage, in which were 
considered as anomalous those samples showing, simultaneously, 
values for h of Leverage higher than h critical and waste of Students 
higher than 2.5%. 29 
Aiming to eliminate the non relevant information about the spectra 
and make the data matrix well conditioned to the analysis, different 
preprocessing techniques were used) with the spectra (normalization, 
multiplicative scattering correction, mean center, Savitsky-Golay 
first derivative, Savitsky-Golay second derivative and autoscale) and 
evaluated according to the RMSECV results. In the same way, the 
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number of latent variables (LVs) used in the models were 
determined based on the least value obtained for RMSECV.30-33.  

The results obtained through the developed methodology in this 
research were compared to the results obtained by reference method 
using the Wilcoxon nonparametric test, using the Paleontological 
Statistics (PAST) software, version 1.91.34 
 

3. Results and discussions 

Using the reference methodology9, the tannin content of the 89 
samples of Acacia mearnsii bark ranged between 10.0±1,2% and 
31.1±2,1% (w/w, based on humid weight), as seen on Table 1, 
showing a normal distribution (P>0.05) compared with the average 
(17.4%). The standard error35 presented by the reference method was 
1.2 %. 
 
Table 1. Result (Average ± standard deviation for n = 2) of tannin 
concentration (%, w/w) in 89 samples of Acacia mearnsii bark, 
obtained with the reference methodology. 

 
Figure 1 presents the profile of the NIR spectra (between 7,500 
and 4,000 cm-1) obtained from the in natura and dried and 
milled bark samples.  
 

 
Figure 1. Profile of the NIR spectra obtained from the Acacia mearnsii bark 

samples. 

The high intensity of the absorption of the O-H bonds of water is 
evident in the regions between 6,250 – 7,250 cm-1 and 5,400 – 4,750 
cm-1.22 However, according to Bakeev36, these regions are important 
to characterize alcohols and organic acids, which contain the 
functional group O-H. The O-H group is the second main group 
(after the C-H) in the NIR spectrum. According to Holler et al.15,  the 
band at 7,100 cm-1 is regularly used in the phenols qualification 
process.  In the dried and milled bark samples, at 6,000 cm-1, it is 
possible to see a discrete absorption band due to the first overtone of 
C-H stretching vibration of aromatic hydrocarbons.14 

The bands between 4,000 – 5,000 cm-1 result from combinations of 
fundamental vibrations in the fingerprint region of the Mid infrared 
(MIR) with C-H stretching vibrations.14 For phenols, bands 
combination of C-H stretching vibration and deformation of C-H 
occur in 4,648, 4,550, 4,300 and 4,046 cm-1.37 Furthermore, the 
absorption bands of O-H vibration modes – normally less polar than 
water connections, as occurs in tannin molecules – may be present 
between 4,000-5,000 cm-1.38 According to Weyer38, this region has 
an informative character and low noise level, and Derkyi et al.12 and 
Prasad11 used this region to determine the tannin content in dried 
samples.   

In this context, the absorption bands at 4,650 cm-1, identified in the 
spectra of dried and milled bark samples and tannin samples, can be 
attributed to the functional group OH of the tannin molecule and/or 
the combination of C-H stretching vibrations and C-H deformation.  
These bands appear to be overlap by the absorption bands of the O-H 
bonds in samples presenting higher moisture levels. 

Table 2 shows the results obtained in the models developed using the 
in natura bark samples of Acacia mearnsii. The calibration models 
using PLS indicated that the spectra preprocessing by normalization 
(inf-Norm, maximum = 1) followed by standard normal variate 
(SNV), 1st derivative (1D) and autoscale (Auto) show minor cross-
validation errors (RMSECV = 2,39%), after the exclusion of 20 
calibration and 24 prediction samples, which corresponded to 11 and 
28% of the total calibration and prediction samples.  

It is observed that the calibration model by iPLS, in which the 
spectrum is divided into three sub-regions (iPLS3) using 5 latent 
variables, selected the region between 6,334 – 5,170 cm-1 as the 
smallest cross-validation error (RMSECV = 2.59%), shows a 
correlation coefficient (r (CV)) of 0.635 (Figure 2-3). The best result 
of RMSECV pointed to 5 latent variables, which were used 
maintaining the balance with the root mean square error values of 
prediction (RMSEP).  

