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Natural material variations uncorrelated with physical properties of fibre networks hinder the development of robust calibration

models by which to predict paper properties from on-line near-infrared (NIR) spectra of production pulps. Such a simple process

gauge of product quality would offer attractive advantages for optimized manufacturing. The present work explores the effec-

tiveness of data processing strategies designed to remove uncorrelated variance from calibration models linking NIR spectra with

standard measures of paper quality, including tensile, tear, burst strength, wet and dry zero span length, freeness, absorption and

scattering coefficients. Post processing of spectra by discrete wavelet transform (DWT) is shown to suppress baseline and high-

frequency noise, and orthogonal signal correction (OSC) substantially improves prediction accuracy by reducing the amplitude

of uncorrelated (orthogonal) variations. We find that combined pretreatment by DWT and OSC yields a spectral data set that

exhibits the best prediction accuracy.

1 Introduction

To secure market superiority, a pulp manufacturer must con-

trol the quality of materials in process to maximize product

sheet strength. While some pulp properties can be tested at

line, conventional determinations that best predict the physi-

cal properties of an end-use product require exacting measure-

ments in a controlled laboratory environment. Such steps add

cost and introduce delay that can give rise to process variabil-

ity.

A need therefore exists for on-line methods to gauge pulp

stream composition and morphology that can predict the struc-

tural and physical properties of the end-use paper it forms.

To this end, the industry has sought to develop spectroscopic

probes.1 Chief among such methodologies is near-infrared

(NIR) spectroscopy.1–3

NIR diffuse reflectance absorption spectroscopy has been

applied with success for the analysis of lignocellulosic ma-

terials, particularly chipped wood feedstocks,4,5 for physi-

cal properties, such as moisture content,6–9 density,10–12 sur-

face roughness,13,14 as well as levels of lignin,5,15–17 cellu-

lose,17–21 hemicellulose5,22 and other extractives.17,22–24 Re-

gression models based on NIR spectra of laboratory test sheets

have shown promise as a means to predict conventionally mea-
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sured pulp and paper properties, such as freeness, stretch and

tensile strength.25,26

Two factors limit the full-scale application of NIR spec-

troscopy as an on-line process-control tool. Broad overtone

absorption bands, owing to every substance in the sample,

overlap to form a spectrum in which signature features are

hard to discern. Variations in pulp composition unrelated to a

target property modulate the spectrum, and this tends to mask

determinate spectral variations.

The present work reports progress in an effort to overcome

these limitations. Taking a large NIR data set of production

pulps, standardized by conventional measurements of prod-

uct sheet properties, we show that multi-resolution decompo-

sition by discrete wavelet transform (DWT) effectively recasts

spectra to facilitate the isolation of determinant variance. Pre-

processing calibration spectra by orthogonal signal correction

(OSC), we minimize uncorrelated variance, which enables the

development of multivariate classification models that predict

paper sheet properties from pulp NIR spectra with greatly im-

proved accuracy.

2 Materials and methods

2.1 Physical, mechanical and optical properties of pulp

samples

Industry defines the quality of a kraft pulp by measures of its

strength and optical properties, as well as other properties per-
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tinent to processing and end use. These measures in part re-

flect characteristics of the pulp, and in part characteristics of

paper sheets made and tested under specific conditions. Stan-

dard procedures call for mechanical treatment and specified

degrees of refining to conform with particular categories of

end use. The response of a pulp to refining under defined con-

ditions constitutes an inherent property of the pulp subject to

standard measurement.

Thus, the pulps used in this study were tested, prior to re-

fining, for freeness according to TAPPI standard method T

227 om-99.27 During the course of refining, we prepared sev-

enty five test sheet samples from these production pulps in

the Burnaby laboratories of Canfor Innovation, using a semi-

automatic sheet maker following T 205 om-88, with reference

to conditioning and testing standards, T 402 sp-03 and T 220

sp-01. We used handsheets made with unrefined pulp to test

for wet and dry zero-span tensile strength (WZS and DZS, re-

spectively) in accordance with T 231 cm-96.

We performed all other tests on sheets prepared from pulps

taken at a series of freeness stages, expressed to the nearest

500 ml. These tests included tear index (T 414 om-98), tensile

strength (T 494 om-01), burst strength (T 403 om-02), light

scattering and absorption coefficients (T 425 om-01). Table

1 gives the range of each parameter as well as its measured

uncertainty.

