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Rapid identification of goblet cells in unstained colon 
thin sections by means of quantum cascade laser-
based infrared microspectroscopy† 

N. Kröger-Lui,*a N. Gretz,b K. Haase,a B. Kränzlin,b S. Neudecker,b A. Pucci,a A. 
Regenscheit,a A. Schönhalsa and W. Petricha ‡ 

Changes in the volume covered by mucin-secreting goblet cell regions within colon thin 
sections may serve as a mean to differentiate between ulcerative colitis and infectious colitis. 
Here we show that the rapid, quantum cascade laser-based mid-infrared microspectroscopy 
might be able to contribute to the differential diagnosis of colitis ulcerosa, an inflammatory 
bowel disease. Infrared hyperspectral images of mouse colon thin sections are obtained within 
7.5 minutes per section with a pixel size of 3.65 x 3.65 µm² and a field of view of 2.8 x 3.1 
mm². The spectra are processed by training a random decision forest classifier on the basis of 
k-means clustering on one thin section. The trained algorithm was then applied to 5 further thin 
sections for a blinded validation and it was able to identify the goblet cells in all sections. The 
rapid identification of goblet cells within these unstained, paraffinized thin sections of colon 
tissue is enabled by the high content of glycopeptides within the goblet cells as revealed by the 
pronounced spectral signatures in the 7.6 µm – 8.6 µm and the 9.2 µm – 9.7 µm wavelength 
ranges of the electromagnetic spectrum. Even more so, the simple calculation of the ratio 
between the absorbance values at 9.29 µm and 8.47 µm provides the potential to further 
shorten the time for measurement and analysis of a thin section down to well below 1 minute. 
 

 

Introduction 

Among the autoimmune disorders of the digestive system is the 
inflammatory bowel disease (IBD). Ulcerative colitis and 
Crohn's disease constitute the most prevalent forms of 
idiopathic IBD. These chronic inflammatory disorders of the 
gastrointestinal tract are characterized by distinct modifications 
of clinical, pathological, endoscopic and radiological 
features.1,2 
 In practice, a common problem is the differentiation of an 
infectious colitis from an inflammatory bowel disease such as 
ulcerative colitis. While some severe cases of infectious colitis 
need to be treated with antibiotics, ulcerative colitis is usually 
treated in a different manner. Diagnosis of ulcerative colitis and 
the differentiation from other conditions is done by the 
interpretation of biopsies in combination with clinical, 
laboratory, radiographic and endoscopic observations. One of 
the histological characteristics to distinguish between these two 
vastly different forms of colitis might be achieved by 
comparing the amount of epithelial goblet cells in colonic 
mucosa: While ulcerative colitis will cause a depletion (or 
emptying) of goblet cells3, non-chronic intestinal infections 
usually do not affect the size of the histological area containing 

goblet cells. Further examples for changes in goblet cell 
population caused by intestinal infections include hyperplasia 
caused by helminth infections and the depletion in population 
caused by chronic infections.4-6 
 In those cases, in which gastrointestinal biopsies are 
performed, standard histopathology is performed on stained 
thin sections that originate from the biopsies. For general 
purposes, including the highlighting of goblet cells, 
haematoxylin and eosin (H&E) staining is used. As goblet cells 
produce mucins, Alcian blue and PAS staining can be used to 
highlight the goblet cell population. 
 Due to recent technical advances, the reagent-free 
assessment of tissue thin sections raises increased interest. The 
use of light sources of high spectral power density in the mid-
infrared spectral region, namely tunable quantum cascade lasers 
(QCLs)7, in combination with, potentially, low cost 
microbolometer arrays enables a rapid, reagent free analysis on 
the basis of mid-infrared microspectroscopy.8-11 Beyond the 
initial reagent-free, QCL-based investigations of biomedical 
samples at a single wavelength in vitro9,12 and in vivo13, Kröger 
et al. were recently able to show in a one-to-one comparison, 
that the reagent-free chemical analysis of unstained tissue 
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samples can be performed within 5 minutes (as compared to 
hours and days when using standard broadband FT-IR 
microspectroscopy) using a tunable QCL.11 While the 
traditional FT-IR techniques offer a good signal-to-noise ratio 
and a broad spectral range, extensive acquisition times are 
needed for FT-IR microspectroscopy, which can only be 
circumvented by costly equipment such as large, liquid nitrogen 
cooled MCT array detectors or synchrotron radiation. 
 In this work we demonstrate the rapid visualization of 
colonic mucosa via hyperspectral imaging using a QCL-based 
setup with a particular emphasis on identification of goblet cell 
rich regions in colonic epithelium. 
 