Applying the best calibration for siPLS, the best model obtained was 
siPLS32auto, which employed a combination of regions between 
7,392 – 7,286, 6,528 – 6,314, 6,096 – 5,990 and 4,476 – 4,370 cm-1, 
resulting in a lower error rate (RMSECV = 2.31%) with correlation 
coefficient of 0.723 (Figures 4-5). The same happened for the iPLS 
model, the choice of the number of latent variables was based on the 
correlation between the prediction and validation errors and, 
therefore, 6 latent variables were used. 

 

 

 

Sample Average ± SD Sample Average ± SD Sample Average ± SD Sample Average ± SD 

Am1 15.4±0.8 Am24 11.3±0.3 Am47 15.0±1.4 Am70 13.9±1.6 

Am2 23.2±0.9 Am25 15.6±0.2 Am48 16.4±1.5 Am71 17.8±2.6 

Am3 20.2±0.7 Am26 12.8±0.9 Am49 13.7±1.6 Am72 16.7±0.2 

Am4 20.5±0.5 Am27 12.0±0.4 Am50 20.6±0.1 Am73 18.9±0.9 

Am5 13.7±0.6 Am28 18.2±1.2 Am51 21.2±0.1 Am74 20.8±1.4 

Am6 15.8±0.4 Am29 20.8±0.5 Am52 15.2±1.3 Am75 18.1±0.2 

Am7 31.1±2.1 Am30 26.1±0.1 Am53 17.3±0.2 Am76 16.6±0.1 

Am8 21.8±0.5 Am31 16.4±0.2 Am54 21.3±0.6 Am77 12.6±2.3 

Am9 13.8±0.7 Am32 19.1±1.2 Am55 14.6±1.4 Am78 19.7±1.3 

Am10 18.0±1.2 Am33 22.1±0.4 Am56 24.2±0.1 Am79 22.1±1.8 

Am11 17.8±0.4 Am34 10.0±1.2 Am57 16.8±1.5 Am80 21.1±1.8 

Am12 12.8±1.2 Am35 20.7±2.4 Am58 23.6±0.6 Am81 21.2±0.9 

Am13 16.2±0.5 Am36 19.9±0.6 Am59 21.3±2.7 Am82 23.0±1.4 

Am14 13.9±0.6 Am37 11.7±1.1 Am60 14.9±1.0 Am83 15.2±1.1 

Am15 17.2±0.9 Am38 19.5±1.6 Am61 11.2±1.0 Am84 19.5±0.5 

Am16 13.0±1.3 Am39 17.3±0.6 Am62 12.6±0.7 Am85 12.9±2.0 

Am17 12.8±1.1 Am40 17.6±1.3 Am63 20.9±0.1 Am86 22.3±4.4 

Am18 11.8±0.8 Am41 10.6±0.6 Am64 13.2±1.5 Am87 17.0±0.7 

Am19 18.0±1.4 Am42 16.0±0.1 Am65 13.2±0.1 Am88 16.3±1.9 

Am20 18.9±0.9 Am43 16.2±0.8 Am66 18.7±1.6 Am89 15.3±0.9 

Am21 14.3±0.9 Am44 13.4±0.8 Am67 26.1±2.0   

Am22 19.2±0.2 Am45 14.8±0.2 Am68 15.0±2.9   

Am23 15.3±0.5 Am46 19.3±1.5 Am69 22.7±2.0   
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Table 2. Results of calibration models for tannin determination by 
PLS, iPLS and siPLS in in natura samples from Acacia mearnsii 
bark. 

