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The baseline correction methods based on penalized least squares are successfully applied to various spectral analysis. The
methods change the weights iteratively by estimating a baseline. If a signal is below a previously fitted baseline, large weight
is given. On the other hand, no weight or small weight is given when a signal is above a fitted baseline as it could be assumed
to be a part of peak. As noise is distributed above the baseline as well as below the baseline, however, it is desirable to give the
same or similar weights in either case. For the purpose, we propose a new weighting scheme based on the generalized logistic
fuction. The proposed method estimates the noise level iteratively and adjusts the weights correspondingly. According to the
experimental results with simulated spectra and measured Raman spectra, the proposed method outperforms the existing methods
for baseline correction and peak height estimation.

1 Introduction

Spectroscopy such as infrared spectroscopy and Raman spec-
troscopy is being increasingly used to measure, both directly
and indirectly, a large number of chemical and physical prop-
erties of materials. Spectral interferences, including varying
backgrounds and noise, lead to problems with instrument cal-
ibration and quantization of spectral information. According
to the previous works, one of the most significant sources of
spectral variation is a curved background mainly caused by
fluoresence. Hence, background elimination or baseline cor-
rection for spectral data has been paid much attention and sev-
eral methods have been proposed1–4.

The diverse sources of background and additive noise make
it hard to correct baseline for experimental spectral data. Fur-
thermore as a baseline is usually varying from sample to sam-
ple, the situation is much worse. Wavelet transform was intro-
duced to eliminate the varying background5–7. As the method
relies on the filtering capabilities of wavelet transform, a base-
line should be well separated in the transform domain. But
real world signals often collide with this hypothesis. More-
over, it is rather complex to implement due to wavelet trans-
form or related optimization.

A method without special assumption was proposed for
baseline curve fitting8. It is based on smoothing and inter-
polation technique. While it is simple to implement and give
some satisfactory results for various kinds of Raman spectra,
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it produces poor results in case a spectrum consists of peaks
with various widths because the method uses fixed smoothing
span to interpolate background curve. It could be overcome
by adjusting smoothing span adaptively, but there is no reli-
able method available currently.

By using a user defined subset of data which only belongs
to background, a least squares polynomial fitting method was
proposed without incorporating any constraints9. However,
selecting the right data is not always easy and could be bur-
densome because one should handle every spectrum individ-
ually. To alleviate the burden, a method minimizing a non-
quadratic cost function was proposed10. It relies on the trun-
cated quadratic cost function’s capability to reduce the effect
of high peak of analyte. The method effectively reduces the
influence of high peak and produces satisfactory results. How-
ever it is not easy to properly set the threshold of a truncated
quadratic function which is closely related to the performance.
Also the method relies on an iterative algorithm to solve a non-
quadratic minimization problem, which does not guarantee the
global minimum.

Polynomial fitting methods were also proposed11,12. The
methods fit a baseline with a polynomial by cutting out sig-
nal peaks iteratively or by linear constraints. Although the
methods adjust the threshold to cut the peaks automatically or
estimate a baseline by optimization with linear programming,
they rely on the smoothness of a polynomial of fixed order.
Thus if the order of a polynomial is not set properly, the re-
sults are not guaranteed. This means that a user inspect every
spectrum, which restricts automatic baseline correction.

Among commercial spectrum analysis tools, OPUS and
OriginPro are the most widely used packages. They estimate
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the baseline by setting the baseline points manually or auto-
matically and interpolating them with straight line or polyno-
mial. For automatic baseline correction by OPUS, the spec-
trum is divided into n ranges of equal size. The number of
ranges is predefined by user. The minimum intensity of each
range is determined first. Then connecting the minima with
straight lines creates the baseline. Starting from below, a rub-
ber band is stretched over this curve. The rubber band is the
baseline. The baseline points that do not lie on the rubber
band are discarded13. It creates the smoothed baseline not ex-
ceeding the preset baseline points. However it suffers from
too loose baseline if the number of ranges are not set prop-
erly. Also it creates boosted baseline especially when there is
relatively high random noise as the method relies only on the
minimum intensity in the given range

The methods based on penelized least squares were pro-
posed to avoid the peak detection and other user interven-
tion14,15. The methods combine least squares smoothing to-
gether with a penalty on non-smooth behavior of an estimated
baseline16. To prevent an estimated baseline from following
peaks, a weighting function is incorporated together with a
penalty. According to the experimental results, they gave sat-
isfactory results without user intervention.