2.2 Collection of NIR spectra

We collected NIR spectra using a Nicolet 6700 FT-IR spec-

trometer (ThermoScientific) equipped with an NIR integrat-

ing sphere module and a 5 cm diameter sample cup spinner.

Operated in the diffuse reflectance mode, this instrument illu-

minates samples with broadband near-infrared radiation from

a tungsten halogen lamp, and collects interferograms using

an InGaAs detector. Fourier transforms span a spectral range

from 4000 cm−1 to 9900 cm−1 at a resolution of 2 cm−1. Each

acquisition represents the sum of 64 scans of 10 second expo-

sure.

We cut five circular samples sized to fit the sample cup from

different positions in each pulp sheet, scanning the top-side of

each. Five spectra from each sample were averaged and used

in subsequent analyses.

3 Multivariate analysis

3.1 Data pretreatment

NIR spectral data can benefit to a great degree from prepro-

cessing to compensate the effects of varying baseline, remove

high-frequency noise and amplify features that appear only as

inflections in the raw spectrum. The present work tests several

target-independent preprocessing methods, including derivati-

zation, standard normal variant (SNV) correction, multiplica-

tive scatter correction (MSC) and discrete wavelet transform

(DWT). Each of these approaches refines the data set without

reference to standardizing classification information.

We compare prediction errors following pretreatment with

these methods with results obtained following orthogonal sig-

nal correction (OSC) alone, and OSC in combination with

DWT. OSC is a target-directed preprocessing method that

makes reference to a multivariate classification model to re-

duce the weight of irrelevant spectral information.

3.1.1 First-derivative transformation NIR absorption

spectra convey sample composition information in the form of

overlapping vibrational overtone features that vary smoothly

on a scale of tens of wavenumbers. First derivative transfor-

mation provides a ready means of identifying such features,

even when their appearance in the primary spectrum is sub-

tle.28,29 The first derivative also serves to highlight the de-

gree to which high-frequency properties of the spectrum, un-

related to variations in the sample set, might affect its classifi-

cation.29,30

3.1.2 Standard Normal Variant Correction Standard

Normal Variate (SNV) transformation operates by row on

spectra, xi in the data matrix X, subtracting the individual

mean (zeroth-order detrending) and scaling each spectrum by

its standard deviation.31

x̂i =
xi − x̄i

si

(1)

When much of the amplitude fluctuation in a data set arises

from noise, this pretreatment transformation can improve a

model by reducing the amplitudes of its noisiest component

spectra. However, if overall signal amplitudes of sample spec-

tra vary significantly SNV can degrade calibration by intro-

ducing non-linearities.32

3.1.3 Multiplicative Scatter Correction Multiplicative

scatter correction (MSC) removes uncorrelated background

from measured spectra, X, arising from multiplicative factors,

such as path-length variations, as well as offsets, owing, for

example to stray light. The procedure uses an averaged spec-

trum, x̄j, formed by the mean of a selected calibration subset,

and finds parameters, ai, bi and ei, fitting xi to x̄j as closely as

possible by least squares:

xi = ai +bix̄j + ei (2)

where ei represents the residual spectrum, containing the

chemical information in xi. ai defines the intercept, and bi

the slope, that yield the corrected spectrum, xi,MSC:

xi,MSC =
xi −ai

bi

= x̄j +
ei

bi

(3)
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Table 1 The experimental range of measurement and observed reproducibility of different the physical and optical properties independently

determined for the samples that served as calibration and validation standards for this study.