Analyzing the regions targeted in the models, it is possible to 
observe that between 6,334 – 5,170 cm-1, selected in regression for 
iPLS can be from C-H stretching vibration that, according to Burns 
and Ciurczak14, refers to the aromatic hydrocarbons, which are 
present in the condensed tannin. Thus, the region selected by the 
regression model for siPLS, between 7,392 – 7,286 cm-1, can be 
associated to the presence of phenols which, according to Holler et 
al.15 are identified at the band of 7,100 cm-1 in quantitative analysis. 
While the region between 6,096 – 5,990 cm-1 can be associated to C-
H stretching vibrations regarding the aromatic hydrocarbons. 
Finally, the selection of the region between 4,476 – 4,370 cm-1 in 
siPLS can be attributed to the OH functional group in the tannin 
molecule and/or the combination of C-H stretching vibrations and C-
H deformation. In the original spectrum, these bands appear to be 
overlapped by the absorption bands from the O-H bonds in samples 
presenting higher moisture levels. 

 

 
Figure 2. Result from the RMSECV for ranges (columns) and for the global 
model (dotted red lines), obtained by the iPLS3 model. The numbers inside 
the columns identify the number of latent variables (LVs) indicated in each 

sub-region. 

 

Figure 3. Correlation curve between the measured values (Y Measured) of 
tannins (%, w/w) by the reference method and the predicted results (Y 

Predicted) by the iPLS3 model. 

Figure 4. Result from the RMSECV for ranges (columns) and for the global 
model (dotted red lines), obtained by the siPLS32auto model.  The numbers 
inside the columns refer to the number of latent variables (LVs) suggested in 

each sub-region. 

Figure 5. Correlation curve between the measured values (Y Measured) for 
tannins (%, w/w) by the reference methodology and the predicted results (Y 

Predicted) by the siPLS32auto model. 

In Table 3 are shown the results obtained in the models developed 
for the determination of tannin content in dried and milled bark 
sample of Acacia mearnsii. The calibration models using PLS 
indicated that the preprocessing of the spectra through normalization 
(inf-Norm, maximum = 1) followed by MSC, first derivative 
(Savitsky-Golay) and autoscale, presented the smallest validation 
errors (RMSECV = 2.04%), after excluding 9 outliers samples 
identified in the calibration set (Am2, Am7, Am22, Am37, Am61, 
Am70, Am79, and Am72 Am89) and one in the prediction set 
(Am41). In this way, this preprocessing strategy was applied in the 
studies of iPLS and siPLs. 

The calibration model for iPLS in which the spectra were divided 
into 4 sub-regions (iPLS4), selected the region between 6,626 – 
5,754 cm-1 as the smallest cross-validation error (RMSECV = 

Model Preprocessing LV RMSECV RMSEP r(CV) r (P) 

PLS Normal, MSC, 1D,  MC (x), Auto (y) 10 2.65 2.61 0.678 0.616 

PLS Normal, MSC, 2D,  MC (x), Auto (y) 4 3.22 2.85 0.454 0.458 

PLS Normal, MSC, 1D,  Auto (x), Auto (y) 5 2.58 2.86 0.657 0.592 

PLS Normal, MSC, 2D,  Auto (x), Auto (y) 2 2.69 2.66 0.627 0.566 

PLS Normal, SNV, 1D, MC (x), Auto (y) 7 2.73 2.75 0.608 0.538 

PLS Normal, SNV, 2D, MC (x), Auto (y) 4 3.22 2.85 0.452 0.469 

PLS Normal, SNV, 1D, Auto (x), Auto (y) 5 2.39 2.53 0.698 0.632 

PLS Normal, SNV, 2D, Auto (x), Auto (y) 2 2.72 2.66 0.613 0.547 

iPLS and siPLs models (Preprocessing: Normal, SNV, 1D, Auto (x), Auto (y)) 

Model IR selected regions, cm-1 LV RMSECV RMSEP r(CV) r (P) 