The methods change weights iteratively by estimating a
baseline. If a signal is below a previously fitted baseline, large
weight is given. On the other hand, no weight or small weight
is given when a signal is above a fitted baseline. However, it
is desirable to give equal or similar weight to either case as
additive noise is equally distributed along a baseline. To this
end, a new weighting scheme based on the generalized logistic
funtion is proposed in this paper.

In the following section, we give a brief review of the pre-
vious penalized least squares methods. Then introduce a new
weighting scheme and discuss some aspects of the proposed
method. The experiments with simulated spectra are given to
show the effectiveness of the proposed method, which is fol-
lowed by experimental results with real Raman spectra.

2 The previous methods: AsLS and airPLS

All signals obtained as instrumental response of analytical ap-
paratus are affected by noise. The noise degrades the accu-
racy and precision of analysis, and it also reduces the detection
limit of instrumental technique. So smoothing is indispensible
for spectral analysis.

Among the various smoothing methods, regularized least
squares smoothing method is popularly used. Let y be a signal
of length N, assumed to be sampled at equal intervals. Let z
be a smoothed signal to be found. A smoothed signal should
follow the trend of y while keeping its smoothness. Assuming
y and z are column vectors, z can be found by minimizing the
following regularized least squares function.

S(z) = (y− z)T (y− z)+λzT DT Dz, (1)

where D is a difference matrix. Assuming the second order
difference matrix, D is expressed as

D =


1 −2 1 0 · · · 0 0 0
0 1 −2 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 · · · · · · 1 −2 1

 . (2)

The first term in Eq. 1 expresses the fitness to the data while
the second term expresses the smoothness of z. The paremeter
λ adjusts the balance between the two terms. In order to cor-
rect a baseline using the above smoothing method, a weight
vector w is introduced. Let W be a diagonal matrix with w on
its diagonal. Equation 1 changes to the following penalized
least squares function.

S(z) = (y− z)T W(y− z)+λzT DT Dz. (3)

By finding the vector of partial derivatives and setting it to
zero, i.e., ∂S/∂zT = 0, the solution of minimization problems
of Eq. 3 is given as follows.

∂S
∂zT =−2W(y− z)+2λDT Dz = 0. (4)

z = (W+λDT D)−1Wy. (5)

If peak regions are known beforehand, wi can be set to zero
in those regions and set to one outside of the regions. But
the existence of a baseline and noise makes it difficult to find
peak regions. Eilers and Boelens proposed AsLS (Asymmet-
ric Least Squares) method which do not require peak find-
ing14,16. In the method, a new parameter p is introduced to
set weights asymmetically. The method assigns weights as
follows.

wi =

{
p, yi > zi

1− p, yi ≤ zi
(6)

The asymmetry parameter p is recommended to set between
0.001 and 0.1. Given λ and p, a smoothed baseline is updated
iteratively. Let the first solution of Eq. 5 be given as z with w
initialized to have ones. Get a new w according to Eq. 6. Then
solve Eq. 5 again to get an updated baseline z. The iteration
continues until the weight vector doesn’t change anymore or
it reaches the predefined number, e.g., 5 or 10.

According to Zhang et al., the method has some drawbacks.
Two parameters, λ and p, need to be optimized to get a sat-
isfactory result. More importantly asymmetry parameters in
Eq. 6 are all the same in pure baseline region. But the weights
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in pure baseline region are to be set according to the differ-
ences between the previously fitted baseline and the original
signals. In this respect, airPLS (adaptive iteratvely reweighted
Penalized Least Squares) method was proposed15.

