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Introduction 

AML is the result of an abnormal proliferation and 

differentiation of hematopoietic cells in the bone marrow and is 

the most common leukaemia in adults.
1,2
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If not recognized and treated, it causes a fatal outcome in weeks 

or months. MDS, which refers to a group of disorders 

characterized by an ineffective haematopoiesis, progresses to 

AML in about 30% of cases.
3
 An accurate and objective 

diagnosis and classification of these two related disorders is 

extremely important to establish prognosis and treatments. The 

world health organization (WHO) classified MDS and different 

AML subtypes on the basis of clinical, morphologic, 

immunophenotypic and genetic features.
4
 Although genetic 

abnormalities are nowadays good prognostic and therapeutic 

indicators, the morphological evaluation is still the first 

diagnostic step and remains of great importance for the 

diagnosis and classification of AML, and could be essential for 
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predicting the likelihood of MDS to transform in AML.
5
 The 

morphological assessment includes the differential recognition 

and count of blasts (hematopoietic progenitor cells) and of 

other cell subpopulations at different differentiation stages (e.g. 

promyelocytes, erythroblasts, monoblasts) by examining 

manually at least 500 and 200 cells from bone marrow (BM) 

and peripheral blood (PB) stained smears, respectively. The 

count of >20% of blasts in BM and PB is the requisite threshold 

recommended for the diagnosis of AML, where the number of 

blasts for the diagnosis of MDS is between 5% and 20%. In 

addition, the different percentages and ratio between different 

cells (in particular: myeloblasts, promyelocytes, erythroblasts) 

is used for classifying different AML and MDS subtypes. 

Despite its importance, the count and recognition of these cells 

is still performed using an optical microscope. This procedure 

is therefore highly subjective, scarcely reproducible, error-

prone, time consuming and cannot be substituted by the 

automatic flow cytometry analysis according to the most recent 

guidelines
4,6

. In addition, the confirmation of the subpopulation 

identity needs sometimes to be confirmed by cytochemistry 

(e.g. by using myeloperoxidase (MPO), nonspecific esterase 

(NSE), periodic acid-Schiff (PAS) stains). For these reasons 

new methods are needed for a more reproducible, objective, 

accurate and potentially automatable morphological assessment 

of AML and MDS. 

Several advantages of using Raman spectroscopy for diagnosis 

have been already proven, including its chemical specificity 

that could potentially substitute traditional diagnostic methods 

based on the visual examination of histological specimens 
7–12

 

(reviewed in ref.
13

). In particular, Chan and collaborators 

recently used Raman spectroscopy to study different cellular 

populations in acute lymphoblastic leukaemia (ALL) patients.
7
  

Here we report the first Raman-based characterization of cells 

from AML patients. We characterized myeloblasts, 

promyelocytes and erythroblasts, which must be recognized and 

counted for the diagnosis of both AML and MDS. Myeloblasts 

(or “blasts”) are the less mature and less differentiate cells of 

the myeloid (granulocytic) lineage, with a high 

nucleocytoplasmatic ratio and without cytoplasmatic granules; 

promyelocytes are maturing cells in the myeloid lineage which 

are principally characterized by granules mainly containing 

MPO, by a central or eccentric nucleus and by a reduced 

nucleocytoplasmatic ratio; erythroblasts are the nucleated 

precursors of erythrocytes, which start to express haemoglobin 

in the cytoplasm. In addition, we also studied abnormal 

promyelocytes which can be distinguished from normal 

promyelocytes (which we refer to here as “promyelocytes”) 

mainly because of the hypergranularity of the cytoplasm, which 

commonly presents clumps of granules also called Auer rods14. 

Consequently, we used bone marrow samples from patients 

affected by four AML subtypes because mainly characterized 

and enriched by the four subpopulations selected. In details, 

“AML with minimal differentiation” (or “AML M0” according 

the French American Britannic (FAB) morphological 

classification
14,15

) was selected for studying myeloblasts; 

