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This study demonstrates the application of fluorescence excitation-emission matrix (EEM) spectroscopy 
to the quantitative predictive analysis of recombinant glycoprotein production cultured in a Chinese 
hamster ovary (CHO) cell fed-batch process.  The method relies on the fact that EEM spectra of complex 
solutions are very sensitive to compositional change.  As the cultivation progressed, changes in the 
emission properties of various key fluorophores (e.g., tyrosine, tryptophan, and the glycoprotein product) 10 

showed significant differences, and this was used to follow culture progress via multiple curve resolution 
alternating least squares (MCR-ALS).  MCR-ALS showed clearly showed the increase in the unique 
dityrosine emission from the product glycoprotein as the process progressed, thus provided a qualitative 
tool for process monitoring.  For the quantitative predictive modelling of process performance, the EEM 
data was first subjected to variable selection and then using the most informative variables, partial least-15 

squares (PLS) regression was implemented for glycoprotein yield prediction.  Accurate predictions with 
relative errors of between 2.3 and 4.6% were obtained for samples extracted from the 100 to 5000L scale 
bioreactors.  This study shows that the combination of EEM spectroscopy and chemometric methods of 
evaluation provides a convenient method for monitoring at-line or off-line the productivity of industrial 
fed-batch mammalian cell culture processes from the small to large scale.  This method has applicability 20 

to the advancement of process consistency, early problem detection, and quality-by-design (QbD) 
practices. 

Introduction 

 Some of the most common methods for producing therapeutics 
via mammalian cell culture are the complex fed-batch 25 

fermentation processes.  Their operations are governed by 
multiple process parameters (e.g. feed quality, feeding strategy, 
inoculum age, harvest point etc.) that determine product yield and 
quality.1-3  Accurately monitoring the progress and productivity 
of these processes requires informative analytical methods to 30 

provide detailed information for the accurate control and 
management of production.1-9  Once a process seed reactor has 
been transferred to the large-scale manufacturing bioreactor 
stage, most of the process operational parameters will have been 
fixed, except for feed quality, which can vary substantially.  The 35 

bioreactor broth is a chemically complex environment, which 
comprises the cell culture media, metabolites, product and host 
cell protein, whole cells and cell debris.1, 10, 11  
 Detailed chemical analysis of these complex bioreactor broths 
is challenging and high performance liquid chromatography 40 

(often coupled with mass spectrometry),12-15 or high-field NMR16, 

17 can be used.  However, both approaches typically require time-
consuming sample preparation, high capital cost, frequent 
maintenance and often highly skilled, labour-intensive/ time-
consuming data analysis.  For bioprocess monitoring, there are 45 

two options to consider:  to use an in-reactor probe for online 
monitoring, or aseptically sample the bioreactor for at-line or off-
line analysis.5, 8, 13, 18-21  For online spectroscopic monitoring of 
bioprocess, one can implement vibrational or fluorescence 
spectroscopy based methods.8, 22-24  Each method has its own 50 

unique advantages; however, both near-infrared (NIR) and mid-
infrared (MIR) are not always suited to aqueous sample analysis 
because of the strong water signals.  Raman spectroscopy on the 
other hand is good for aqueous sample analysis, but analyte 
signals can be too weak to be clearly discriminated, and 55 

fluorescence interference can be an issue.25-27  In the context of 
bioreactor broth analysis, many significant chemical species (e.g., 
tryptophan, tyrosine, riboflavin, pyridoxine etc.) fluoresce and 
can be easily detected from micro-molar concentrations.  The 
complex interplay between energy transfer and quenching effects 60 

in complex multi-fluorophore mixtures has been exploited using 
fluorescence EEM spectroscopy for raw materials28 and cell 
culture media analysis.29  The unique EEM spectra produced as 
the sample composition changes have also been employed for in-
reactor bioprocess monitoring.30-34  More recently, synchronous 65 

fluorescence spectroscopy has been successfully demonstrated for 
the quantitative monitoring of cell density and antibody titer.35  A 
2D fluorescence technique like EEM offers some other 
advantages in terms of minimal sample handling, relatively fast 
analysis time, ease of implementation/use, inexpensive, low-70 
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maintenance instrumentation, and the ability to be used for a wide 
variety of analytical problems.  Finally, one can use EEM for the 
simultaneous analysis of multiple fluorophores in complex 
samples such as cell culture media.36   
 One of the key factors driving the adoption of multivariate 5 