The adaptive iteratively reweighted procedure is similar to
AsLS method, but uses a diffent way to assign weights and
add a penalty to control the smoothness of a fitted baseline. In
the method, the weight vector w is obtained adaptively using
an iterative method. The w of each iteration step t is obtained
with the following expresssion.

wi =

{
0, yi ≥ zi

et(yi−zi)/|d|, yi < zi
(7)

where a vector d consists of negative elements of the subtrac-
tion, y− z.

The fitted vector z in the previous (t−1) iteration is a candi-
date of the baseline. If a signal yi is greater than the candidate
of the baseline, i.e., zi, it can be regarded as a part of peak. So
its weight is set to zero. Otherwise the weight is adjusted ac-
cording to Eq. 7. The iteration stops either with the maximum
iteration count or when the following termination condition is
satisfied.

|d|< 0.001×|y|. (8)

3 The proposed method: arPLS

AsLS and airPLS method give a boosted baseline corrected
spectrum when a spectrum is corrupted with additive noise.
That is a natural consequence because weights are set to zero
or near zero where signals are above a fitted baseline. As sig-
nals below a fitted baseline get much more weights, a baseline
is reestimated downward to reduce S(z). As a result, the final
baseline is underestimated in no peak region and the height
of peaks might be overestimated by the effect. Even though
exponential weighting is used as Eq. 7 in airPLS. The weights
are very close to one or slightly greater than one when yi < zi.
It is virtually the same as assigning just one to the weights.

We adopt a partially balanced weighting scheme to solve
this issue. In baseline region without peaks, noise could be
assumed to be equally populated below and above a baseline.
Thus we assign similar weights to the signals in that region not
to underestimate the baseline. But if a signal is much greater
than the baseline, weight is set to zero as it is a part of peak.
To meet these requirements, we choose the following partially
balanced but asymmetric weights.

wi =

{
logistic(yi − zi,md− ,σd−), yi ≥ zi

1, yi ≤ zi
(9)

where md− , σd− are the mean and the standard deviation of
d−. Given d = y− z, d− is a part of d that is only defined on

0
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Fig. 1 Generalized logistic function of the proposed method.

the region where yi < zi. The logistic function in the above
equation is a generalized logistic function, which is specified
as follows.

logistic(d,m,σ) =
1

1+ e2(d−(−m+2σ))/σ . (10)

Given m and σ , the logistic function is depicted in Fig. 1.
Considering that it is practically 1 when d < 0, i.e., yi < zi as
you see in the figure, only one logistic function in Eq. 10 is
enough instead of two terms in Eq. 9 We express the weights
in that way only to emphasize its asymmetric property.

The logistic fuction gives nearly the same weight to the sig-
nal below or above a baseline when the difference between
the signal and the baseline is smaller than the estimated noise
mean. It gradually reduces the weight as the level of signal in-
creases. If a signal is in the 3σ from the estimated noise mean
which covers 99.7% of noise on Gaussian assumption, small
weight is still given. Finally, zero weight is given when a sig-
nal is much higher than the baseline as it can be regarded as
a part of peak. In the extreme case that the standard deviation
is nearly zero, it becomes a shifted and reversed unit step fuc-
tion which smoothes and estimates a baseline while leaving
the peak larger than noise mean untouched.

Modifications of Eq. 10 would be possible. As the essence
of the proposed method is to give a proper weight to a sig-
nal above a baseline as well as a signal below the baseline in
pure baseline region, one could push the curve of the logistic
function to the left or to the right direction so long as it gives
a meaningful weight to a signal above the baseline. Also
squeezing the transient region would be possible. For exam-
ple, one can narrow the region arbitrarily to get the result of
the extreme case.

