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Multiple metabolomics of uropathogenic E. coli reveal different information content in 

terms of metabolic potential compared to virulence factors. 
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Abstract 

No single analytical method can cover the whole metabolome and the choice of which 

platform to use may inadvertently introduce chemical selectivity.  In order to investigate this 

we analysed a collection of uropathogenic Escherichia coli. The selected strains had 

previously undergone extensive characterisation using classical microbiological methods for 

a variety of metabolic tests and virulence factors.  These bacteria were analysed using Fourier 

transform infrared (FT-IR) spectroscopy; gas chromatography mass spectrometry (GC-MS) 

after derivatisation of polar non-volatile analytes; as well as reversed-phase liquid 

chromatography mass spectrometry in both positive (LC-MS(+)) and negative (LC-MS(-)) 

electrospray ionisation modes.  A comparison of the discriminatory ability of these four 

methods with the metabolic test and virulence factors was made using Procrustes 

transformations to ascertain which methods produce congruent results.  We found that FT-IR 

and LC-MS(-), but not LC-MS(+), were comparable with each other and gave highly similar 

clustering compared with the virulence factors tests. By contrast, FT-IR and LC-MS(-) were 

not comparable to the metabolic tests, and we found that the GC-MS profiles were 

significantly more congruent with the metabolic tests than the virulence determinants.  We 

conclude that metabolomics investigations may be biased to the analytical platform that is 

used and reflects the chemistry employed by the methods. We therefore consider that 

multiple platforms should be employed where possible and that the analyst should consider 

that there is a danger of false correlations between the analytical data and the biological 

characteristics of interest if the full metabolome has not been measured. 
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1. Introduction  

Metabolomics aims to categorise the small molecular weight complement of cells, tissue and 

biofluids 
1-3

, and although arguably an ‘ancient’ science 
4
 a plethora of analytical platforms, 

mainly based on mass spectrometry (MS) and various molecular separation techniques 

including gas chromatography (GC) and liquid chromatography (LC), have made it possible 

to detect small molecules in biological matrices.
5
 

In practice, the detection of the full metabolome is still unachievable by a single analytical 

tool due to the chemical complexity of metabolites, great variations in their concentration 

levels and various other reasons such as analyte lability.
6
 Therefore, in addition to MS, other 

detection techniques such as NMR spectroscopy and vibrational spectroscopies (viz. FT-IR 

and Raman) are used as complementary analytical approaches. In particular, FT-IR 

spectroscopy is considered to be a low cost, high-throughput technique making it a first 

option for preliminary experiments to give a preview of the experiment direction before more 

advanced tools are employed.
7
 

The question arises as to exactly how complementary these methods are. For example, in FT-

IR spectroscopy sample extraction is usually not performed and the method provides 

chemical information at the level of molecular vibrations, not isolated metabolites per se. By 

contrast, MS-based studies are performed usually after extraction and usually after GC or LC. 

All of these processes introduce selectivity into the analysis and hence potential analytical 

bias. If we consider GC-MS using methanol extraction followed by a two-stage 

methoxamination and silyation 
1, 8

, one is generally selecting metabolites from central 

metabolism such as sugars, sugar phosphates, amino acids and small fatty acids etc. For LC-

MS, using reversed-phase chromatography one targets more lipophilic species and another 

choice made is the polarity of the ion source in terms of positive or negative electrospray 

ionisation. It is currently unlikely that people have the resources to include all possible 

analytical approaches and therefore choices are made on which are the most appropriate or 

accessible to select.  

Therefore in this study, we used a range of metabolomics platforms on a microbiologically 

characterised set of uropathogenic Escherichia coli (UPEC) isolates that all belong to the 

same sequence type (ST131), an important and globally disseminated clone.
9
 Due to the 

platforms available in our laboratory, we selected FT-IR spectroscopy, GC-MS of polar non-
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volatile analytes, and reversed-phase LC-MS in both positive and negative ESI modes. Both 

GC-MS and LC-MS analysis were performed on 80% methanol (80:20 methanol-water 

(vol/vol))  extracts. Once the data were collected, we used a series of chemometric methods 

to compare the differentiation ability of all four methods. Moreover, these were compared 

with genotypic and phenotypic characteristics that are measured during investigation of the 

pathogenic potential of UPEC and included data for a panel of metabolic tests and virulence 

factor carriage.  