Materials and Methods 

Colon samples 

A colon sample was obtained from a healthy male C57BL/6 
mouse (age: 6 months). The sample was immersion fixed in 4% 
buffered formaldehyde for 24h. and embedded in paraffin with 
the help of an Leica TP1020. For this purpose, the sample was 
post-fixed, dehydrated in a series of graded alcohol and 
infiltrated with paraffin as follows: 4% buffered Formaldehyde 
(2 x 1,5 h), 70% Ethanol ( 1,5 h), 80% Ethanol (1,5 h), 96% 
Ethanol (1,5 h), 99% Ethanol (2 x 1,5 h), Xylol (2 x 1,5 h), 
Paraffin (3 x 1,5 h). The tissue sample was collected according 
to regulations of the German Animal Welfare Act (I13/10, 
Animal Welfare Office, Medical Faculty Mannheim of the 
University of Heidelberg). Two 8 µm thin sections were cut 
using a Leica RM 2165 microtome. The thin sections were 
placed on a barium fluoride substrate (Korth Kristalle GmbH, 
Germany). Each slice features three colon tissue sections. For 
comparison, multiple adjacent slices of 3 µm thickness were 
prepared from the vicinity of the 8 µm thick section and 
positioned on glass substrates for imaging with a standard 
microscope (Zeiss Axio Scope.A1, Carl Zeiss Microscopy 
GmbH, Germany). Haematoxylin and eosin (H&E) staining 
was performed on the third adjacent slice per layer while Alcian 
blue and PAS staining was performed on the first adjacent slice 
per layer to visualize goblet cells. 

Infrared microscopy 

QCL-based infrared chemical imaging was enabled by the 
home built setup described in. Ref. 10. Due to the particular 
interest in goblet cells, the available spectral region needed to 
include glycosylation bands which are typical markers for 
mucins produced by goblet cells. For human colonic tissue, 
glycosylation bands have been located at 1044, 1076 and 1125 
cm-1.14 According to literature, close similarities between the 
spectral features of mouse and human colonic tissue can be 
expected.15 Two quantum cascade lasers (Daylight Solutions 
Inc., USA) were successively tuned through the wavenumber 
regions between 1027-1087 cm-1 and 1167 1319 cm-1, 
corresponding to wavelength ranges of 9.74 µm - 9.20 µm and 
8.57 µm – 7.58 µm. For a sample measurement, each laser was 
tuned over the entire tuning range within 11.3 seconds for 20 

times. A 640 x 480 pixel microbolometer array (Infratec 
GmbH, Germany) was used to record the transmission through 
the sample at any given wavelength. The frame rate was 50 Hz. 
All measurements were performed with a projected pixel pitch 
in the sample plane of 3.65 µm. Two infrared lenses were used 
for a 4:1 magnification. The field of view was amounted to 
2.8x3.1 mm². Spatial resolution was determined to be 9.4±1.8 
µm (at 1065 cm-1). 
 Synchronization of the laser tuning time and the bolometer 
array’s frame rate resulted in an effective wavenumber 
resolution of 4 cm-1 which suffices for analyzing mid-infrared 
spectra of paraffin-embedded tissue thin sections.16,17 
 The total acquisition time for infrared microscope images 
over the full lasers’ tuning ranges was determined to be 7.5 
minutes for each of the six samples. A single background 
measurement was performed within additional 7.5 minutes once 
in order to serve as a reference for all of the 6 hyperspectral 
tissue images. Transmittance was calculated by normalizing the 
single channel spectrum of the sample to that of the blank 
substrate. Absorbance spectra were calculated as the negative 
natural logarithm of the transmission spectra for each pixel 
individually. No further pre-processing was performed apart 
from the background correction, spectral binning (average bin 
size 2.4 cm-1), water vapour correction, and a Gaussian 
smoothing filter with a size of 3 pixels. Spectral binning and 
background correction can be performed at the measurement’s 
runtime. Water vapour correction was performed after 
clustering and binning to adjust for the imperfect purging of the 
microscope setup with dried air. As humidity did not match 
perfectly between reference and sample measurements but was 
constant during the sample measurements, water vapour 
correction did not affect the clustering or classification results.  
 Because the lateral resolution is not limited by the pixel size 
for the measurements described here, a small Gaussian filter 
appears to be beneficial for the visual inspection of the images 
since it reduces pixilation effects. While further data pre-
processing - especially scattering correction - would greatly 
enhance the quality of the data, it is also very time consuming. 
Depending on the application, the excessive amount of 
computation time needed might not be justified. 

Data analysis 

When analyzing mid-infrared spectral image information, there 
is the danger of so-called overfitting (see e.g. ref. 16). In order 
to avoid overfitting we use a four-step approach: 
 

1.) Random selection of one out of the six thin sections, 
henceforth referred to as “training sample” 

2.) Unsupervised classification of the sample data by using 
the information from the training sample only. k-means 
clustering was performed on the training dataset. A total 
of 10 clusters were chosen, 3 of which were attributed to 
paraffin spectra (dashed lines in Fig. 2 (d)) or blank 
substrate and 7 were attributed to tissue (see, for 
example, Ref. 18). A total of 323300 single spectra were 
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Table 1 Overview of the color assignments. The ratio of absorbance at 1076 cm-1 over 1181 cm-1 and the absorbance integral from 1027 cm-1 to 1087 cm-1 was 
calculated for each pixel in the training set for the random decision forest classifier. For each pixel class defined by the initial k-means clustering, the median 
value of the results was calculated. The difference of median to the 5%and 95% quantile is given by -Δq0.05,+Δq0.95. 