The smoothed baseline can be obtained by using the same
iterative procedure as AsLS and airPLS method. Assume that
the first baseline z is computed with w initialized to have ones.
Get a new w according to Eq. 9. Then solve Eq. 5 again to get

1–8 | 3

Page 3 of 8 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



Data: measued spectrum y, smoothness parameter λ ,
termination condition ratio

Result: smoothed baseline z

H = λDT D with D in Eq. 2 ;
w1 = [1,1, · · · ,1] ;

for t = 1,2, · · · do
make a diagonal matrix W with Wi,i = wt

i ;
z = (W+H)−1Wy ;
d = y− z ;
make d− only with di < 0 ;
m = mean of d− ;
s = standard deviation of d− ;
for i = 1,2, · · · ,N do

wt+1
i = 1/(1+ e2(di−(−m+2s))/s);

end
until |wt −wt+1|/|wt |< ratio ;

Algorithm: arPLS algorithm

an updated baseline z. The iteration continues until weights
don’t change anymore or weight changes are minimal.

Let y be a measured spectrum expressed as a column vec-
tor with N elements. Given the smoothness parameter λ , the
proposed arPLS (asymmetrically reweighted penalized least
squares) method can be summarized as Algorithm.

Implementation in Matlab is simple, as the following code
shows. To implement arPLS method in other programming
languages, one can refer the books about linear equations with
symmetric pentadiagonal matrix17,18. As the matrix, W+H,
is sparse and symmetric band diagonal, an efficient algorithm
can be easily implemented to solve Eq. 5.

function z = baseline(y, lambda, ratio)
% Estimate baseline with arPLS in Matlab
N = length(y);
D = diff(speye(N), 2);
H = lambda*D’*D;
w = ones(N,1);
while true

W = spdiags(w, 0, N, N);
% Cholesky decomposition
C = chol(W + H);
z = C \ ( C’\(w.*y) );
d = y-z;
% make d-, and get wˆt with m and s
dn = d(d<0);
m = mean(dn);
s = std(dn);
wt = 1./ ( 1 + exp( 2* (d-(2*s-m))/s ) );
% check exit condition and backup
if norm(w-wt)/norm(w) < ratio, break; end
w=wt;

end

0 100 200 300 400 500 600 700 800 900 1000

0

50

100

150

200

Fig. 2 Simulated spectrum without baseline and noise.

4 Experiments

Three simulated spectral data and three kinds of experimental
Raman spectra were used to evaluate the performance of the
proposed method. All the experiments were carried out with
the Matlab software package (MathWorks, MA, USA)19.

4.1 Simulated data

Three simulation data were generated using well known ana-
lytic functions. They are intended to imitate real spectral data
that contain a varying baseline, analytical signals, and random
noise. In Fig. 2, the simulated pure signal is shown which
contains three Gaussian peaks that is given as follows.

s(i) = 100e−( i−300
15 )2

+200e−( i−750
30 )2

+100e−( i−800
15 )2

, (11)

where i = 1,2, · · · ,1000. The heights of three peaks are 100,
200, 113.7 from left to right.

Noise, n, was modeled using a uniform random number
generator and a third order polynominal function was used to
simulate a curved baseline with a concave and convex region.
Narrow Gaussian peaks were treated as the spectra of interest.
The simulated spectra were generated by adding a pure signal,
a baseline, and random noise.

Two simulated data with a curved baseline are shown in
Fig. 3. The SNR (Signal to Noise Ratio) of low noise spec-
trum was set to 17.7dB and that of high noise spectrum was
set to 31.7dB. The SNR with respect to energy was measured
without baseline according to the following equation.

SNR = 10log10(Es/En) (12)

Maximum iteration number was set to 50 for all three meth-
ods. For early termination, termination ratio was set to 10−6

for AsLS and arPLS while Eq. 8 was used for airPLS.
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Fig. 3 Simulated spectra in high and low noise.

log10λ
2 3 4 5 6 7 8

AsLS 23.4 8.63 3.77 6.25 15.4 21.1 22.1
airPLS 30.4 26.3 5.30 2.92 5.21 17.8 22.4
arPLS 39.5 23.6 1.93 1.22 1.19 2.98 6.01

Table 1 RMSE of baseline corrected spectra in low noise.