 

2. Experimental 

2.1 General Chemicals  

Unless otherwise stated, all chemicals were supplied by Fisher Scientific (Fisher Scientific 

Ltd., Loughborough, UK), and all solvents and acids were obtained from Sigma Aldrich 

(Sigma Aldrich, Dorset, UK). 

2.2 Microorganisms 

The 11 uropathogenic Escherichia coli (UPEC) isolates examined were obtained from 

bacteriuria urine samples submitted to the bacteriology laboratory at the Central Manchester 

Foundation Trust. The isolates were all from the  ST131 lineage and resistant to quinolones 

due to different genetic mechanisms (Table S1). Identification of virulence capacity, 

metabolic profile and antibiotic susceptibility have been previously described 
10, 11

 and these 

are provided in Tables S2 and S3.  

2.3 Preparation of Escherichia coli inoculates for metabolic 

fingerprinting and metabolic profiling 

Samples were prepared according to the protocols described in 
12

 with the only exception 

being that samples were incubated for 21 h rather than 18 h (see Figure S1 for details). After 

cultivation of the bacteria (see Supplementary Information) each of the 4 biological replicates 

were split for FT-IR, GC-MS and LC-MS to ensure that results were obtained from the same 

biological cultures.  

For GC-MS and LC-MS, 15 mL from each replicate was collected, quenched and extracted 

according to the procedures developed by 
8
. The only difference in this study is that for 
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metabolite extraction 80% methanol (80:20 methanol-water (vol/vol)) was used rather than 

100% methanol to enhance the recovery of polar small molecules. Samples for GC-MS and 

LC-MS, including quality control samples (QCs), were normalised to optical density (OD) 

and made up with 80% methanol (80:20 methanol-water (vol/vol)). Further sample 

processing steps were applied to the GC-MS samples (adding internal standards, a two-step 

chemical derivatisation and adding retention index marker solutions). LC-MS samples were 

reconstituted in 100 µL HPLC grade water, vortex mixed and centrifuged before instrumental 

analysis. Full details of sample preparations are available in the Supplementary Information. 

2.4 FT-IR spectroscopy 

A Bruker Equinox 55 infrared spectrometer (Bruker Ltd., Coventry, UK) equipped with a 

HTX™ module was used for FT-IR spectroscopic analysis using the method described in 
12

, 

13
. Spectra were collected in the range of 4000-600 cm

-1
, with 64 co-adds and at a resolution 

of 4 cm
-1

.  

2.5 GC-MS 

A LECO Pegasus III TOF/MS was used to conduct GC-TOF/MS and its mode of operation is 

provided in the Supplementary Information following our established GC-MS protocol 
14, 15

, 

which follows Metabolomics Standards Initiative (MSI) guidelines.
16

 After GC-MS, data 

were processed via the deconvolution method of 
14

. QC samples were used before statistical 

analysis, as described by 
17

, to give quality assurance of data by evaluating and removing 

mass features exhibiting high deviation within the QC samples. 

2.6 LC-MS 

UHPLC-MS analysis was carried out on an Accela UHPLC autosampler system coupled to 

an electrospray LTQ-Orbitrap XL hybrid mass spectrometry system (ThermoFisher, Bremen, 

Germany) as previously described by 
15, 17

 and highlighted in the Supplementary Information. 