spectroscopic based methods has been the increased use of 
chemometrics to extract useful quantitative and qualitative 
information from the data.37-40  In the context of quantitative 
bioreactor broth analysis, chemometrics has generally been used 
for metabolite or nutrient quantification,24, 31, 34 or more 10 

holistically predict the final yield.32  Partial least-squares 
regression (PLS)39, 41, 42 is one of the most important chemometric 
tools used for quantitative analysis, however, with some spectral 
data; there is a lot of uninformative variables present which can 
degrade model performance.  To improve PLS model 15 

performance, there are a variety of variable selection methods, 
which can be used to remove the uninformative data.43-46   
 There are a wide variety of variable selection methods 
available.46-58  Competitive adaptive reweighted sampling 
(CoAdReS)59 and ant colony optimization (ACO)60, 61 have 20 

previously been used on Raman data collected from this sample 
set.27  Both methods use Monte Carlo (MC) strategies to select 
the key variables from the multivariate spectral data, and thus 
generate more accurate chemometric models.  While the variable 
selection method can remove uninformative spectral data, it can, 25 

if the analyst is not careful contribute to model over-fitting, and 
thus there is a need to combine the variable selection with a 
robust assessment of model complexity.  If there are sufficient 
samples available, then an independent test set validation is the 
best option.  However, in the initial steps of determining if a new 30 

analytical method is feasible there may not be sufficient samples 
available.  Thus chemometric methods have to be implemented to 
prevent over-fitting.  One of the best methods for use with 
complex spectra such as EEM is the randomization method,62 
which can help offset the issue of low sample numbers.  35 

 The goal of this study was to develop a rapid fluorescence 
based methodology for both monitoring and predicting 
glycoprotein production in a fed-batch, mammalian cell culture 
process from the initial small, litre-scale right up to the final 
large-scale fermenter.  This was achieved by undertaking three 40 

separate studies.  First determine the optimal sample preparation 
conditions for generating informative EEM data from each set of 
bioprocess broth samples.  Second use multiple curve resolution – 
alternating least squares (MCR-ALS) to deconvolute the gross 
compositional information contained in these EEM data, and then 45 

use this to track the production of the glycoprotein product over 
the course of the bioprocess.63-65  Finally to determine the 
feasibility of accurately predicting the final glycoprotein yield 
from the EEM data using variable selection and other 
chemometric methods at each stage in the bioprocess.  50 

 

Materials and methods 

Materials  

 L-tyrosine (≥98%), L-tryptophan (≥98%)  L-phenylalanine, 
pyridoxine, and folic acid dehydrate (97%) were purchased from 55 

Sigma-Aldrich and used without further purification to prepare 

solution standards (Supplemental Information).  The bioprocess 
broth samples were extracted from an industrial CHO cell based 
bioprocess producing a recombinant glycoprotein.27  Samples 
were acquired when available from a continuous batch campaign 60 

of 40+ batches.  The bioprocess was operated in fed-batch mode 
using proprietary basal and feed media formulations.  The 
bioprocess was sampled at twelve different stages during the 
fermentation process.   This gave dataset sizes of between 17 and 
37 (Table 1) samples.  The samples were first centrifuged and 65 

sterile filtered to remove any whole cells, before being carefully 
handled and stored at -70 °C (For the sake of clarity these 
samples are referred to as bioprocess broths).27  Samples were 
randomly removed from cold storage, defrosted at room 
temperature, and all EEM data collected within 6 hours.  It was 70 

also important to note that at each transfer point between 
bioreactors various filtration steps were implemented, thus for 
example, the DS7 and DS8 samples will have a different 
composition. 
 75 

Table 1:  Details of the bioprocess samples used in this study.27 

Dataset 
ID 

Bioreactor  
Content Description. 

Bioreactor 
Vol. 