The proposed method, arPLS, was compared with AsLS
and airPLS method. Before the experiments, the smoothness
parameter, λ , was tuned to get a good estimation of the base-
line. If λ is too large, a fitted baseline would not catch the
curved baseline. On the otherhand, a fitted baseline would
follow peaks if λ is too small.

All three methods would show a little different performance
according to various λ . So experiments with various λ were
carried out to see the behaviour of the methods and find the
optimum λ . As we know the exact spectrum given as Eq. 12
for the simulated spectra, we can compare the performance
of three methods using RMSE (root mean square error). As-
suming that the baseline corrected spectrum is s with given λ ,
RMSE(λ ) is defined as

RMSE(λ ) =

√
N

∑
i=1

(yi − si)2/N. (13)

In order to find the optimal value, λ is changed from 102 to
108 as λ is recommended to vary in log scale16. In Table 1 and
Table 2, we show the RMSEs of the baseline corrected spectra
obtained from three methods.

The least RMSEs of each method in low noise are found at
λ = 104,105,106 while they are found at λ = 104,104,106 in
high noise. They are displayed in Fig. 4 for easy comparison.
The RMSE of arPLS is about half of the other methods, which
means that the baselines are more accurately fitted by arPLS.

log10λ
2 3 4 5 6 7 8

AsLS 23.9 12.3 11.2 12.6 22.4 27.9 29.0
airPLS 31.7 24.6 10.5 10.9 11.6 24.2 29.7
arPLS 44.5 39.65 23.1 6.10 5.74 5.86 7.24

Table 2 RMSE of baseline corrected spectra in high noise.

0

2

4

6

8

10

12

Low Noise High Noise

AsLS

AsLS

airPLS

airPLS

arPLS

arPLS

Fig. 4 RMSE of baseline corrected spectra with optimal λ .

Let’s see the baseline corrected spectra in detail. In Fig. 5
and Fig. 6, all the baseline corrected spectra by three methods
are shown. As you see in the figures, the baselines are well
estimated and removed by arPLS. Espectially in non-signal
region, the other two methods show some biases caused by
the underestimated baseline.

There are also some biases in estimating the height of peaks.
In the low noise spectrum, it is observed that airPLS under-
estimates the height of the second peak more than the others
while AsLS and airPLS overestimate the height of the first and

0 100 200 300 400 500 600 700 800 900 1000
0

40

80

120

160

200

 

 

AsLS
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airPLS

arPLS

AsLS

AsLS airPLSAsLS
airPLS

airPLS
AsLS

Fig. 5 Baseline corrected spectra in low noise.
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Fig. 6 Baseline corrected spectra in high noise.
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Fig. 7 RMSE of arPLS for various λ .

the second peaks more than arPLS in the high noise spectrum.
That is the effect of additive noise.

In addition to them, there is one thing more to mention. As
you see in the Tables, the optimal λ is slightly different be-
tween the methods. As the parameter should be set manually
for practical application, it would be better if baseline correc-
tion performance is not too sensitive to λ .

In Fig. 7, the RMSE of arPLS for various λ is displayed.
While the lowest RMSE is obtained when λ = 105 in the low
noise spectrum, similar performance can be obtained when
104 ≤ λ ≤ 106.5. Even up to 107, the RMSE of arPLS is com-
parable to the best case of the other methods. In the high
noise spectrum, arPLS method keeps the low RMSE when
104.2 ≤ λ ≤ 108.2. This means that arPLS is relatively robust
to the choice of λ , which is desirable for practical application.

Another experiments were carried out with a simulated
spectrum with a linear baseline. As linear baseline correc-
tion is rather simple, a spectrum with a strong baseline in
high noise is only considered here. The simulated spectrum
is shown in Fig. 8. Baseline corrected spectra obtained using

0 100 200 300 400 500 600 700 800 900 1000
500

1000

1500

2000

2500

Fig. 8 Simulated spectrum with linear baseline.
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Fig. 9 Baseline corrected spectra with linear baseline.