parameters Minimum Maximum Mean Repeatability Reproducibility

Tensile (km) 2.5 4.9 3.8 5 % 10 %

Freeness (ml) 649.5 700.5 684.3 25.3 % 32.4 %

Burst (kPa m2 g−1) 1.4 3.4 2.3 22 % 28 %

Dry Zero Span (km) 14.44 16.8 15.7 5 % 10 %

Wet Zero Span (km) 12.4 15.8 14.6 5 % 10 %

Tear (mN m2 g−1) 19.9 30.3 26.1 4.2 % 12.5 %

SRE600 23.5 82.7 53.4 — —

Absorption (m2 g−1) 0.1669 0.2278 0.1901 — —

Scattering (m2 g−1) 32.6 39.8 35.6 — —

This procedure presents a risk in that ai and bi might corre-

late with a target property, in which case MSC would remove

chemical information from the data set.31,33–35

3.1.4 Discrete Wavelet Transform Discrete wavelet

transform produces a multi-scale representation of a digitized

signal by using a sequence of high- and low-pass cutoff filters

to sort the signal in terms of the frequency with which it varies

in the wavelength space of the spectrum. Filtering divides this

information to resolve the signal into a set of subbands.36–38

Frequencies of importance, corresponding to peak widths

in the wavelength- or λ -space of the original spectrum, ap-

pear with large amplitude in the DWT decomposition without

loss of λ -space position information. Subsampling the result

removes the unimportant information, including the slowly

varying background and high-frequency noise. Errors of pre-

diction can serve as a guide to choose a wavelet basis and con-

strain frequencies to best preserve classification information

while removing uncorrelated variance.36

3.1.5 Orthogonal Signal Correction Even though mul-

tivariate classification models such as Partial Least Squares

(PLS) regression serve to extract feature information from

complex data sets, uncontrolled variations, irrelevant to the

properties of interest can add substantially to the computa-

tional effort, reducing the accuracy and robustness of predic-

tion. Sometimes, uncorrelated variation appears in obvious

dimensions, such as low-frequency baseline oscillations, or

high-frequency noise. In other cases, irrelevant variations in-

trinsic to the sample or the instrument occur at the bandwidth

of the determinant variation.

In the latter event, preprocessing methods focused on the

minimization of uninformative variation at all frequencies can

serve to improve the accuracy of a multivariate calibration.

Orthogonal Signal Correction (OSC) provides one approach

to succeed in this respect.39

OSC finds features that affect the total variation in a spec-

tral matrix, but occur in dimensions that extend in directions

orthogonal to a target variance, and then removes them. Omit-

ting these features reduces the complexity of the model and

consequently improves the linearity of the relation between a

target variance and an input data set. We use a piece-wise

variant of the Wise orthogonal signal correction algorithm

(WPOSC).40

Our implementation of WPOSC applies Principal Compo-

nent Analysis (PCA) to a 75 percent subset of the spectral data

in X in order to obtain an initial score vector, t. We orthogo-

nalize t with respect to the corresponding target property ma-

trix, Y. This orthogonalized t∗ then serves as the first target in

a subsequent cycle of supervised refinement. At each step in

this cycle, we use five repetitive application of non-linear iter-

ative partial least squares (NIPALS) regression, using random

partitions of the data, 75% to calibration and 25% to valida-

tion, providing an independent error of prediction on the basis

of which to select an optimum number of latent variables.

From optimized PLS regression, we find weights, w, such

that the vector of PLS scores t = Xw conforms optimally with

t∗. We orthogonalize this t with Y, and, with this as a target,

return to PLS to obtain a new t. Upon convergence, the vec-

tor of scores, t, and loadings, P, from this process describes

the information in X that is orthogonal to Y. Applying the

transpose of P yields a feature-selected dataset, XOSC by:

XOSC = X− tP′ (4)

XOSC then serves as spectral data input for a new cycle

of OSC, generating new orthogonalized component, tnew and

Pnew, with which to feature-select Xnew. From an examina-

tion of prediction errors obtained using independent validation

data sets, we have determined that OSC performs best without

overfitting when implemented with two such score and load-

ing components.41,42
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3.2 Multivariate calibration

We use the method of Partial Least Squares (PLS) regression

to compare efficacy of these preprocessing methods for clas-

sifying physical properties of production pulps on the basis of

NIR spectra. To build a linear regression model, PLS finds

the covariance between a set of observed variables (the matrix

of NIR spectra, X) and predicted variables (the matrix of val-

ues of a selected property, Y). It rotates X into a coordinate

direction that best represents the variance in Y.43,44

This method enables modelling success in situations for

which the number of observed variables determining X greatly

exceeds the number of standardizing property measurements

contained in Y. It also tolerates multicollinearity in X, as

present when basing models on largely parallel spectra.

PLS reduces the dimension of data into latent structures in

the X block according to a selection of principal components.