“AML with t(8;21); RUNX1-RUNX1T1” (or “AML M2”) for 

studying promyelocytes; “acute promyelocytic leukaemia 

(APL) with t(15;17); PML-RARA” (or “AML M3”) for 

studying abnormal promyelocytes and “acute erythroid 

leukaemia” (or “AML M6”) for studying erythroblasts. Firstly, 

we approached with Raman imaging for describing the 

morphology of the four selected subpopulations after having 

considered the excellent results recently obtained by using 

Raman imaging of cells.
16–20

 Indeed, whereas for studying 

ALL, Chan and collaborators acquired a single Raman spectra 

of the nucleus of lymphoblasts
7
, which are basically 

characterized by a prominent nucleus and a very small 

cytoplasm, we had to consider Raman imaging for studying 

AML and MDS cells which are generally larger, have a more 

complex morphology and are more heterogeneous if compared 

to ALL cells. For this purpose, we took advantage of a 

previously described home-built Raman setup that enable high-

speed and high-quality chemical imaging19,21. In addition, we 

considered advantageous the use of a laser excitation at 647.1 

nm for the analysis of hematopoietic cells. For instance, the 

excitation at 647.1 nm can induce a discrete pre-resonant 

enhancement of some vibrational modes of heme-containing 

proteins, in particular MPO and HB, due to the weak (but not 

null) absorption of the heme group in the region between 600 

and 700 nm. At the same time, the 647.1 nm wavelength is far 

enough from frequencies with high absorbance (Soret band 

around 400 nm and other weak bands above 700 nm) thus 

avoiding strong resonance Raman scattering effects which 

could dominate the spectrum and completely mask Raman 

bands related to other important cellular components. After 

having characterized and compared the morphology of different 

cells by Raman imaging, we explored the possibility to 

discriminate these cells by using the single cell Raman 

fingerprint derived by averaging all the spectral information 

contained in the Raman image data-sets. This was done for 

verifying that a single acquisition of the whole cellular area, or 

a small number of acquisitions over the cell, could potentially 

permit the correct identification of different cells without the 

necessity of employing protocols of Raman imaging 

measurement, thus permitting the further development of faster 

and more feasible methods. A multivariate analysis approach, 

principal component analysis (PCA) coupled with linear 

discrimination analysis (LDA), was hence used for identifying 

significant spectral differences between cells and to build a 

classification model for automatically discriminating different 

cells typically counted for the assessment of AML and MDS.  

Materials and methods 

Patient samples and standard diagnostic procedure 

The patients included in this study gave written informed 

consent in accordance with the protocols approved by the ethics 

committee of Hospital San Raffaele. The Patients' 

characteristics are listed in Supplementary Table S1. Different 

leukaemia subtypes were classified according to both the WHO 

classification
4,22

 and FAB classification
23

 by haematologists on 
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blood and marrow smears contextually with the routine 

diagnostic procedures. Morphological, immunophenotypical, 

cytogenetic and molecular genetics evaluations were performed 

following the most recent guidelines.
6
 Histological bone 

marrow smear were stained using May-Grünwald-Giemsa 

(MGG) stain (Hemacolor - Merck).  

Sample Preparation for Raman measurements 

For each patient, a fraction of bone marrow aspirate utilized for 

the normal diagnostic procedures was processed for the 

isolation of bone marrow mononucleated cells by Ficoll-

Hypaque (Pharmacia Biotech, Uppsala, Sweden) density 

gradient. This cell fraction was then frozen in fetal bovine 

serum (FBS) containing DMSO 10% and stored in liquid 

nitrogen containers at -196°C till its use (5 x 106 cells/ml, final 

concentration). Before Raman measurements, cells were 

thawed at 37°C, resuspended in 10 ml of warm RPMI-1640 

medium supplemented with 10% fetal bovine serum, washed 

once by centrifugation, re-suspended in 10 ml of PBS medium 

and resuspended in PBS to reach a concentration of 1 x 106/ml. 

All cell preparations were >90% viable as assessed by trypan 

blue dye exclusion. Meanwhile, 20 mm diameter calcium 

fluoride (CaF2) discs (Crystran LTD, Poole, UK), used as 

optical substrates for Raman measurements, were incubated 

with 0.01% poly-L-lysine for 30 min at 37°C to enable cell 

adhesion. Around 9 x 105 cells were then deposited on the CaF2 

discs by incubation at 37°C for 20 min. Subsequently the discs 

were rinsed three times with warm PBS. Immediately after the 

cells were fixed for 30 min at 37°C with 2 vol.% 

paraformaldehyde-PBS solution to avoid stress, activation and 

differentiation of cells. Before Raman measurements, the CaF2
 

with immobilized cells was washed three times and immersed 

in PBS. At the same time, part of the same suspension (5 x 105 

cells) was carefully cytospinned on glass slides and stained 

using May-Grünwald-Giemsa.  

Raman Microspectroscopy 

For Raman measurements a home-built confocal Raman 

microspectrometer was used as recently described.19,21 Briefly, 

a Kr ion laser (Coherent, Innova 70C-Spectrum, Santa Clara, 

CA, USA) at the wavelength of 647.1 nm was filtered with a 

band-pass filter (Z647BP, Chroma Technology, Rockingham, 

VT, USA) and then reflected by a dichroic beam splitter 

(Z647RDC, Chroma Technology) to separate excitation and 

emission photons. The light was then focused on the sample by 

an immersion objective (63x/1.0 NA, W-Plan-Apochromat, 

Carl Zeiss, Jena, Germany). The scattered photons were then 

collected by the same objective, transmitted by the dichroic 

beam splitter and filtered with a razor-edge long-pass filter 

(LP02-647RU, Semrock, Buffalo, NY, USA) to remove the 

laser light. The scattered light was focused by a lens (f = 30 

mm, AC127-030-B, Thor Labs, Newton, NJ, USA) on a 

confocal pinhole with a diameter of 15 μm at the entrance of 

the spectrograph. The final magnification of the light on the 

pinhole was 23x with a spatial resolution of ~390 nm (full 

width half maximum (FWHM)), which corresponds to the laser 

spot size, and an axial resolution of around 1400 nm.. A 

thermoelectrically cooled electron multiplying charge-coupled 

device (EMCCD) chip (1600 x 200 pixels) (Newton DU-970N, 

Andor Technology, Belfast, Northern Ireland) was used as 

detector. A spectral range of around 3600 cm-1 and an average 

spectral resolution of 2.25 cm-1 was then obtained. Each cell 

was scanned by 64 x 64 (4096) Raman spectra over the entire 

cell area by a scanning mirror (Leica Laser Technique, GmbH, 

Heildelberg, Germany). The lateral dimension of the scanned 

cell area was between 10.0 to 14.0 μm, depending to the 

measured cell, corresponding to a step size of 156 to 218 nm, 

respectively.. The excitation power measured at the level of the 

sample was 36 mW and each spectrum was obtained with an 

acquisition time of 100 ms. The focus of the light, adjusted in 

order to get the higher signal from the cell, was positioned 

between 4 - 7 μm above the surface of the optical substrate 

depending on the dimensions of the cell.  

