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Abstract 

Distinguishing between the enantiomers of chiral substances and their quantification is an 

analytical challenge, in particular in the pharmaceutical and biochemical sectors. A Raman 

spectroscopic method for discrimination of enantiomers is proposed. Advantage is taken of the 

polarization properties when Raman scattering occurs in an optically active medium. It is shown 

that a conventional polarization-resolved Raman setup leads to identical spectra of the two 

enantiomers. However, inserting a half-wave retarder to rotate the signal polarization by a fixed 

angle enables the efficient and universal enantiomeric discrimination. Hence, the applicability 

of any polarization-resolved Raman experiment can be improved substantially without 

significant modification of the setup or the use of chiral labeling or the addition of a substrate 

for selective plasmonic enhancement. In principle, the proposed technique allows simultaneous 

speciation, enantiomeric discrimination, as well as structural and quantitative analysis. 

Keywords: Raman, optical activity, chiral, enantiomer 
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Chiral molecules are of great relevance, in particular in the areas of biology and pharmaceutical 

science.1 The enantiomers of a chiral substance may exhibit very different physiological effects. 

The most prominent and tragic example is thalidomide, a drug which caused birth defects in 

thousands of children in the 1950s and 60s.2 Therefore, it is important that chiral molecules are 

produced with high enantiomeric purity. In order to characterize a substance and monitor it 

during the synthesis and purification process, suitable analytical methods are required. In 

particular, the enantiomeric discrimination is difficult, as the enantiomers possess identical 

physicochemical properties. Furthermore, chemical synthesis usually generates the racemate, 

which is a 1:1 mixture of both enantiomers.  

The list of existing analytical techniques to differentiate enantiomers includes capillary 

electrophoresis (CE),3 NMR,4 microwave5 and fluorescence6 spectroscopy, vibrational circular 

dichroism (VCD),7 and Raman optical activity (ROA).8 Very recently, cavity ringdown 

polarimetry9 and surface enhanced Raman spectroscopy (SERS)10 have been demonstrated as 

tools for enantiomeric discrimination as well. However, all these methods have significant 

disadvantages. Some of them are time-consuming and hence do not provide sufficient time-

resolution for process monitoring, some require molecular labeling or the addition of a chemical 

agent, and some are expensive and experimentally complicated.  

Conventional Raman spectroscopy has not been considered as a method for enantiomeric 

discrimination. Quite the contrary, it is a widely held belief that the technique is generally not 

suitable for this purpose. It was even stated explicitly that Raman spectroscopy cannot 

differentiate between enantiomers, see e.g. 10. In the following, we will demonstrate that Raman 

spectroscopy can be made a truly universal tool for enantiomeric discrimination, when the 

signal is recorded polarization-resolved and a simple have-wave retarder is inserted in the setup. 

The approach described and the data presented are based on a previous paper11, in which a 

theoretical framework of the polarization phenomena with respect to the laser and Raman signal 

propagation in optically active samples was described. 
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Figure 1. (a) Sketch of the experimental setup (L = lens, /2 = half-wave retarder, PBS = 

polarizing beam splitter); (b) details of the laser and signal propagation through the sample (l = 

length of cuvette, t = distance the signal travels in the cuvette); (c) 3D diagram of involved 

wave polarizations; (d) laser polarization in the yz-plane and signal polarization of the polarized 

and depolarized components in the xz-plane. 

Figure 1a shows the sketch of a Raman setup with polarization-resolved signal detection. A 

linearly polarized laser beam passes the sample, e.g. a liquid in a glass cuvette, and is then 

blocked by a beam dump. In direction perpendicular to the laser beam, the scattered light is 

collected and collimated by an achromatic lens. A polarizing beam splitter separates the 

vertically and horizontally polarized fractions of the signal before they are spectrally dispersed 

and recorded in spectrometers. The geometric details of importance are illustrated in panel (b) 

of Fig. 1. The x-axis denotes the beam direction and the y-axis corresponds to the direction in 

which the signal is detected. The z-axis is orthogonal to both and represents the initial 

polarization direction of the laser. In this configuration and under the assumption that the 

sample is not optically active, there will be the polarized Raman signal oscillating in z-direction 

and two depolarized components in x- and y-direction as displayed in panel (c). When the 

sample is optically active, however, we need to take into account that the laser polarization is 

rotated when travelling through the sample, and the signal is rotated as well (cf. Fig. 1d). In 

other words, the polarization-resolved Raman signal changes with the location, x, where it is 

generated. A detailed theoretical framework of the effects is given and discussed in reference 

Page 4 of 9Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



5 
 

11. To simplify matter, we consider an infinitesimally small laser beam, and a signal collection 

with infinitesimally small solid angle. In this case, the detected vertically and horizontally 

polarized intensities can be written as 

  sincossin
2

coscos 
depol

polvertical

I
II          (1) 

  cossinsin
2

sincos 
depol

polhorizontal

I
II          (2) 

where Ipol and Idepol represent the scattered polarized and depolarized intensities in the 

infinitesimal probe volume, respectively. The parameter  is the angle by which the laser 

polarization is rotated in the probe volume and  is the rotation angle of the signal when it 

leaves the cuvette. 