The algorithm calculates scores of blocks to maximize the co-

variance between X and Y. The weight vector calculated for

each PLS component gives the maximum covariance between

the two blocks.43

Various criteria serve to describe prediction success. We

refer to the correlation coefficient in the linear regression of

predicted versus standard values to judge the precision of cal-

ibration. The root mean square error of prediction (RMSEP)

RMSEP =

(

m

∑
i=1

(ŷi −yi)/m

)1/2

(5)

describes how well a model applied to an independent stan-

dard data set X predicts the corresponding values, Y. Here,

ŷi and yi are predicted and measured properties of the sample

i and m is the number of samples. Examining the standard

deviation about the mean RMSEP value derived from the in-

dependent validation of a large number of different calibration

reflects the reliability with which a tested pretreatment method

improves the accuracy of prediction.

Increasing the number of latent variables or PLS factors

usually increases the correlation between known and predicted

values. However, the use of too many factors causes over-

fitting, which degrades the generality of a model. The number

of samples used to build a model, together with the number of

determinant features in the spectrum combine to define an op-

timum number of latent variables.43–45 To optimize the num-

ber of latent variables for the present models, we minimize

RMSEP and maximize r2 values determined for ten different

combinations of training and independent validation data sets.

For the purposes of evaluating the pre-processing strategies

described above, we constructed and tested sets of classifi-

cation models using SIMPLS.46 We began by building nine

Y matrices, detailing the known pulp physical characteris-

tics, tensile index, freeness, burst index, dry zero span, wet

zero span, tear index, SRE600, absorption and scattering. We

then applied PLS to find latent components in X matrices of

preprocessed spectra characterizing the spectrum-property co-

variance. For each property and preprocessing strategy tested,

we used 75 percent of the available spectra for calibration and

the remaining excluded 25 percent as a test set to validate the

model.

PLS requires one to choose an optimal number factors min-

imizing prediction error without overfitting the data. Inter-

estingly, we generally found that the optimal number of PLS

factors declined after pre-processing. This reflects the fact that

preprocessed spectra had less complexity, necessitating fewer

PLS factors to optimally capture the covariance.

All of the calculations described above were performed on

a desktop computer running MATLAB 8.0 with the PLS Tool-

box (Eigenvector Research, Inc.)

4 Results

The following sections draw upon a data set formed by the

near infrared spectra of 75 pulp test sheets, comparing the

effects of pre-treatment by first derivative and standard nor-

mal variant (SNV) transformation, multiplicative scatter cor-

rection (MSC), discrete wavelet transform (DWT), orthogonal

signal correction (OSC), and the combination of DWT with

OSC. We explore the comparative utility of these pretreated

data sets as multivariate predictors of various mechanical and

physical properties of sheet paper, including tensile, dry and

wet zero-span, tear and burst index, freeness, SRE600 and

light scattering.

We have constructed these models and tested prediction ac-

curacy by applying the method of partial least squares to in-

dependent pretreated data subsets. Here, we compare RM-

SEP values obtained by use of preprocessed spectral data with

prediction errors found for PLS models based on the original

spectra without pretreatment.

4.1 NIR spectra with target independent pretreatment

Figure 1 plots representative, mean-centred and normalized

NIR spectra of all 75 pulp samples, together with this dataset

pre-processed by non-targeted first-derivative transformation,

SNV and MSC. In the untreated data, we see that absorption

bands associated with many vibrational overtone transitions

overlap to form smooth, reproducible and, on this scale, rela-

tively undifferentiated spectra.

Less apparent in the raw NIR spectra is the presence of a

high-frequency noise component. This contribution to the ex-

perimental signal plainly appears upon first-derivative trans-

formation. No NIR spectral intensity varies on this scale of

absorption frequency. Therefore, this evident variation in the
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4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1) (a)
4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1) (b)

4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1) (c)
4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1) (d)

Fig. 1 (a) Representative NIR spectrum in cm−1 for each of the 75

pulp samples in the present dataset (c.f. Table 1) (b) Spectral data

subjected to first-derivative transformation. Spectral data subjected

to (c) standard normal variant (SNV) transformation and (d)

multiplicative scatter correction (MSC).

dataset cannot correlate with the variation in any property of

the pulp samples.

Standard normal variant (SNV) transformation and multi-

plicative scatter correction (MSC) have similar effect on the

NIR data set. Comparing plots in Figure 1, we find that both of

these pretreatment methods highlight structural features while

reducing baseline offsets and high-frequency noise.