Data Pre-processing 

All data manipulation were performed using Origin (OriginLab, 

Northampton, MA) and custom software written with 

MATLAB 8.0 (The Math Works Inc., Natick, MA) and 

LabView (National Instruments Corp., Austin, TX ). All spectra 

were pre-processed by removal of cosmic rays, subtraction of 

the camera offset, calibration of the wavenumber axis and 

correction of wavenumber-dependend transmission as 

described previously.19 Toluene and argon light source bands 

were used to calibrate the setup. The detection efficiency at 

different wavelength and the detector induced etaloning were 

corrected using a tungsten halogen light source with a known 

emission spectrum (Avalight-HAL; Avantes BV, Eerbeek, The 

Netherlands). Singular value decomposition (SVD) was used to 

reduce the spectral noise.  

Raman Imaging 

For hierarchical cluster analysis (HCA) Raman imaging,21 each 

dataset (4096 spectra matrix) derived from a singular cell was 

analyzed by HCA and principal component analysis (PCA) to 

automatically distinguish regions of the scanned area with 

different Raman features. In the cluster analysis routine, PCA 

scores were taken as input variables, squared Euclidean 

distances were used as distance measure, and Ward’s algorithm 

was used to partition Raman spectra into clusters. Eight to ten 

level of HCA clustering, depending on cellular dimensions and 

complexity, were used in order to obtain HCA Raman images 

with a good description of the subcellular composition. Each 

cluster was assigned to a different colour thus obtaining a false-

colour image of the cell on the basis of similar spectral features. 

For each cell, all spectra described for each cluster were 

averaged to obtain the mean cluster spectra. Each mean cluster 

spectra was then corrected subtracting the mean spectra of the 

background measured around the cell, mostly corresponding to 

the buffer and to the poly-lysine treated CaF2 surface. 

Multivariate Raman images were produced overlapping 

different univariate images derived by the integration of a 

specific Raman band after subtraction of the local baseline. A 
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properly selected Raman band represents a known chemical 

compound, and its spatial distribution is represented by a single 

colour from the RGB pallet of the RGB image. The intensity of 

the colour is determined by the integrated intensity of the 

selected Raman band. In this way a combination of 3 

compounds (or cellular components) can be represented in a 

single RGB-colour image. Multivariate Raman images were 

produced overlapping different univariate images derived by 

the integration of a specific band after subtraction of the local 

baseline. 

Statistical and Multivariate Analysis 

Single cell fingerprints utilized for comparing different cells 

and patients were obtained by utilizing a two-level HCA, 

selecting the cluster corresponding to the cell area, and by the 

subtraction of the cluster spectrum associated to the 

background. All cell fingerprint spectra were vector normalized 

in the range of 600-1750 cm-1 for further analyses. All cell 

fingerprint spectra of the same patient, and those belonging to 

the same AML subtype, were averaged thus obtaining the 

patient fingerprint spectra and the AML subtype fingerprint 

spectra, respectively. PCA was performed on the whole dataset 

in order to reduce the complexity of Raman spectra and to 

compare all cells from different AML subtype against each 

other. In order to perform PCA, all  single cell fingerprints were 

baseline corrected by second-order polynomial fitting in order 

to eliminate eventual fluorescence components. All spectra 

were analyzed utilizing a variance-covariance matrix. The 

complexity of the original data was reduced by PCA producing 

58 principal components (PCs). The first two PCs, which 

account for >87% of the variance, were then used to build the 

PCA scatter plot. A linear discriminant analysis (LDA) 

classification model was built using as training data the first 

eight PCs, which together describe >98% of the variance of the 

complete dataset, using the four AML subpopulation as 

different groups and setting prior probabilities proportional to 

the group size. The PCA-LDA classification model was 

validated by leave-one-out cross validation using functions of 

Origin (OriginLab, Northampton, MA). By using this method, 

for each cell (test data), the PCA-LDA model was built using 

all the remaining cells (training group) and then used to classify 

the test cell. This procedure was repeated until all cells were 

predicted once, thus defining the prediction accuracy of the 

model. 

Results 

High-resolution Raman imaging 

High-resolution Raman images were obtained from cells 

isolated form BM aspirate of seven patients affected by 

different AML subtypes (details in Table 1). Each BM aspirate 

sample was evaluated during the routine diagnostic procedures 

and classified according to both the WHO
4,22

 and FAB 

classification
23,14

 considering all available information: clinical  

 

Patient 
n. 