Note that the same samples were analysed twice: once in positive and again in negative ESI 

modes. QCs were also used as detailed in 
17

 to provide quality assurance of the LC-MS data. 
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2.7 Data analysis 

The pre-processed FT-IR, GC-MS and LC-MS data (see Supplementary Information for full 

details) were first analysed using principal component analysis (PCA). The first 1:n PCs 

scores which explained ~75% of the total variance were then subjected to discriminant 

function analysis (DFA). DFA was calibrated with 11 classes (one for each of the 11 E. coli 

isolates) and the first 3 discriminant functions (ordinates) were retained. In order to make 

visualisation easier, and more importantly to balance the number of samples for Procrustes 

analysis (vide infra), as each class contained 36 FT-IR spectra (4 biological replicates, 3 spots 

for each and 3 measurements off each spot) these were mean-averaged to generate 11 DFA 

coordinates for the 11 isolates. In a similar fashion for GC-MS and LC-MS (in both ion 

source modes) where each sample was represented by 4 injections (1 for each of the 4 

biological replicates), the resulting DFA scores were also averaged. 

In addition to the analytical metabolomics data, the E. coli strains had also been subjected to 

classical microbiological testing. Metabolic activity was probed via 47 biochemical tests 

(Table S3) designed to measure carbon source utilisation and enzymatic activity using the 

Vitek 2 ID-GNB card and the Vitek 2 compact Automated Expert System (Biomérieux).
11

 

The virulence capabilities (Table S2) of these strains were investigated through genetic 

screening for the presence of 29 ExPEC associated Virulence Factors (VF) encompassing 

five categories (adhesins, toxins, siderophores, capsule and “miscellaneous”).
10

  

These metabolic tests (MT) and VF tests are characters that are both represented as 

present/absent data. These are clearly very different to the FT-IR, GC-MS and LC-MS 

quantitative data which are all continuous data. To make these two different data types 

comparable with each other, the pattern of the MT and the VF test data sets were also 

projected into ordination space using the following procedure: first a pair-wise distance 

matrix was calculated to measure the dissimilarity between every pair of the isolates using the 

Jaccard distance 
18

; next principal coordinate analysis (PCoA) was performed on the square 

rooted distance matrix and the first 3 PCs were retained.
19

  

The result of the above analysis was six different ordination analyses: PC-DFA from the four 

metabolomics data sets, and PCoA from the metabolic tests and virulence factors. In order to 

compare the similarity in the discriminatory ability generated by these different analyses 

Procrustes analysis was performed on all possible data set pairs.
20

 In this process, the 
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similarity is measured in terms of the Procrustes error, which varies from 0 to 1; where 0 

indicates a perfect match and 1 indicates that the two sets of clusters are completely different. 

The statistical significance level of the levels of these similarities were assessed using a 

Procrustean test procedure.
21

 For each comparison, 10,000 permutation tests were performed 

by permuting the order of the samples in the data sets and subsequently performing the 

Procrustes analysis. The Procrustes errors of these permutations were recorded to form a null 

distribution. The observed Procrustes error was then compared against the null distribution 

and an empirical p-value was derived by counting the number of cases when the Procrustes 

error obtained from the permuted data sets was lower than the observed error; this was then 

divided by 10,000 (the total number of the permutation tests).   

If any of the pair-wise comparisons indicated comparable clusters, it would also be 

interesting to investigate which variables in the metabolomics data sets (i.e., FT-IR, GC-MS 

and LC-MS in both +ve and -ve ionisation mode data sets) were mainly responsible for the 

matched patterns revealed after the Procrustes rotation. This was achieved by first projecting 

the loadings of the PCA into the PC-DFA space using the DFA loadings and then rotating 

these again using the Procrustes orthogonal rotation matrix. The resultant loadings were 

denoted as Procrustes rotated loadings. The variables with significantly high loadings were 

the ones that contributed most to the matched pattern after the Procrustes rotation. 

3. Results and discussions  

In clinical microbiology, bacterial characterisation is largely dependent on phenotypic 

methods such as biochemical tests and bacterial morphology. These are time consuming and 

often provide limited information when compared with modern bioanalytical techniques. The 

two most common biochemical tests that microbiologists use are (i) those based on metabolic 

tests which involve growth on selective media to test for specific enzymes and (ii) assays for 

virulence factors which often reflect how the microorganism interacts with its environment 

and include its adhesins and capsule as well as any toxins produced. In general terms, 

metabolic tests reflect the organism’s metabolic potential whilst some virulence tests probe 

the surface of the microorganism, as it is this surface that interacts with the environment. 