iPLS2 5,750-4,002 5 2.70 2.730 0.590 0.557 

iPLS3 6,334-5,170 5 2.59 2.54 0.635 0.640 

iPLS4 6,626-5,754 4 2.83 2.84 0.547 0.510 

iPLS8 6,192-5,758 5 2.79 2.80 0.564 0.538 

iPLS16 5,974-5,758 4 2.75 3.14 0.574 0.360 

iPLS32 6,096-5,990 6 2.79 2.98 0.554 0.447 

siPLS8auto 
7,500-7,066, 6,628-5,758, 

5,320-4,450 
5 2.54 2.59 0.655 0.616 

siPLS16auto 
7,500-7,284, 6,192-5,758, 
5,538-5,104, 4,666-4,450 

4 2.54 2.51 0.655 0.656 

siPLS32auto 
7,392-7,286, 6,420-6,314, 
6,096-5,990, 4,476-4,370 

6 2.31 2.23 0.723 0.608 

 Note: Normal: Normalization (Norm-inf, max = 1); MSC: Multiplicative scattering correction; MC: Mean center; 1D: First 
derivative (Savitsky-Golay); 2D: Second derivative (Savitsky-Golay); Auto: Autoscale; (x): x matrix (NIR); (y): y matrix (tannin 
concentration); LV: Number of latent variables; RMSECV: Root mean square error of cross validation; RMSEP: Root mean square 
error of prediction; r(CV): Cross validated correlation coefficient; r(P): Predicted correlation coefficient. The highlighted lines 
comprehend the best calibration model. 
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2.04%), showing a correlation coefficient (r (CV)) of 0.848 (Figures 
6-7). The calibration model by synergism of intervals selected the 
model siPLS16auto, using the combination between the regions 
6,846 – 6,630, 5,974 – 5,758, 5,538 – 5,322 and 4,230 – 4,014 cm-1, 
such as of smallest cross-validation error (RMSECV = 1.79%) 
showing a correlation coefficient (r (CV)) of 0.786 (Figures 8-9). 

Table 3. Results of calibration models to tannin determination by 
PLS, iPLS and siPLS in dried and milled samples from Acacia 

mearnsii bark. 

Figure 6. Results of RMSECV for the ranges (columns) and global model 
(dotted red lines), obtained by the iPLS4 model for the determination of 
tannin content in  Acacia mearnsii dried and milled bark samples.  The 
numbers inside the columns refer to the number of latent variables (LVs) 
suggested in each sub-region. 

Figure 7. Correlation curve between the measured values (Y Measured) of 
tannin content (%, w/w) by the reference method and the predicted results (Y 

Predicted) by the iPLS4 model. 

 

Figure 8. Results of RMSECV for the ranges (columns) and global model 
(dotted red lines), obtained by the siPLS16auto model for the determination 
of tannin content in  Acacia mearnsii dried and milled bark samples.  The 
numbers inside the columns refer to the number of latent variables (LVs) 

suggested in each sub-region. 

Figure 9. Correlation curve between the measured values (Y Measured) of 
tannin content (%) by the reference methodology and the predicted results (Y 
Predicted) by the siPLS16auto model, preprocessed with normalization, 

MSC, 1st Derivative and autoscaling. 

In Table 4 are shown the most important intervals chosen by the 
models, represented by iPLS. It also relates the most relevant 
combinations, represented by siPLS, for the determination of tannin 
content. 

Despite the cross-validation errors being higher than those obtained 
by other authors, as Derkyi at al.12 and Prasad11 in similar samples, 
no significant  differences were identified (P>0,05) in the set of 
results produced by the reference methods and the ones showed by 
the methodology developed in this study (Table 5).  

It should be noted that different from work developed by Derkyi et 
al.12 and Prasad11, in this study the samples were collected during a 
period of 8 months, directly from the industrial process. In this way, 
important variables such as the origin of the samples, storage time 
after cutting the trees (time between forest extraction and the 
beginning of the process), bark age, transportation and storage 
conditions are unknown.  Despite these variables, the results reflect 
the application of NIRs for the determination of tannins content in 
the bark of Acacia mearnsii trees in real industrial process operation 
conditions. 

The errors presented by PLS and siPLS models (Table 4) were upper 
to the standard error presented by reference method (1.2%), 
however, are secure enough for applied at line monitoring in 
industrial process and in the raw materials buying process, with the 
screening methods. 