AML subtypes 
(WHO 

classification) 

characteristic 
AML 

subpopulation  

AML 
Morphologic  

Subtype 
(FAB)* 

1 
AML with minimal 
differentiation 

myeloblasts M0 

2 
AML with minimal 
differentiation 

3 
AML with t(8;21) ; 
RUNX1-RUNX1T1 

promyelocytes M2 

4 
AML with t(8;21) ; 
RUNX1-RUNX1T1 

5 
APL with t(15;17); 
PML-RARA abnormal 

promyelocytes 
M3 

6 
APL with t(15;17); 
PML-RARA 

7 
Acute erythroid 
leukaemia 

erythroblasts M6 

Table 1 Patients selected in this study. *FAB subtypes names, M0: “AML 

with minimal evidence of myeloid differentiation”; M2: “AML with 

maturation”; M3: “Acute hypergranular promyelocytic leukaemia”; M6: 

“AML with predominant erythroid differentiation” 

features, morphology, cytochemistry, immunophenotype, 

conventional and molecular cytogenetics, and molecular 

genetics (See Table S1 for details). Each cell was then selected 

by morphological criteria according to FAB and WHO 

guidelines. Myeloblasts (n=17) were analyzed from two 

patients affected by “AML with minimal differentiation”; 

promyelocytes (n=21) were analysed from two patients affected 

by “AML with t(8;21)(q22;q22); RUNX1-RUNX1T1”; 

abnormal promyelocytes (n=13) from two patients affected by 

“APL with t(15;17)(q22;q12); PML-RARA” and erythroblasts 

(n=8) from a single patient affected by “acute erythroid 

leukaemia” in clinical remission. After spectra pre-processing, 

Raman images were produced by HCA in the spectral range 

between 500-1800 cm-1 in order to automatically distinguish 

cell boundaries and different components of the cell at 

subcellular level. Fig. 1 shows the high correspondence 

between the cellular morphology observed by the optical 

microscope and corresponding HCA Raman images (Fig. 1i-l). 

Spectra related to different clusters are reported in Fig. 2a-d, 

ordered by relative overall intensity and respectively to the 

HCA images of Fig.1i-l. The detailed assignment of the most 

important Raman bands can be found in Table S2. By 

observing HCA images appears that cell boundaries, nucleus, 

cytoplasm, and some other morphological features are 

described by different clusters. Fig. 1i shows an example of 

HCA images of a myeloblasts from a patient affected by “AML 

with minimal differentiation”. Here, the distribution of clusters 

indicates the regular shape of the nucleus (clusters from blue to 

green) with characteristic DNA-related bands (especially 788 

and 1341 cm-1) surrounded by a thin cytoplasmic region (red 

and cyan) related to cluster spectra without DNA-related 

vibrational bands (Fig. 2a,e). Moreover, the cluster distribution 

demonstrates an elevated nucleocytoplasmic ratio (>70% of the 

spectra recorded inside the cell) as typically observed by 

histological evaluation on stained samples (Fig. 1a). Likewise,  
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Fig. 1 Raman imaging of four different AML cells typical of the four AML subtypes 

analyzed. (a-d) Different AML cells stained with May-Grünwald-Giemsa stain; (e-

h) bright field images of AML cells before the Raman measurement; (i-l) HCA 

images with colours corresponding to different cluster spectra showed in Fig.2a-

d, respectively; (m-p) multivariate images derived by the selection of specific 

bands related to the nucleus (blue) and to the cytoplasm (green) for all images; 

the band related to MPO (red) was selected for creating images (m, n, o); the 

band related to haemoglobin (red) was selected for the image (p). In all 

multivariate images the green and the red pixels were overlapped (yellow) 

proportionally to the relative band intensities. Scale bars: 10 μm. 

we created corresponding multivariate images (Fig. 1m) by 

selecting and integrating theDNA (nucleus) vibration band 

around 788 cm-1 (blue) and the protein/lipids CH vibration 

(cytoplasm) around 1450 cm-1 (green), demonstrating similar 

distribution and morphological features. In contrast, the HCA 

images of promyelocytes from patients affected by “AML with 

t(8;21)(q22;q22); RUNX1-RUNX1T1” (Fig. 1j) show a smaller 

nuclear/cytoplasmic ratio (around 40%), high sub-cellular 

heterogeneity, an eccentric nucleus and the presence of 

granular-shaped clusters (grey, yellow, green) located 

specifically in the perinuclear region, absent in myeloblasts.. 

The spectra corresponding to these perinuclear clusters are very 

different from nucleus-related clusters (blue) and are 

characterized by intense bands located especially around 752, 

1107, 1208, 1359 and 1582 cm-1 (Fig. 2b,f). These Raman 

signals are corresponding to two heme groups of MPO (as 

confirmed by previous studies24), which is the most important 

marker of granulocytic (neutrophilic) differentiation and which 

is contained in granules (azurophilic granules) of 

promyelocytes. The distribution of MPO containing granules at 

subcellular level is also clearly shown in the multivariate image 

(Fig. 1n) obtained selecting the band around 1582 cm-1 for 

MPO granules (representing around the 30% of the entire 

cellular area, red), around 788 cm-1 (nucleic acid, blue) and 

around 1450 cm-1 (cytoplasm, green). The HCA images and the 

multivariate images of an abnormal promyelocytes from 

patients affected by “APL with t(15;17); PML-RARA” (Fig. 