To assess the level of information that metabolomics data may generate from microbiological 

samples, we compare four metabolomics approaches with each other and, importantly, with 
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these two classical microbiology tests from a range of UPEC isolated from a local hospital. 

The results from the metabolomics methods, MT and VF, were analysed using cluster 

analysis and these generated six different ordination scores plots: four PC-DFA plots from 

the FT-IR, GC-MS and LC-MS in both +ve and -ve ionisation modes and PCoA from the MT 

and VF. The resulting cluster plots then need to be compared and this is very difficult by eye. 

For example, the comparison of two sets of clusters in three dimensions requires one to: (i) 

first translate the spatial clustering (arrangement of samples) of one sample set onto the other, 

so that they are now both centred together; (ii) next, the clusters are scaled so that they are of 

equivalent size; (iii) finally, the clusters are aligned by rotation. Of course for simple shapes, 

this can be done by eye. The problem is that for the comparison of clusters generated from six 

different methods (as in this study) the number of unique comparisons that needs to be made 

is 15, and these need to be ranked and objectively assessed. Therefore in this study, we used a 

series of Procrustes transformations. 

The Procrustes errors with the associated p-values of the pattern comparisons were calculated 

as described above and are presented in Table 1. In this table the comparisons which revealed 

very similar spatial arrangements of the clusters from the PCoA and PC-DFA are highlighted 

in yellow. A Venn diagram-like figure reflecting these overall comparisons is shown in 

Figure 1. This figure was constructed by first performing PCoA on the Procrustes errors table 

and converting it to a 2-D X-Y scatter scores plot.  Next, we calculated the 95% χ
2
 confident 

regions (these are the ellipses shown in the plot) around each class, assuming that each have 

the same size of covariance matrices; this presumes that following the Procrustes 

transformation all resulting data transformations would have the same scale. It is clear from 

this comparison in Figure 1 that there are mainly four congruent pairs of clusters. In Table 1, 

these can be judged by having a low p-value (<0.01; from multiple testing).  These are 

highlighted below: 

1. The LC-MS profiles in negative mode and the virulence factor test data had the 

highest similarity level with a Procrustes error of 0.4533 and the associated p-value 

was 0.0002 (i.e. only 2 out of 10,000 permutations had obtained a higher Procrustes 

error). 

2. The FT-IR spectra also obtained a statistically significant similarity to the VF test data 

with a p-value of 0.0072. By contrast, GC-MS and LC-MS in positive mode did not 

have a significant similarity to the VF test data (p> 0.01).  
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3. The GC-MS metabolite data obtained a very significant similarity to the classical 

metabolic tests (MT; p=0.0006), while the other 3 data sets had no significant 

similarity to this type of data (p> 0.01). We note that in Figure 1 there is some 

congruence between GC-MS with the VF but this is not as strong as the MT. 

4. For the comparisons between the four metabolomics data types, the FT-IR data and 

LC-MS profiles in the negative mode had similar shapes, and this was to be expected 

as both were very similar to the VF test. 

5. Finally there was low similarity between the VF test and the metabolic test as p>0.01. 

 

3.1 Interpretation of FT-IR spectra 

FT-IR spectroscopy is not a particularly popular metabolic fingerprinting method but it has 

been extensively used for so called ‘whole-organism fingerprinting’ 
22

 for bacterial 

characterisations due to its high-throughput nature with minimal sample preparation.
23-26

 In 

this study, FT-IR was applied to discriminate between isolates with the same sequence type 

and the FT-IR clusters had similar scores to those from virulence factor tests (Figure 2 and 

Table 1). Figure 2 shows the results from both the FT-IR (in red) and VF (in blue) where it 

can be seen that, in FT-IR,  isolate 48 forms a cluster that is distinct from the other isolates, 

but is collocated with results from its VF test. Inspection of Table S2, which shows the scores 

of the different virulence tests, reveals isolate 48 is the only isolate with a negative score for 

PAI. PAI is an acronym for pathogenicity islands, which are mobile genetic elements that 

carry the genes responsible for the production of many virulence factors, including protein 

secretion systems, toxins, adhesins and many others.
27

 FT-IR spectra from intact bacteria 

contain information on fatty acids, amides, polysaccharides, proteins and amino acids. As 

these virulence factors may be located in the membrane (outer surface of the organism), it is 

likely that FT-IR spectroscopy is detecting the loss of these as the whole organism is 

analysed and hence that is why it is located away from the other 10 isolates. 