Sample 
size 

DS1 Media start 2L 21 
DS2 Media end 2L 17 
DS3 Cells + spent basal media. 2L 17 
DS4  Cells + spent & fresh basal media.   100-200L 31 
DS5 Cells + spent basal media. 100-200L 31 
DS6  Cells + spent & fresh basal media.   1000L 31 
DS7  Cells + spent basal media. 1000L 34 
DS8 Cells + spent basal media.  5000L 37 
DS9  Cells + spent & fresh basal media.   5000L 29 
DS10  Day 5 post inoculation 5000L 35 
DS11  Day 10 post inoculation 5000L 34 
DS12  Prior to transfer for harvest. 5000L 33 

 
 The DS9–12 samples follow the final stages of fermentation up 
to the harvest point and during this phase, feed media was also 
added.  Protein yield was measured using a spectrophotometric 80 

measurement (A280) method which was validated to ICH 
standards and has been described elsewhere.27 
 

Instrumentation and data collection   

 Samples for chemometric analysis were first diluted by mixing 85 

50 μL of sample solution (DS1-12) with ultrapure water (18M 
resistivity) to a final volume of 1 mL.  This mixture was then 
pipetted directly into a semi-micro quartz cuvette (Lightpath 
Optical Ltd., UK) sealed under aseptic conditions.28  
Fluorescence measurements were carried out at 25°C using a 90 

Cary Eclipse (Varian, now Agilent) fluorescence spectrometer 
fitted with a thermostatted multi-cell holder.  EEMs were 
obtained with a λex range of 230–520 nm, 5 nm interval, and a λem 
range of 270–600 nm (excitation and emission bandwidths = 5 
nm).  Samples were allowed to thermally equilibrate for several 95 

minutes prior to measurement.  For each sample, the EEM data 
were collected in triplicate using fresh aliquots over a period of 
10 weeks.  A smaller portion of the EEM data (λex = 230–315 nm 
and λem of 270–465 nm) was used for chemometric analysis 
because the major fluorescence bands appeared in this region.  100 
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Therefore, each fluorescence data matrix comprised of 18 
excitation and 40 emission wavelengths. 
 

Data analysis and chemometric methodology  

 To minimize baseline, scatter, and instrumental effects/errors 5 

the data was subjected to pre-processing for scattering and 
baseline removal, normalization and auto-scaling for PLS 
modelling.29  Rayleigh scattering bands (including the second 
order peaks) were replaced with a curve fit, connecting points 
either side of the peak using imputation.66-68  It was not possible 10 

to remove the Raman bands as they overlapped the much stronger 
fluorescence signal.  To better understand the causes of the 
observed changes in the fluorescence EEM, the MCR-ALS 
method was used to deconvolve the spectra.63, 64, 69  This provided 
information about the evolution of EEM measurements, inner 15 

filter effects (IFE), and compositional changes through pure 
component contributions.  MCR-ALS was used because it can 
more robustly account for variations in the pure component 
spectra induced by compositional heterogeneity and energy 
transfer effects than other factor analysis based methods.63  The 20 

criterion used for selecting the correct number of significant 
components was based on the noise perturbation in functional 
principal component analysis (NPFPCA) method.70  When 
implemented here for all MCR-ALS models, a perturbation level 
of 1% (of EEM maximum intensity) noise with 500 repetitions 25 

was used (data not shown).  
 Variable selection on the EEM data was performed using 
CoAdReS and ACO methods, the selected variables were then 
used to build PLS models to predict glycoprotein yield at each 
stage of the bioprocess.  For each dataset 200 CoAdReS sampling 30 

runs were performed and for each sampling run, a PLS model 
was constructed using 83% of the samples, which were randomly 
selected.  CoAdReS then generated sequentially 200 subsets of 
variables (720 in run 1, only 2 in run 200) and regression 
coefficients for each variable were obtained from the PLS 35 

models.  The variable selection process was based first on the 
magnitude of the regression coefficients, and second on the 
reduction rate, for example in the ith sampling run, the ratio of 
variables to be kept (ri) was given by:  ݎ ൌ ܽ݁ିሺܽ ൌ
1.0234, ݇ ൌ 0.0232, ݅ ൌ 1,2,… . ,200ሻ.  The variables with low 40 

regression coefficients were weighted to zero, and the significant 
variables to be retained were weighted with a value related to 
their absolute regression coefficient value.  These retained 
variables were then used for PLS modelling in the next sampling 
run, and so on.59  Once the 200 subsets were generated, the 45 

remaining samples (17%) were employed for cross validation on 
each CoAdReS sampling run, and the root mean square error of 
cross-validation (RMSECV) was calculated for this cross-
validation.  The optimal subset of variables (from the 200) is the 
subset with the lowest RMSECV value. 50 