1k,o) are similar to the Raman images of promyelocytes (Fig. 

1j,n) but clearly show some typical abnormal features that 

characterize this type of AML cells. In fact, according to what 

observed by MGG staining (Fig. 1c), the Raman images 

demonstrate a smaller nucleocytoplasmic ratio (around 35%), 

an elongated shape, a more eccentric nucleus and a large 

portion of the cell (around 45%) characterized by very intense 

spectra related to the hypergranularity (MPO granules) 

described for abnormal promyelocytes
14

. HCA spectra of 

abnormal promyelocytes (Fig. 2c,g) have features similar to 

those derived from promyelocytes but with small differences 

better described by PCA results (see below). Figure 1l shows 

the HCA image derived from an erythroblast of a patient 

affected by acute erythroid leukaemia. The most prominent 

characteristic of HCA related spectra (Fig. 2d,h) is the 

contribution of bands relative to haemoglobin (in particular 

Fig. 2 HCA results. (a-d) Background-free cluster spectra related to HCA images reported in Fig. 1.i (myeloblast), Fig 1.j (promyelocytes), Fig 1.k (abnormal 

promyelocytes) and Fig 1.l (erythroblasts), respectively; (e-h) selection of significant cluster spectra from images (a-d), respectively; for (e) and (h) the cytoplasm near 

the membrane cluster (pink) and the nucleus cluster (green) were selected and magnified; for (f) and (g), the nucleus cluster (blue) and the cytoplasmic granules 

(green) were selected and magnified. All spectra are shifted for clarity. Band assignments are reported in Table S2. 
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around 665, 755, 1249, 1173, 1249, 1366, 1397, 1540, 1610 

cm-1)
25

 over the entire cell area. HCA resulted in clusters very 

similar to each other with the exception of clusters located in 

the nuclear region of the cell (from grey to green) in which 

DNA bands (around 788 cm-1) increase relatively to other 

bands. Similarly, the multivariate image (Fig. 1p) constructed 

selecting haemoglobin (red, 1610 cm-1 ), DNA (blue, 788 cm-1) 

and cytoplasm (green, 1448 cm-1), shows that the cytoplasm is 

dominated by the presence of haemoglobin, even if the nucleus 

is clearly recognizable.  

Identification of different subpopulations by individual cell 

average spectra 

After having confirmed the potentialities of Raman imaging for 

the study of the morphology of cells that have to be recognized 

for assessing AML and MDS, we tested the capability of 

Raman spectroscopy to distinguish different types of cells by 

using the mean spectrum of each cell. The 4096 spectra 

collected from each cell were used to calculate the single-cell 

fingerprint by averaging all the spectra related to the cell area 

(calculated by a two-level HCA) and by subtracting the cluster 

spectrum associated to the background around the cell (mostly 

related to the buffer solution). Afterwards, all single-cell 

Raman fingerprints were used to calculate the average spectra 

(subpopulation fingerprint) (Fig. 3a-d) of myeloblasts, 

promyelocytes, abnormal promyelocytes and erythroblasts 

selected from different patients as described above. The 

standard deviation plotted along patient fingerprints (Fig. 3a-d) 

and the corresponding overall coefficient of variation (<5.5% 

for each mean spectrum) demonstrates a good reproducibility. 

However, the standard deviation of each subpopulation, plotted 

alone in Fig. S1a-d for clarity, shows that subtype fingerprints 

derived from promyelocytes and abnormal promyelocytes 

exhibit several bands with higher variance (especially between 

1500 and 1650 cm-1) than what observed in myeloblasts and 

erythroblasts. In general, myeloblasts exhibit intense variances 

mostly in correspondence of bands with high intensity, 

especially bands related to DNA (788 and 1375 cm-1) proteins 

and lipids (1002, 1450 and 1658 cm-1), reflecting differences in 

the nucleocytoplasmic ratio between different cells. 

Promyelocytes and abnormal promyelocytes show high 

variability in the region from 1500 and 1630 cm-1, principally 

related to MPO, most likely due to the heterogeneity of myeloid 

granules and of their contents, which is very variable especially 

during the myeloid maturation.
26

 For erythroblasts, the most 

intense variance is related to bands around 663 (porphyrin 

deformation) and 1609 (vinyl C=C stretch of deoxy-Hb) related 

to different amount of cytosolic haemoglobin.
27

  

By observing Fig. 3a-d is clear that myeloblasts, promyelocytes 

(normal and abnormal considered together) and erythroblasts, 

are easily distinguishable by some typical spectral features in 

the region between  1500-1650 cm-1 and between 650-800 cm-1. 