Discrete wavelet transform enables the selective application

of low and high-frequency filters that remove baseline offsets

and noise with great effectiveness. Figure 2(a) plots the full

dataset after a seven-level decomposition in a Symlet-5 basis

followed by the removal of the three highest frequency com-

ponents (details), and the lowest one (approximations).

Here we see an elimination of baseline slope and offset, to-

gether with a significant amplification of reproducible struc-

ture over the full range of the spectrum and the elimination of

high-frequency noise.

4.2 Effects of target-directed pretreatment

All of the data preprocessing methods illustrated above can

serve to isolate structure and reduce noise in the NIR spec-

tra of cellulosic pulps. However, these global, non-targeted

preprocessing strategies do not distinguish between a spectral

feature that correlates with a target variation in a mechanical

or physical property of the paper made from these pulps and

one that does not.

Target-directed preprocessing techniques make reference to

measured standards in order to select features that enhance the

4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1) (a)
4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1) (b)

4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1) (c)
4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1) (d)

Fig. 2 (a) Spectra following a discrete wavelet transform of the raw

spectral data in Figure 1 (b) The same spectra following orthogonal

signal correction (OSC), targeted to a prediction of the paper sheet

mechanical property, tensile strength. (c) Raw spectral data

pretreated first by discrete wavelet transform, as above, followed by

two-component orthogonal signal correction targeted to tensile

strength. (d) Pretreated spectral data reversing the order of

transformation by OSC and DWT.

determinate variations in a data set, while suppressing varia-

tions that are uncorrelated or orthogonal to a targeted property.

We explore the effectiveness of such a feature selection strat-

egy for the NIR classification of pulps by applying the method

of orthogonal signal correction (OSC).

Figure 2(b) plots the the present NIR data set following

OSC which has been targeted to a prediction of the paper sheet

mechanical property, tensile strength.

5 Discussion

5.1 Summary overview of pretreatment effects

First-derivative preprocessing, as displayed in Figure 1(b),

clearly increases the high-frequency noise in the spectral range

above 7000 cm−1. However, as discussed below, we find its

elimination of the baseline improves the prediction models

that we can construct for most target parameters. Background

and noise both contribute to limit the accuracy of a predic-

tion model, and for the present case, stabilizing the baseline

outweighs the introduction of completely uncorrelated high-

frequency noise.

SNV and MSC pretreatment (Figure 1(c) and (d)) yield

spectra with a similar structure. Neither method enhances

resolution or discrimination. They do decrease the high-

frequency noise. But they leave spectra with background os-
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cillations that do not correlate with target variance.

DWT operates in a more deterministic way to decompose

the spectrum into subcomponents based on the bandwidth of

its feature variations. Each such component represents differ-

ent domain of information. The conformance of features in

Figure 2(a) with vibrational overtone line shapes, shows how

a choice of bandwidth scale can substantially reduce baseline

variations and high-frequency noise while highlighting deter-

minate information.

Pretreatment by OSC sharpens resolution compared with

raw spectra, and serves to accentuate variation relevant to tar-

get properties. However, its implementation here introduces

noise, particularly above 9,000 cm−1, and fails to suppress the

background.

Thus, we see that wavelet transform offers an effective

means to subtract background and remove noise, while OSC

suppresses irrelevant information. Seeking the discrimination

enhancement afforded by OSC, for spectra filtered against

background and noise, we have explored combinations of

these prepossessing methods. Figure 2(c) shows that OSC

applied to a spectral data set pretreated first by DWT yields

a baseline-stabilized NIR signature with apparently enhanced

signal variance, but also some increase in high-frequency

noise.

Figure 2(d) reverses the strategy. Here we remove orthogo-

nal variance to enhance intensity differences that correlate best

with the target. Then we de-noise by applying DWT. This

produces a sparser representation, with less high-frequency

noise and better isolated variation within the bandwidth of the

molecular NIR spectral response.

To assess the effectiveness with which preprocessing im-

proves the accuracy of classification we have built multivariate

models from subsets of pretreated spectra, and run indepen-

dent validations to estimate residual mean errors of prediction.

5.2 Prediction of physical properties on the basis of NIR

classification models

Our study examines the effectiveness of various methods for

preprocessing NIR spectra of pulp on the success of multivari-

ate prediction models for nine physical properties of paper, in-

cluding tensile, freeness, burst, DZS and WZS, tear, SRE600,

absorption, and scattering. We have constructed PLS models

and calculated the accuracy of prediction for each property to

evaluate the efficiency of each preprocessing method.