Isolates 52 and 75, 160 and 164 share the same VF profile, with the exception of strains 160 

and 164 being negative for traT (Table S2), a cell surface molecule involved in resistance to 

the activity of complement (serum). All four isolates cluster together in the FT-IR data and 

are located reasonably close to their respective clusters from VF; they are located in the 

positive side of PC1 (Figure 2) and this may reflect that these isolates are all positive for the 

afa/draBC surface adhesins. Isolate 2 is also coincident in terms of FT-IR spectra with these 
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four isolates but is very different for VF and this disparity was also observed for the LC-MS 

in negative ionisation mode comparison with VF (vide infra).   

Capsular association factors (kpsMT K5 and kpsMT II) are extracellular and this may be 

reflected in the FT-IR spectra. Isolates 2, 25, 48, 183, 184 and 230 are positive for both these 

factors and, with the exception of isolate 2, are located on the negative part of PC1. Isolate 

124 is also associated with these isolates and this may be a consequence of it being negative 

for afa/draBC as discussed above. 

Finally, no relationship between FT-IR spectra and traT was evident from this analysis and 

this was also observed for the LC-MS conducted in the negative ionisation mode. 

 

3.2 Interpretation of LC-MS profiles 

The same 11 E. coli isolates from uropathogenic infections were also analysed by reversed-

phased LC-MS. As discussed above, 80% methanol (80:20 methanol-water (vol/vol))  

extracts were prepared from these bacterial cultures and MS was performed in both positive 

(LC-MS
+ve

) and negative (LC-MS
-ve

)  ionisation modes. Comparisons were made with VF 

and MT and it was found that LC-MS in the negative ionisation mode shows a higher level of 

similarity with VF tests than FT-IR spectroscopy did (Table 1 and Figure 3). Moreover, 

because of these congruencies between [LC-MS
-ve

 and VF] and [FT-IR and VF] it was not 

surprising that the [LC-MS
-ve

 and FT-IR] comparison was also very similar (Table 1). 

There were, however, two minor differences between the LC-MS
-ve

 comparison with VF 

(Figure 3) compared with the FT-IR spectroscopic comparison (Figure 2) and these are 

briefly highlighted below: 

• The first significant disparity is the observation that isolates 2, 25 and 184 were 

collocated in LC-MS
-ve

 mode whereas they were significantly spread in PC1 in FT-IR. 

We note that they possess identical VF tests (Table S2) and a possible explanation for 

this is that LC-MS
-ve

 is detecting these preferentially compared with FT-IR (Table 1). 

• The second difference is that in FT-IR, isolates 2, 52, 75, 160 and 164 were very 

closely clustered together. By contrast, in LC-MS
-ve

 isolates 160 and 164 ‘moved’ to 

the positive parts of PC1 and PC2 and cluster very closely with their respective VF 
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tests, whilst isolates 2, 52 and 75 are now collocated near the origin with isolates 124 

and 183 (Figure 3). 

It is possible that some of these small differences are because in LC-MS a methanolic extract 

is used compared to FT-IR where whole-organism fingerprinting is used. The similarity 

between the differentiation ability of FT-IR and LC-MS
-ve

 with VF is interesting and this may 

reflect that both metabolomics methods are preferentially detecting cell wall components. As 

discussed above, FT-IR analyses the intact bacteria and certainly contains information on 

proteins and lipids, amongst other cellular components. In LC-MS, as reversed-phase LC is 

used with the negative ionisation mode more lipophilic species are analysed that may be 

associated with the cell wall and this has been reported before for direct infusion MS.
28, 29

 

In the positive mode of LC-MS, very little similarity with VF was observed (Table 1). By 

contrast, although comparison of LC-MS
+ve

 with MT (Figure S2) showed some congruence; 

this was not statistically significant and so will not be discussed here. 