On the other hand, promyelocytes and abnormal promyelocytes 

are more similar and only some relevant differences are 

Fig. 3 Subpopulation fingerprints and PC loadings. Overall mean Raman spectra 

of: (a) myeloblasts from patients affected by “AML with minimal differentiation” 

(M0); (b) promyelocytes from patients affected by “AML with t(8;21) ; RUNX1-

RUNX1T1” (M2); (c) abnormal promyelocytes from patients affected by “APL 

with t(15;17); PML-RARA” (M3); (d) erythroblasts from a patient affected by 

“Acute erythroid leukaemia” (M6). (e-f) two principal components (PC1 and PC2, 

respectively), representing together the 89.35% of the total variance, derived by 

PCA of the entire dataset. Gray bars indicate the most relevant Raman bands. All 

spectra are shifted for clarity. 

distinguishable by simple observation: bands around 991, 1208 

and 1450 cm-1 (Fig. 3b,c).Principal component analysis (PCA) 

was used to reduce the number of spectral variables in order to 

determine similarities/differences between cells and to allowing 

easy and automatic differentiation of the selected 

subpopulations. The first two principal components (PC1 and 

PC2)(PC loadings in Fig. 3e,f), which together define the 

89.35% of the spectral variance between all spectra analyzed, 

were used to visually separate the cells in a bidimensional PCA 

scatter plot (Fig. 4). The first evidence is that, first, myeloblasts 

and erythroblasts are completely separated and distant from 

other cells; second, that they exhibit low dispersion indicating 

high homogeneity. Besides, promyelocytes and abnormal 

promyelocytes, even if distinguishable in two different groups 

by using more than two PCs (see linear discriminant analysis  
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Fig. 4 PCA score plot of PC1 and PC2. (black) Myeloblasts from patients affected 

by “AML with minimal differentiation” (M0); (pink) promyelocytes from patients 

affected by “AML with t(8;21) ; RUNX1-RUNX1T1” (M2); (blu) abnormal 

promyelocytes from patients affected by “APL with t(15;17); PML-RARA” (M3); 

(red) erythroblasts from a patient affected by “Acute erythroid leukaemia” (M6). 

Fig. 5. Comparison of averaged intensity of DNA and MPO peaks in different 

subpopulations. (a) Box plot of averaged DNA peak intensity (ratio between DNA 

peak around 788 cm-1 and a baseline peak around 855 cm-1) of myeloblasts from 

patients affected by “AML with minimal differentiation” (M0) (grey), 

promyelocytes from patients affected by “AML with t(8;21) ; RUNX1-RUNX1T1” 

(M2) (pink), abnormal promyelocytes from patients affected by “APL with 

t(15;17); PML-RARA” (M3) (blu), erythroblasts from a patient affected by “Acute 

erythroid leukaemia” (M6) (red). (b) box plot of the averaged MPO peak  

intensity (ratio between intensities of the MPO peak around 1579 cm -1 and the 

amide I peak at 1658 cm-1) of myeloblasts (grey), promyelocytes (pink) and 

abnormal promyelocytes (blu). Boxes are defined by median, 25th and 75th 

percentile; whisker are min/max values, little squares are the mean. (**) 

Calculated p-value <0.01. 

 

(LDA) below), are clustered in contiguous regions of this 

scatter plot, according to their similar condition of maturing 

cells in the granulocytic lineage, mostly characterized by an 

increased level of MPO and other granules-related proteins. 

Moreover, as mentioned above, the fact that these two groups 

are much more dispersed than myeloblasts and erythroblasts in 

the PCA scatter plot, confirm the relative high level of 

heterogeneity of these type of cells, mostly due to different 

level of dysplasia and maturation of each measured cell. The 

PC1 (loadings in Fig. 3e), which describe the 76.2% of variance 

of the entire dataset, mainly define differences between 

immature AML cells (myeloblasts) and the other three AML 

subtypes characterized by maturation in the myeloid lineage 

(myeloblast, promyelocytes and erythroblasts). All myeloblasts 

are associated with high positive PC1 scores (right side of the 

plot in Fig. 4), promyelocytes, abnormal promyelocytes and 

erythroblasts are associated with low or negative scores of PC1 

(left side of the plot in Fig. 4). On the other hand, PC2 

(representing the 11.6% of the spectral variance) do not 

describe significant variations related to myeloblasts (PC2 

scores near zero) but clearly discriminates erythroblasts (PC2 

positive scores, upper-left of the plot in Fig. 4) and 

promyelocytes and abnormal promyelocytes (PC2 negative 

scores, bottom-left of the plot in Fig. 4). Then, promyelocytes 

and abnormal promyelocytes are distinguishable in two groups 

on the basis of different values of both PC1 and PC2 scores but 

especially because of PC2 contribution.  

PCA, other than permitting to group together different cell 

types, helps in the comprehension of spectral features that 

differentiate these cells. The positive portion of the PC1-

loadings spectrum (Fig. 3e) is basically characterized by bands 

around 788 cm-1 (O-P-O symmetric stretch and nucleic acid 

bases vibrations) and 1091 cm-1 (O-P-O symmetric stretch), 

related to the DNA, by bands around 1004 cm-1 (phenylalanine) 

and 1660 cm-1 (amide I band), assigned to proteins, and the 

band around 1450 cm-1  (C-H deformation bands) generally 

assigned to proteins, lipids and carbohydrates. In summary, 

these features are in accordance with the immature stage of 

myeloblasts, characterized by a high nucleocytoplasmic ratio 

and by the absence of the expression of typical myeloid 

enzymes. The negative part of the PC1-loadings spectrum (Fig. 