Ultimately, the accuracy that any of these assessment can

have is limited by accuracy of standard measurements used

to determine property values of our standards. As indicated

in Table 1 the measurements that determine the properties of

the samples used as standards in this study vary in their repro-

ducibility. Bearing this limitation in mind, we proceed now to

compare the relative effect of various methods of data pretreat-

ment on classification accuracy within each individual prop-

erty.

We carry out this comparison by applying different analyti-

cal criteria, such as accuracy, precision, and linearity to evalu-

ate PLS models. With reference to Tables 3 and 2, we evaluate

the prediction models for tensile strength using untreated and

first-derivative treated spectra.

We see that, using a sufficient number of PLS factors, un-

treated spectra can serve to yield a linear PLS calibration

model. The application of a simple first-derivative pretreat-

ment reduces the number of factors required and improves

performance at the stage of validation. But, we find that the

regression model after first-derivative preprocessing exhibits

an intercept that differs more from zero. Evidently, the reduc-

tion in background with pretreatment decreases scatter, but the

increase in high-frequency noise adds a systematic prediction

offset.

Using spectral data sets preprocessed by SNV and by MSC.

We find a moderate improvement in tabulated RMSEP val-

ues, and PLS regression models with (x,y) intercepts closer to

(0,0), suggesting that these pretreatment methods better suc-

ceed in removing random variance without adding a system-

atic offset to the model.

Of the remaining two pretreatment methods available to us

in this study, DWT provides a means to filter slowly varying

background and highly oscillatory noise, while OSC reduces

the dimensionality of the data by suppressing variance in co-

ordinates deemed orthogonal to the targeted analysis. Table

3 lists the errors of prediction obtained for paper properties

by applying these pretreatments individually. Here we see

comparable levels of improvement in RMSEP owing to the re-

moval of background and noise (DWT) or the amplification of

relevant signal components (OSC). OSC, applied alone, yields

a slightly better prediction model for tensile strength.

Because pretreatment by DWT and OSC suppress uncorre-

lated variance in distinctively different ways, it seems reason-

able to explore whether there is further accuracy to gain by

preprocessing the spectral data both by DWT and OSC. Ta-

ble 3 shows the results of such a strategy both for the case in

which we first denoise the data by DWT and then apply OSC,

and for the case in which we first suppress uncorrelated vari-

ance by OSC and then remove uninformative noise by DWT.

We find, by and large, that pretreatment in the sequence

OSC-DWT yields calibration models with the lowest RMSEP

and smallest intercept for almost all of the properties tested.

Table 3 gives average RMSEP value found by the application

of ten distinct PLS regression models (using ten randomly se-

lected partitionings of spectra into calibration and validation

datasets) to predict each physical property using NIR spectra

preprocessed by each of the methods discussed above. We find

for predicting tensile strength that the order, OSC followed by

DWT, yields a significantly lower average RMSEP. This or-
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Table 2 Optimized number of PLS factors, h, and coefficients of determination (correlation coefficients) obtained from PLS regression model

fits to calibration data-set, following various methods of NIR spectral pretreatment.

Parameters

Non 1D SNV MSC DWT OSC DWT-OSC OSC-DWT

h r2 h r2 h r2 h r2 h r2 h r2 h r2 h r2

Tensile 10 0.95 3 0.94 10 0.94 10 0.94 7 0.94 7 0.96 7 0.99 7 0.96

Freeness 10 0.68 3 0.70 7 0.53 7 0.53 7 0.71 7 0.74 7 0.79 7 0.70

Burst 10 0.91 3 0.92 10 0.95 10 0.95 7 0.95 7 0.98 7 0.99 7 0.95

Dry zero span 10 0.82 3 0.77 10 0.83 10 0.83 7 0.89 7 0.91 9 0.95 10 0.91

Wet zero span 7 0.72 3 0.55 7 0.68 7 0.68 7 0.85 7 0.89 7 0.95 7 0.86

Tear 7 0.62 2 0.68 7 0.70 7 0.70 7 0.78 7 0.97 7 0.98 7 0.97

SRE600 10 0.75 3 0.79 10 0.78 10 0.78 7 0.87 7 0.94 7 0.96 7 0.94

Absorption 10 0.82 3 0.86 10 0.86 10 0.86 4 0.87 10 0.94 7 0.97 10 0.96

Scattering 10 0.90 3 0.83 7 0.82 7 0.82 7 0.91 9 0.96 7 0.98 7 0.96

der gives a slightly more accurate prediction of DZS. For all

other properties the difference falls within the uncertainty with

which we can specify the prediction error based on ten random

models.