 

3.3 Interpretation of GC-MS profiles 

The GC-MS approach used here 
30

 generates information-rich metabolite profiles of polar 

analytes and so mainly covers metabolites involved in the central metabolism. As can be seen 

from Figure 4, there is high similarity between GC-MS profiles for the 11 bacteria 

(highlighted in red) with the metabolic tests (in blue) and the similarity match is 0.5681 and 

is highly significant with p=0.0006 (Table 1). 

Isolates 160 and 164 share exactly the same results from MT and they are located closer to 

each other in the positive side of PC1 with isolate 183. Following Procrustes transformation 

of the PC-DFA from the GC-MS data, isolates 160 and 164 are very similar and are 

recovered far from all other isolates, which are congruent with their MT except for 230 which 

is positive in PC2. Inspection of the MT (Table S3) reveals that 160 and 164 are unique from 

all other isolates in that they scored positive in the GlyA test, which detects the glycine 

arylamidase enzyme. Arylamidase enzymes mainly hydrolyse peptides containing L-amino 

acids with an unsubstituted α-amino group in the N-terminal residue 
31

 and one of the main 

amino acids released by this enzyme is leucine.
32

 Therefore, the PC-DFA loading plots from 

GC-MS were produced (Figure S3) and it was found that two variables were highly 
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discriminatory (variables 17 and 49). Variable 17 is identified by in house database matching 

to leucine and shows a much higher level in these two isolates than in the other E. coli 

(Figure 5a). Moreover, arylamidase enzymes are involved in 8 of the metabolic tests in this 

experiment (Table S3) and isolates 160 and 164 have the highest scores in these tests 

compared with others. 

The other variable that was identified as significant (Figure S3) was variable 49, which 

unfortunately we are unable to identify. When this feature is plotted for the 11 isolates 

(Figure 5b) it is also elevated in isolates 160 and 164 confirming its importance as a 

discriminatory metabolite feature. We note also that isolate 183 also has increased levels 

compared with all the other isolates, although its level is not as high as the levels generated 

by 160 and 164. 

In terms of metabolic tests, isolate 183 is closer to isolates 160 and 164 as can be seen from 

its blue coding in Figure 4, and in GC-MS it is recovered to the right of the other 8 isolates 

and in the positive part of PC1. It shares the same metabolic results with these two isolates in 

all tests except GlyA (glycine arylamidase) and PHOS (phosphatase) tests. It is expected to 

observe a notable signal by phosphatase as the production of alkaline phosphatase is induced 

by alkaline environment generated by peptide metabolism.
33

 Although phosphate is produce 

in many metabolic reactions this elevation is generally reflected for most of the strains that 

express phosphatase (Table S3) and this is generally reflected in the phosphate levels 

measured by GC-MS (Figure 5c). 

 

4. Concluding remarks 

In metabolomics, investigation choices of the most appropriate analytical method have to be 

made. To date, most of these are based on early decisions to do with analytical procurement 

due to the expense of metabolomics instrumentation. The question arises as to whether 

equivalent results are generated by all platforms. In this investigation, we attempted to 

address this by analysing a set of well characterised uropathogenic E. coli that had been 

analysed by a battery of metabolic tests (n = 47) and virulence factor determinations (n = 30). 

These tests probe different parts of the bacterial cell. Obviously, metabolic tests probe the 

enzyme component of the bacteria and are usually focused on central metabolism and carbon 
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utilisation. By contrast, virulence factors tend to be cell wall associated and include adhesins, 

capsules and toxins. 

Four different approaches for metabolomics were investigated. FT-IR spectroscopy was 

employed directly on intact bacteria for metabolic fingerprinting, or what is often described 

as whole-organism fingerprinting. Following quenching and extraction using methanol, GC-

MS was performed following a two-stage derivatisation, and LC-MS was performed in 

reversed-phased LC mode directly on the methanolic extracts in both positive and negative 

ionisation source modes. 