3e) mostly represents bands that are more intense in 

promyelocytes, abnormal promyelocytes and erythroblasts if 

compared to myeloblasts: especially around 755 and 991 cm-1, 

and in regions between 1110-1250 cm-1, 1350-1440 cm-1 and 

1500-1630 cm-1, all related to maturation (see below). 

However, the majority of these bands are then splitted in the 

two directions (positive and negative scores) of the PC2 

loadings spectrum (Fig. 3f) and better describe spectral features 

responsible for the separation of erythroblasts (positive PC2 

scores) and promyelocytes/abnormal promyelocytes (negative 

PC2 scores). Positive PC2 (erythroblasts) loadings show intense 

bands around 663, 755, 979, 1249, 1397, 1540 and 1610 cm-1, 

related to haemoglobin.
25

 Negative PC2 loadings 

(promyelocytes/abnormal promyelocytes) are principally 

positioned around 734, 1107, 1208, 1348, 1579 cm-1 and are 

mostly related to MPO.
24

 Finally, as mentioned before, the 

most discriminant spectral features that differentiate 

promyelocytes and abnormal promyelocytes are the different 

intensities of the PC2 loadings spectra (Fig. 3f). Indeed, the 

PC2 loadings scores are generally more negative for abnormal 

promyelocytes cells thus indicating a higher contribution of 

MPO signal in these cells. The capability to quantitatively 

evaluate the relative abundance of indicative molecules using 

only Raman spectroscopy was also demonstrated by integrating 

the signals related to DNA and MPO bands (Fig. 5a). The mean 

normalized value of the DNA peak (788 cm-1) is significatively  
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Table 2 Confusion table resulted from LDA based on PCA. In parenthesis 

sensitivity and specificity, respectively. 

much higher (p < 0.01) in myeloblasts than in other cells. This 

is in agreement with the large portion of cell occupied by the 

nucleus in immature cells. The mean normalized intensity of 

peaks related to MPO (1579 cm-1) (Fig. 5b) significatively 

demonstrates differences between myeloblasts, promyelocytes 

and abnormal promyelocytes (erythroblasts were excluded 

because they do not express MPO).  

Despite the analysis of the first two PCs is very useful for a 

visual discrimination of different cells and to understand which 

spectral features are typical of different cells, PCA-LDA 

classification has been employed as cross-validated 

unsupervisioned method to evaluate the accuracy of the Raman-

based method. A PCA-LDA classification model was build 

considering the first 8 PCs (corresponding to the 97.7% of the 

variance of the dataset) as input variables and was then cross-

validated by leave-one-out cross validation. The PCA-LDA 

model obtained demonstrated that Raman spectroscopy was 

able to accurately classify the cells in the four distinct 

subpopulations as showed in Table 2. All myeloblasts and 

erythrocytes were correctly classified giving 100% accuracy, 

specificity and sensitivity. Similarly, promyelocytes (both 

normal and abnormal) were efficiently discriminated by 

myeloblasts and erythrocytes with 100% accuracy. Considering 

the differentiation between promyelocytes, one of 21 

promyelocytes was wrongly classified as abnormal 

promyelocytes, giving 95% of sensitivity, 95% of specificity 

and 95% of accuracy; besides, out of 13 abnormal 

promyelocytes, two were misclassified as promyelocytes, 

resulting in 85% of sensitivity, 98% of specificity and 95% of 

accuracy for this class. Considering the four distinct 

subpopulations, the PCA-LDA classification model 

demonstrated overall 98% accuracy thus proving that 

myeloblasts, promyelocytes, abnormal promyelocytes and 

erythroblasts are distinguishable by Raman spectroscopy.  

 

Discussion 

Here we reported the characterization of cells which are usually 

evaluated by haematopathologists for the diagnosis of AML 

and MDS by means of Raman microspectrometry. Recent 

studies already reported the Raman-based differentiation of 

haematopoietic cells (e.g. Ramoji et al. distinguished normal 

neutrophils from normal lymphocytes with 97% accuracy and 

also reported the spectra of other nucleated cells, namely, 

eosinophils and monocytes;
28

 Chan et al. characterized and 

distinguished T- and B-lymphocytes from patients affected by 

acute lymphoblastic leukaemia (ALL)
7
; Neugebauer et al. 

studied and separated cultured AML cells (OCI-AML) from 

other cancer cells in culture and normal cells from human 

blood)
9
 but, as far as we know, this is the first study of different 

typical AML/MDS cells from patients. 

A Raman-based imaging method was utilized as first approach. 

The results showed that from the dataset derived from each 

scanned cell is possible to extract a large quantity of 

information which can be potentially analyzed in several ways. 