AsLS, airPLS, and arPSL are given in Fig. 9. The processing
results are very similar to those in Fig. 6. There are some bias
in the non-signal region and the height of peaks is overesti-
mated by AsLS and airPLS. The measured RMSE of arPLS
was 6.1 while those were 10.9, 10.5 for AsLS, airPLS respec-
tively.

These consistent results confirm that arPLS has the better
capabilities in eliminating a baseline in the non-signal region
and estimating the height of peaks. So we hope that the arPLS
could be a promising alternative to the existing methods.

4.2 Experimental Raman spectrum

The Raman spectra of three materials were used for the ex-
periments. They are 26DNT (2,6-dinitrotolune), 35DNT (3,5-
dinitrotolune), and 2ADNT (2-amino-4,6-dinitrotolune). In
measuring Raman spectra, the laser power was kept lower
than 1.0 mW to avoid laser heating20. The Rayleigh line was
removed from the collected Raman scattering using a holo-
graphic notch filter located in the collection path. Spectra were
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Fig. 10 Baseline corrected 26DNT Raman spectra.

collected via a static scan in the region of 200-3500 cm−1. The
collection time was 5 seconds and a 50× objective lens was
used to focus the laser.

A single 26DNT spectrum was tested and shown in Fig. 10
together with the baseline corrected spectra. All the three
methods were used to obtain baseline corrected spectra. The
figure shows that AsLS and airPLS methods underestimate the
baseline especially in right half of non-signal region, which is
also observed with the simulated spectra. This might leads to
overestimation of the height of peaks in the region. But we
can’t confirm that as the exact heights of those peaks are not
given for the experimental Raman spectrum.

The other two kinds of spectra were processed to show the
capability of the proposed method. They are measured in
highly flurescent baselines. The 35DNT is chosen as an exam-
ple of a spectrum with linear background in low noise while
2ADNT is chosen as an example of a spectrum with highly
curved background in high noise. Two sets of 50 spectra are
shown in Fig. 11 and Fig. 13. Even though they were mea-
sured with the same spectroscopy, they showed varying differ-
ent baseline according to the samples in issue.

The baseline corrected spectra obtained using arPLS
method are shown overlapped in Fig. 12 and Fig. 14. As you
see in the figures, all the baseline corrected spectra from the
same material looks quite similar, which is natural and desir-
able. So we could say that all the baselines of two sets are
successfully removed by our method and then they can be an-
alyzed easily.

Finally, it is worth to note that the smoothness parameter λ
is set to 105 throughout all the experiments with the experi-
mental Raman spectra for arPLS method. As the baseline cor-
rected spectra are acceptible as you see in the figures with that
value obtained from simulation data, we could convince that
arPLS is robust to the variation of λ as mentioned previously.
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Fig. 11 Measured 35DNT Raman spectra.
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Fig. 12 Baseline corrected 35DNT Raman spectra.

5 Conclusions

The proposed arPLS method provides a simple but effective
algorithm for estimating baselines in analytical chemistry. It
gives fast and accurate baseline corrected signals for both sim-
ulated and real spectra. The experimental results with the sim-
ulated spectra confirm that arPLS method yields better results
than AsLS and airPLS method in baseline correction and peak
height estimation. Experiments with Raman spectra also show
that arPLS method could handle various kinds of baselines in
real spectra.

We are currently investigating the method to adjust the
smoothness parameter automatically. Except for it, arPLS
method requires no prior knowledge about the sample com-
position, no peak detection, and no mathematical assumption
of background noise distribution. So it could be easily applied
to various spectra. We hope that the proposed method would
be a promising alternative to the existing baseline correction
methods and widely used by many researchers.
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Fig. 13 Measured 2ADNT Raman spectra.
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Fig. 14 Baseline corrected 2ADNT Raman spectra.
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