 

The data presented in the following were simulated using equations (1) and (2) fed with 

experimentally determined parameters. This approach allows looking at the physical effects 

without possible interference from experimental artifacts. As a model system, solutions of 0.18 

g/cm3 -D- or -L-glucose in dimethyl sulfoxide (DMSO) were considered in an l = 1 cm glass 

cuvette. The specific rotation determined with a linearly polarized HeNe laser was +/- 2°/cm. 

As aforesaid, for the simulation the beam is considered infinitesimally thin and only the Raman 

signal generated in the center of the cuvette is taken into account (x = 0.5 cm and  = +/-1°). 

The signal travels t = 1 cm inside the solution before it exits the cuvette. Only the CSC 

symmetric and antisymmetric stretching modes of DMSO are considered. They manifest in 

Gaussian peaks at 669 and 697 cm-1, each exhibiting a spectral width of 10 cm-1 full width at 

half maximum (FWHM). This double peak is selected, as it is free of interference from glucose 

signals.11 In addition, both peaks exhibit substantially different depolarization ratios (0.06 and 

0.31, respectively), which helps to illustrate the effects. 
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Let us now consider the two cases that the sample contains either one or the other enantiomer 

of -glucose and let us evaluate the effects on the Raman signal components detected with 

vertical and horizontal polarization. The D-enantiomere exhibits a positive specific rotation and 

the L-form a negative one, both identical regarding the absolute value. Consequently, 

employing a conventional polarization-resolved Raman setup, the signals generated in both 

solutions will exhibit the same angle of rotation but with different sign (see upper panels of Fig. 

2). Hence, the signals recorded will be identical as illustrated by the CSC stretching vibrations 

of DMSO displayed in the lower panels of Fig. 2 (dashed lines). The signal in pure DMSO, i.e. 

without any optical activity, is shown as solid line for comparison. Obviously, enantiomeric 

discrimination is not possible in this case. 

 

Figure 2. Signal polarization of the polarized and depolarized components in the xz-plane for 

L- and D-glucose (upper panels) and corresponding vertically and horizontally polarized 

Raman signals (lower panels). 

In order to overcome this problem, we can utilize the phase relationships of the signal 

components. If the signal polarization of the enantiomer solutions can be rotated in such a way 
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that they exhibit different angles (regarding their absolute value) before the beam splitter, 

enantiomeric discrimination would be possible. This can be achieved by inserting a retarder 

with a phase-shift of , e.g. an achromatic half-wave plate (or a double Fresnel rhomb), as 

indicated in Fig. 1a. Unless the fast or slow axes of the wave plate coincides with the x- or y-

axis, the polarization of the polarized and depolarized signal components will be rotated 

differently for both enantiomers. Figure 3 illustrates the situation when the fast axis of the wave 

plate coincides with the polarization direction of the L-enantiomere. In this case, the signals 

from the L-glucose solution are not altered, while the signal polarization of the D-glucose 

solution is further rotated as shown in the right upper panel of Fig. 3. Consequently, the 

polarization-resolved signals will be different for both enantiomers as illustrated in the lower 

panels (note that the analog effect can be observed, when the fast axis of the wave plate 

coincides with the polarization direction of the D-enantiomere). In particular, the horizontally 

polarized component reveals significant differences. Thus, enantiomeric discrimination is now 

possible. 

When the wave plate is slightly rotated so that none of the signal components coincides with 

the fast axis, the situation illustrated in Fig. 4 manifests. The signals from both solutions are 

rotated, but the angles are different. Hence, again, the polarization-resolved signals show 

distinct differences. As a rule of thumb, we can note that the higher the asymmetry of the 

polarization diagrams shown in the upper panels, the more pronounced the differences in the 

spectra and the clearer the enantiomeric discrimination.  
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Figure 3. Signal polarization of the polarized and depolarized components in the xz-plane for 

L- and D-glucose (upper panels) and corresponding vertically and horizontally polarized 

Raman signals (lower panels) with the wave plate oriented such that the fast axis coincides with 

the polarized signal of the L-glucose solution. 

 

Figure 4. Signal polarization of the polarized and depolarized components in the xz-plane for 

L- and D-glucose (upper panels) and corresponding vertically and horizontally polarized 

Raman signals (lower panels) with the wave plate oriented such that the fast axis does not 

coincide with the polarized signal of the L-glucose solution. 
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In conclusion, a Raman spectroscopy method for universal enantiomeric discrimination was 

proposed. Inserting a half-wave retarder in the collimated signal rotates the polarized and 

depolarized signal components differently for the individual enantiomers and thus allows 

spectroscopic discrimination. This simple extension makes conventional Raman spectroscopy 

a unique analytical tool for chiral molecules. Traditionally, the Raman spectrum provides access 

to the chemical structure and interactions with the molecular environment,12 and allows 

quantitative compositional analysis.13 With the proposed extension, enantiomeric 

discrimination and the determination of the enantiomeric ratio is possible. It is important to note 

that this discrimination does not require anything specific to the substances under investigation 

and hence is a truly universal tool. It should also be pointed out that the proposed technique is 

substantially different from Raman optical activity. The latter makes use of a vibrational optical 

activity, which is a very weak effect. Therefore, ROA measurements often take extended 

periods of time (up to days and longer). In contrast, our method can provide high temporal 

resolution (fractions of a second) when appropriate equipment is used. Consequently, 

polarization-resolved Raman spectroscopy is perfectly suited for monitoring the production of 

chiral substances and characterizing their behavior in practical applications. 
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