In order to compare the clustering patterns from the six different analyses with one another, 

Procrustes transformations were performed and this allowed objective assessment of the 

similarity of the cluster patterns in terms of the spatial arrangement of the 11 E. coli isolates 

in either PCoA or PC-DFA scores space. We found that FT-IR and LC-MS in negative 

ionisation mode were comparable with each other and also with the virulence factors tests but 

not comparable to the metabolic tests. By contrast, GC-MS compared well with metabolic 

tests but not the virulence determinants. Although LC-MS in the positive ionisation mode 

was not statistically correlated with either, visual inspection of clusters with the metabolic 

tests suggested there may be some loose congruence between the two methods.   

In conclusion, we believe that whenever possible more than one metabolomics modality 

should be used, and the analyst should consider carefully the analytical technique employed 

and these will certainly reflect the chemical bias of the methods used.  We know for example 

that LC-MS mainly targets lipophilic species when reversed phase is used; by contrast, GC-

MS mainly focuses on polar small molecules. It is possible that there is a danger of false 

correlations between the analytical data and the biological characteristics of interest if the full 

metabolome has not been measured. This is clearly demonstrated in this study where the GC-

MS data predominantly correlates with the metabolic tests, whilst LC-MS in negative 

ionisation mode and FT-IR spectroscopy correlate with the virulence determinants. Of course 

if we did not know about these two different types of inherent characteristics we may have 

jumped to false conclusions, and the same rules are likely to be manifest when metabolomics 

is employed to study higher organisms like mammalian systems and plants as well as 

complex body fluids. 
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Table and Figures 

 

Figure 1  Venn diagram-like plotted showing the overall clustering congruence between the four 

analytical approaches and the two microbiological tests.  See text for explanation of its 

construction. 
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Table 1 The Procrustes errors with the associated p-values of the pair-wise comparisons 

 LC-MS 

(pos) 

LC-MS 

(neg) 

GC-MS FT-IR VF Metabolic 

test 

LC-MS 

(pos) 

-    

 

  

LC-MS 

(neg) 

0.6699 
(p=.0543) 

-     

GC-MS 0.9239 

(p=0.7521) 

0.7423 

(p=0.0903) 

-    

FT-IR 0.9344 

(p=0.8118) 

0.5333 

(p=0.0059) 

0.8973 

(p=0.3701) 

-   

VF 0.8855 

(p=0.5633) 

0.4533 

(p=0.0002) 

0.6603 

(p=0.0107) 

0.5429 

(p=0.0072) 

-  

Metabolic 

test 

0.7782 

(p=0.2021) 

0.6737 

(p=0.072) 

0.5681 

(p=0.0006) 

0.7843 

(p=0.2195) 

0.6653 

(p=0.091) 
- 

Values highlighted in yellow are considered significant (p < 0.01) and indicate pairs of methods that 

provide equivalent clusters/shapes. 

 

 

 

 

 

Page 15 of 20 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



 

Figure 2 Super-imposed scatter plots of PCoA scores of the first two components of the VF tests 

and Procrustean-transformed FT-IR spectra. 

 

 

 

 

Figure 3 Superimposed scatter plots of PCoA scores of the first two components of the VF tests 

and Procrustean-transformed LC-MS negative mode data. 
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Figure 4 Superimposed scatter plots of PCoA scores of the first two components of the metabolic 

tests and Procrustean-transformed GC-MS data. 

 

Red:  GC-MS 

Blue:  metabolic test

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

  2 25
 48

 52
 75124 160 164183

184 230

  2
 25

 48

 52

 75

124

160, 164

183

184

230

PC 1

P
C

 2

Page 17 of 20 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



 

  

 

Figure 5 Box-whisker plots for each isolate demonstrating the concentration level of candidate 

 intracellular metabolites from (a) variable 17 (leucine), (b) variable 49 (unknown), 

and (c) phosphate 
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