We showed that the hierarchical clusterization of data (HCA) 

permitted to automatically discriminate and to automatically 

localize different cellular components o molecules fundamental 

for differentiating haematopoietic cells (e.g. nucleus, 

cytoplasm, MPO containing granules, HB). This is significant if 

the objectivity and reproducibility of using a Raman-based 

method is compared to the manual evaluation of BM/BM smear 

at the microscope, and this is even more important if we 

consider the difficulties to objectively quantify 

immunohistochemistry
29

. In addition, we showed that by 

selecting a known spectral feature related to a molecule or a 

cellular component of interest, is possible to obtain 

fluorescence-like false-colour multivariate images. Here we 

clearly showed, for example, the ease evaluation of MPO 

signals, which were totally absent in myeloblasts, more evident 

in granular myeloblasts and very strong and diffuse in abnormal 

promyelocytes. If compared to traditional immunohisto-

chemistry or immunofluorescence, this Raman-based approach, 

other than being a label-free method, permits to identify, 

localize and compare an indefinite number of molecules (or 

class of molecules) as much as are the number of specific 

features detectable by Raman spectroscopy. For this study we 

have chosen to start from getting a large amount of information 

by the acquisition of a very high number of spectra (4096) from 

each cell, thus resulting in a relatively long measurement time 

(around 6.8 minutes). We followed this strategy for obtaining 

an exhaustive characterization of the cells in prospective to 

further explore and develop faster and more feasible acquisition 

method like line mapping technique,  wild field Raman 

imaging,
30

 and two-dimensional fast Raman imaging 

(DuoScan).
31

 The data obtained in this study will be helpful for 

knowing both the cellular positions to be preferentially assessed 

in the case of line mapping technique, and the wavenumber 

range(s) that can be specifically monitored (e.g. bands related 

to MPO and DNA which change significatively between cells 

as demonstrated here).  

  Predicted   
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In order to test the possibility to maintain specificity even 

reducing the information derived by high-resolution Raman 

imaging, we virtually eliminated the spatial information by 

averaging all the imaging spectral data in a single Raman 

fingerprint for each cell. PCA was used for demonstrating that 

the single cell fingerprint is still highly specific and for 

describing which spectral features can discriminate the different 

cells studied here. Subsequently, a classification model based 

on LDA showed that the PCs obtained from Raman data are 

able to distinguish myeloblasts versus promyelocytes (normal 

or abnormal) versus erythroblasts with 100% accuracy. A study 

by the International Working Group on Morphology of 

Myelodysplastic Syndrome (IWGM-MDS), reported the results 

of the manual examination of the same BM sample (from a 

patient affected by “AML with t(8;21) ; RUNX1-RUNX1T1” 

(M2)) by different expert haematopathologists for evaluating 

the reproducibility in distinguishing myeloblasts, 

promyelocytes and mature cells. As result, the IWGM-MDS 

reported percent of agreement from 72% to 85% thus showing 

that is not obvious the manual designation of the correct cell 

type and the reproducibility of this evaluation, and confirming 

the potentialities of using Raman spectroscopy in this field. In 

addition, we tested the capability of Raman spectroscopy of 

distinguishing promyelocytes from abnormal promyelocyte. 

Normally, the assessment of these cells by visual examination 

may be arduous because morphological criteria are vague and 

difficult to be objective: abnormal features refer mainly to 

hypergranularity and irregular distribution of granules, 

commonly aggregated in cytoplasmic clumps. For this purpose, 

we selected two patients affected by “APL with t(15;17); PML-

RARA” (AML M3), with characteristic genetic abnormalities 

(i.e. the chromosomal translocation involving the gens PML 

and RARA) that induce the predominance of abnormal 

promyelocytes in BM and PB. Our Raman-based method 

succeeded in distinguishing normal and abnormal 

promyelocytes with an overall 95% of accuracy. This result is 

considerable especially taking in account that once acute 

promyelocytic leukaemia (AML M3) is suspected by the 

morphological evaluation, the disease should be managed as 

medical emergency with a specific treatment (all-trans retinoic 

acid) in the same day without waiting for genetic confirmation 

of the diagnosis.
32

  

Finally, this study confirms that the use of the 647.1 nm  

excitation light (or similar) is appropriate for studying 

haematopoietic cells. In fact, the pre-resonance effects observed 

measuring cells containing MPO or HB, due to their weak 

adsorption around 600-700 nm, resulted to be very useful for a 

facile detection of these molecules without precluding the 

detection of other important cellular Raman signals (e.g. DNA, 

protein, lipids).   

Conclusion 

The exceptional compatibility of Raman spectroscopy with a 

relatively simple and highly informative diagnostic procedure 

based on the direct label-free measurement of patient specimens 

is confirmed by this study which report the capacity of Raman 

spectroscopy to characterize and assess typical cells of 

haematopoietic tumours. Here we have shown, even though at a 

proof of concept level, that different BM cells which usually 

have to be manually recognized and counted for the diagnosis 

and classification of AML and MDS, can be objectively and 

accurately discriminated by Raman spectroscopy. In particular, 

the high accuracy (100%) of the method reported here for 

distinguishing blasts from other AML/MDS cells 

(promyelocytes and erythrocytes) is very promising considering 

that the blast count in BM and PB is still nowadays the first 

essential step of the diagnosis and classification of AML and 

MDS. These results suggests that further studies and 

technological improvement of the acquisition techniques could 

pave the road to the development of Raman-based method for 

the automatic, objective and high-throughput definition and 

count of BM/PB cells for the assessment of AML and MDS.  
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