Table 3 also reports the standard deviation of the distribu-

tion of RMSEP in each case. This quantity reflects the pre-

cision to which we can specify the prediction improvement

achieved by a given pretreatment strategy. The lower this stan-

dard deviation, the more consistently the pretreatment strategy

operates to improve prediction accuracy for a given property,

regardless of the conformance that might happen to exist be-

tween a particular choice of calibration and validation sets. A

higher standard deviation indicates an inconsistency in pre-

diction accuracy, reflecting an incomplete suppression of vari-

ance in the pretreated data.

Table 3 shows that OSC yields a relatively broad distribu-

tion of RMSEP results, characterized by a larger standard de-

viation in each case. However, combining OSC with DWT

narrows the distribution of RMSEP for almost all parameters.

As a targeted preprocessing method, OSC operates best when

the validation spectra happen to vary over a data space that is

well represented by the calibration spectra (including orthog-

onal variance). DWT is non-targeted, and preforms similarly

in reducing error regardless of the degree of conformance that

happens to exist between the calibration and validation data

spaces.

Combining DWT with OSC in either order lowers RMSEP

with greater reproducibility for all properties except freeness.

Apparently, the application of a wavelet filter acts to reduce

random variance, yielding spectra of greater uniformity from

which to draw calibration and validation datasets.

The correlation coefficient of a calibration model describes

how well the variance measured for a set of standards con-

forms to the variance known for those standards. A model for

which the calibration measurements strongly correlated with

the known standard quantities, r2 approaches 1. The degree to

which r2 differs from 1 describes the unexplained variance in

the calibration model.

As can be seen in Table 2, any application of OSC removes

components of the measurement with variations orthogonal to

a standardization, and this improves r2 compared with simpler

treatments. Also evident in Table 2, the application of DWT

after OCS appears in some cases to reintroduce orthogonal

variance, which can be seen in a slightly worsened r2 for cal-

ibration compared with DWT-OSC. Nevertheless, on balance,

values of RMSEP obtained in validation favours OSC-DWT in

most cases, and we find that this order of pretreatment better

isolates spectral features for chemical interpretation.

5.3 Preprocessing as a means of isolating spectroscopic

features

NIR spectroscopy presents the inevitable problem of highly

overlapped spectroscopic features. By suppressing uncorre-

lated variance, all forms of pretreatment can serve to accentu-

ate the elements of a spectrum that correlate the variance of in-

terest. First-derivative, SNV and MSC preprocessing methods

achieve this by reducing noise and baseline variations. DWT

flattens baseline, much like first-derivative preprocessing, and

removes high-frequency noise. OSC serves to highlight fea-

tures of determinate variance by subtracting orthogonal infor-

mation from the spectrum.

Examining the spectroscopic outcome of pretreatment can

provide a visual tool to understand the source of a target vari-

ance in terms of its spectroscopic manifestation. The phys-

ical properties of a pulp relate to each other by common

correlations with fibre morphology and chemical composi-

tion. Feature-selected spectra, built to conform individually

with target properties should therefore exhibit similarities sig-

nalling these underlying chemical and physical correlations.
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The spectra obtained here, following pretreatment geared to

properties known to be correlated, present evidence support-

ing this idea.

For example, Figures 3 to 5 compare NIR spectra after

OSC-DTW pretreatment tied to Burst and Tensile Strength,

Wet Zero-Span and Dry Zero-Span, and SRE600 and Tear.

In the universe of standard samples for this study, Burst and

Tensile Strength, which range over a factor of two, correlate

linearly, with a least-squares correlation coefficient of 0.964.

We see this reflected in the feature-selected spectra obtained

following OSC-DWT, which exhibit a large variation in the re-

gion of from 4300 to 5800 cm−1 with distinct isosbestic points

at 4700 and 4900 cm−1.