 

Color Biomedical association 

Absorbance ratio:  
1076 cm-1/1181 cm-1 

[arb. units] 

Absorbance integral:  
1027 cm-1 to 1087 cm-1 

[arb. units] 
Median -Δq0.05,+Δq0.95 

  Green Mucin / goblet cells 2.97 -1.45,+7.24 26.07 -6.10,+5.95 
  Light red 

Lamina muscularis, Lamina propria, 
colon enterocytes 

1.08 -0.45,+0.82 12.48 -3.22,+4.39 

  Dark red Lamina propria 1.29 -0.58,+0.70 19.25 -5.06,+4.60 
  Light blue Colon epithelial cells 1.43 -0.58,+0.82 26.03 -5.15,+7.05 
  Teal 

Colon epithelial cells, epithelium in the 
vicinity of goblet cells 

1.10 -0.41,+0.56 31.24 -8.11,+9.46 

  Yellow Mucus layer in lumen, interfaces 1.08 -0.30,+0.41 61.16 -14.23,+32.53 
  Orange Mucus layer in the lumen, interfaces, 1.04 -0.33,+0.47 42.41 -10.87,+13.44 

Lamina propria 

There appears to be an increase of pixel of the dark red class 
below the enterocytes. A small amount of pixels in the lamina 
muscularis was also assigned to the dark red cluster, which 
could indicate connective tissue surrounding vessels. Dark red 
regions can also be found within mucosal folds. These 
observations indicate that the dark red class is connected to the 
lamina propria.  

Epithelium 

The most prominent class in epithelium is light blue. However, 
a considerable amount of pixels are assigned to teal class. The 
location of teal pixels appears to correlate with the location of 
goblet cells. This could indicate an influence of scattering 
interferences to spectra in the teal labelled regions. Also, colour 
distribution might resemble the location of crypt lumina and 
connective tissue. Surface epithelium is largely composed of 
light red and dark red clusters, possibly caused by higher 
concentration of enterocytes. 

Further findings 

 The yellow and orange pixel classes appear to be located at 
intersections of the epithelial layer to the lumen. Also, some 
regions of the lamina propria and mucus inside the lumen are 
labelled yellow and orange respectively. Contributions from 
scattering are enhanced by refractive index mismatching, which 
occurs at these locations. Refractive index mismatching is also 
likely in the central lumen of crypts, possibly affecting spectra 
of surrounding pixels, which are mostly assigned to green and 
teal. 
 In order to avoid strong over-segmentation before training 
of the classifier, the number of clusters was chosen to be ten. 
By doing so, a link between most pixel classes to tissue features 
was easily established. However, a larger amount of classes 
may be beneficial to limit the effect of scattering interferences 
on the analysis. The appearance of the light red (lamina 
muscularis) class in paraffin background could be reduced, as 
well as the amount of yellow and orange pixels (interferences) 
in the central lumen. A multi-staged cluster analysis might be 

used to get more insight, without introducing a confusing 
amount of colors to the final representation. 
 Next to the good qualitative agreement among the stained 
images and the infrared label image, further analysis reveals 
deviations in the detected distribution of goblet cell rich regions 
(Fig. 3) between the Alcian blue and PAS stained colon slice 
and the label image of the adjacent slice. The lack of a solid 
image registration prevents a more quantitative comparison 
between hyperspectral imaging and standard staining: We 
believe that these differences are mainly due to comparing non-
identical thin sections, artefacts caused by microtome cutting as 
well as the significant difference in slice thickness (3 µm 
compared to 8 µm). In turn, the correlation between the label 
images and the visible images of the identical, unstained slices 
is found to be much better. In passing we would like to note 
that the complexity of the clustering and classification approach 
may compromise sensitivity. A simplified and potentially faster 
strategy is provided by a dual-wavelength measurement and the 
distribution of mucin concentration may be visualized in gray 
scale images such as Fig. 5 (a). 
 The acquisition time for a hyperspectral image of a sample 
was 7.5 minutes and covered the full spectral range of 1027-
1087 cm-1 and 1167-1319 cm-1 at a pixel size of 3.65 x 3.65 
µm² and a field of view of 2.8 x 3.1 mm². On the one hand, this 
is more time consuming than a standard H&E staining. On the 
other hand, H&E staining requires the tissue sample to be 
deparaffinized, whereas the IR spectroscopy works best in 
paraffinized tissue. Deparaffinizing a thin section usually takes 
35 minutes. 
 The acquisition time for QCL-based hyperspectral imaging 
may be even further reduced by limiting the tuning ranges. 
Measurements at merely two wavenumbers (1076 cm-1 and 
1181 cm-1, see Table 1) could, for example, already suffice for 
high contrast imaging of goblet cell rich regions in epithelium, 
as shown in Fig. 5 (a). 
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Mucin density is rapidly visualized in unstained, paraffin-embedded mouse colon tissue by means of mid-
infrared spectroscopy using quantum cascade lasers.  
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