 

Model Preprocessing LV RMSECV RMSEP r(CV) r (P) 

PLS Normal, MSC, 1D,  MC (x), Auto (y) 2 2.74 2.38 0.697 0.656 

PLS Normal, MSC, 2D,  MC (x), Auto (y) 2 2.59 2.45 0.737 0.624 

PLS Normal, MSC, 1D,  Auto (x), Auto (y) 2 2.04 2.26 0.849 0.686 

PLS Normal, MSC, 2D,  Auto (x), Auto (y) 2 2.81 2.17 0.750 0.721 

PLS Normal, SNV, 1D, MC (x), Auto (y) 2 2.56 2.26 0.732 0.714 

PLS Normal, SNV, 2D, MC (x), Auto (y) 3 2.84 2.55 0.685 0.624 

PLS Normal, SNV, 1D, Auto (x), Auto (y) 2 2.45 2.36 0.772 0.656 

PLS Normal, SNV, 2D, Auto (x), Auto (y) 2 3.20 2.28 0.678 0.678 

iPLS and siPLs models (Preprocessing: Normal, MSC, 1D, Auto (x), Auto (y)) 

Model IR selected regions, cm-1 LV RMSECV RMSEP r(CV) r (P) 

iPLS2 5,750-4,002 2 2.19 2.27 0.823 0.671 

iPLS3 6,334-5,170 2 2.21 2.29 0.820 0.678 

iPLS4 6,626-5,754 2 2.04 2.11 0.848 0.728 

iPLS8 5,320-4,886 3 2.34 2.81 0.800 0.490 

iPLS16 5,974-5,758 3 2.51 2.26 0.776 0.685 

iPLS32 6,744-6,638 3 2.17 3.96 0.827 0.264 

iPLS8 6,192-4,886 2 2.14 2.32 0.832 0.663 

iPLS8auto 5,320-4,886 3 2.34 2.81 0.800 0.490 

siPLS16auto 
6,846-6,630, 5,974-5,758, 5,538-

5,322, 4,230-4,014 
4 1.79 2.42 0.786 0.624 

siPLS32auto 
6,846-6,630, 5,974-5,758, 5,538-

5,322, 4,230-4,014 
3 1.98 2.50 0.858 0.600 

Note: Normal: Normalization (Norm-inf, max = 1); MSC: Multiplicative scattering correction; MC: Mean center; 1D: First 
derivative (Savitsky-Golay); 2D: Second derivative (Savitsky-Golay); Auto: Autoscale; (x): x matrix (NIR); (y): y matrix (tannin 
concentration); LV: Number of latent variables; RMSECV: Root mean square error of cross validation; RMSEP: Root mean square 
error of prediction; r(CV): Cross validated correlation coefficient; r(P): Predicted correlation coefficient. The highlighted lines 
comprehend the best calibration model. 
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Table 4. Ranges selected by iPLS and siPLS and respective cross-
validation errors (RMSECV, %) and prediction (RMSEP, %) for 
tannin determination. 

 

4. Final considerations 

The results presented in this study prove that the near-infrared 
spectroscopy combined with multivariate calibration methods can be 
applied for the direct determination of tannin content in Acacia 

mearnsii bark   

The selected regions for the determination of tannin content in bark 
of Acacia mearnsii correspond, in part, between 4,000 – 5,000 cm-1, 
which was also used by other authors11,12 to predict the concentration 
of this compound. However, regions of higher wavenumber also 
seem important for tannin quantification. 

In addition, it is possible to notice that during the determination of 
tannin content, a minor validation error is obtained after drying and 
milling the samples. Possibly, this result is related to the high 
homogeneity of the sample and the minimization of moisture 
interference by overlapping the absorption bands of the O-H bonds, 
from water absorption at 4,650 cm-1, which can be attributed to the 
OH functional group of tannin molecule and/or the combination of 
C-H stretching vibrations and C-H deformation. 

At last, the methodology proposed in this work presents an analytical 
frequency of 10 determinations per hour (including sample 
preparation procedures), which is significantly higher than the 
reference methodology (20 hours for each determination). 
Furthermore, there is no need to use chemical reagents and, 
consequently, there is no waste generation. In this way, these 
advantages serve as a stimulus to the implementation of this 
methodology in tannin extractive industry quality control, especially 
to assist the manufacturing process on the segregation of raw 
materials in stock, in the valuation of raw materials in the buying 
process, and in the efficiency control of the extraction processes.  
Activities which are currently unviable due to time consuming of the 
reference method available. 
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