4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1)
4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1)

Fig. 3 Pulp NIR spectra after processing by combination of

orthogonal signal correction with two components and discrete

wavelet transform with selected wavelet range of (3-7) with

reference to (left) Burst, and (right) Tensile Strength.

Wet Zero-Span and Dry Zero-Span show a similar degree of

correlation in our standards, but far less variation. OSC-DWT

preprocessing tied to either of these properties yields a simi-

lar set of resonances in the region of 5000 cm−1, which are

very different from the sub-spectra characteristic for Tensile

and Burst. These features span the WZS-DZS range of our

samples with a much smaller amplitude variation.

4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1)
4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1)

Fig. 4 Pulp NIR spectra after processing by combination of

orthogonal signal correction with two components and discrete

wavelet transform with selected wavelet range of (3-7) with

reference to (left) Wet Zero Span, and (right) Dry zero span.

Finally, SRE600 refers to a pulp property that determines

the amount of refining energy necessary to reach a Freeness

of 600. This property relates to fibre length much like that

characteristic of the fibre network measured by Tear. In our

samples, we find that SRE600 does correlate well with Tear,

and spectrally we see that OSC-DWT selects for a very similar

set of features.

4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1)
4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1)

Fig. 5 Pulp NIR spectra after processing by combination of

orthogonal signal correction with two components and discrete

wavelet transform with selected wavelet range of (3-7) with

reference to (left) SRE-600, and (right) Tear.

Among all the pulp properties investigated in this study,

Scattering is unique in that it represents an optical property

of the fibre network, which correlates poorly with indexes de-

rived from measures relating to fibre network strength. As

shown in Figure 6, amplitude of the features in the NIR spec-

tra of pulp selected to isolate Scattering shifts decidedly to

the red compared to strength-related elements of the spectrum,

and variance concentrates in a resonance at 5100 cm−1.

As also shown in Figure 6, we find that OSC-DWT selects

a unique set of features to describe Freeness as well, despite

the expectation that, in its morphological and chemical basis,

freeness should correlate with other measures related to fibre

length such as SRE600, Tensile Strength, etc. However, we

see from Table 3 that Freeness represents the only parame-

ter in this study for which prediction from the NIR spectrum

was not improved by OSC-DWT preprocessing. We conclude

from this that the OSC algorithm, applied with reference to

Freeness, fails to capture the most correlated features. For this

reason, we must not regard the OSC-DWT selected features

as a trustable source for spectroscopic interpretation for Free-

ness.

5.4 Conclusion

We have explored the effectiveness with which a range of

preprocessing methods improves the multivariate prediction

of paper physical and morphological properties from the NIR

spectra of pulp fibres. Simple data treatments, including first-

derivative, SNV and MSC preprocessing do reduce prediction

errors. However, DWT, which removes high-frequency noise

and low-frequency baseline variations, and OSC, which sup-

presses variance orthogonal to a specified target property, im-
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4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1)
4000 5000 6000 7000 8000 9000 10000

Frequency (cm−1)

Fig. 6 Pulp NIR spectra after processing by combination of

orthogonal signal correction with two components and discrete

wavelet transform with selected wavelet range of (3-7) with

reference to (left) Scattering, and (right) Freeness.

prove performance to a better degree. Interestingly, DWT,

which preprocesses without reference to a target property,

yields regression coefficients that fall shorter of one, indicat-

ing the presence of a systematic residual uncorrelated vari-

ance. Combining the pretreatment methods, OSC and DWT

yields the smallest errors. Using Tensile Strength as a bench-

mark, the sequence, OSC then DWT produces a more robust

prediction, featuring a lower RMSEP with a narrower distribu-

tion. Either order improves RMSEP and standard deviation of

prediction error to similar degrees for other properties, For all

cases the application of DWT followed by OSC gives a regres-

sion coefficient closer to one, suggesting that this approach

best avoids the biasing of noise suppression with respect to

magnitude of the target property.

NIR spectra corrected by OSC-DWT reveal interpretable

features with respect to selected properties. Correlations in

such spectra provide a means to logically connect certain

properties with assigned features. These results underline the

effectiveness with which OSC-DWT extracts essential infor-

mation from spectra subject to uncorrelated variations. Thus,

we can conclude that the application of OSC-DWT as a pre-

treatment can improve the utility of a NIR spectroscopy as a

method for predicting the end-point properties of pulp and pa-

per.
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