 The basis of ACO refinement is completely different to 
CoAdReS and ACO was implemented with the following 
conditions:  ρ (rate of pheromone evaporation) =0.65, N (number 
of ants) = 400, w (sensor width) =1, a maximum number of time 
steps of 50, and 100 repeated MC calculation cycles were run to 55 

build a histogram of variable selection probability for each 
sample set.  The selected variables were then used to build the 
PLS models.  All calculations were performed using MATLAB,71 

PLS_Toolbox,72 and in-house-written MATLAB routines.  ACO 
MATLAB code was generously provided by Prof. A.C. Olivieri 60 

(Universidad Nacional de Rosario, Argentina). 
 

Calibration and validation samples 

 Twelve spectral datasets were obtained after averaging the 
replicate spectra, from the various sample sets (Table 1) but only 65 

sample sets (DS4–12) were used for chemometric modelling.  For 
PLS modelling, each sample set was randomly split into a 
calibration (between 20 and 26 samples) and a test set (always 
five samples) in a ~80:20 split using a Monte Carlo based 
sampling protocol.  To ensure robustness, the calibration/test set 70 

selection was repeated 500 times and a PLS model run on each 
unique selection.  PLS model quality was assessed using a 
combination of parameters including: root mean square error of 
calibration (RMSEC), root mean square error of cross-validation 
(RMSECV) for validation/test set, relative error of cross-75 

validation (RECV%=100×RMSECV/ݕത, where ݕത is the mean 
calibration value of the product titre), and the square of the 
correlation coefficient (R2) between predicted and nominal titres 
for validation set.  Finally, a randomization test method62 was 
deployed to determine the model complexity and ensure that the 80 

optimal number of latent variables were used in the PLS models 
(see Supplemental Information for details).  This step was critical 
as the overall sample numbers are low, the spectral data is 
complicated and thus any potential over-fitting has to be 
minimised. 85 

 

Results and Discussion 

 

 
 90 

Figure 1:  EEM landscapes of two typical, 1:50 diluted bioprocess 
samples (DS1 and DS12) selected from the same production lot.   

 

Spectral analysis  

 Figure 1 shows typical EEM spectra of diluted bioprocess 95 

broths from the start (DS1) and end (DS12) stages of the cell 
culture.  All samples have similar features, indicating the 
presence of multiple fluorophores from the media, metabolites, 
and glycoprotein product.  It was not possible to identify specific 
fluorophores from the spectra visually due to spectral overlap, 100 

nevertheless when compared to the spectra of standard 
fluorophores, it was clear that the strongest fluorescence in all 
cases originated from tryptophan and tyrosine, with weaker 
contributions from a variety of other fluorophores (Figure S-1, 
supplementary data).  The major differences between the DS1 105 
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and DS12 spectra are a ~40% drop in overall fluorescence 
intensity, large changes in band shape, and a small band shift in 
the maximum of the main band (λex/λem =275/355 nm for DS1 
and λex/λem =280/355 nm for DS12).  These changes are caused 
by the combination of inner filter (IFE), energy transfer (ET), and 5 

quenching effects induced by the changing chemical composition 
in the bioreactor as the bioprocess evolves.  Ascribing the 
changes simply to consumption of the media fluorophores and 
formation of the glycoprotein product, was probably not valid as 
the production of photophysically active metabolites cannot be 10 

distinguished from the EEM data.  Without chemometric analysis 
(vide infra) was impossible to assign clear spectral changes due to 
the product glycoprotein which was present at a relatively low 
concentration (always between 0.67–0.92 g/L) compared to all 
the other fluorophores present e.g. media, metabolites, host cell 15 

proteins, which when considered all together were present at 
much higher concentration particularly during the early stages of 
the bioprocess.   
 

 20 

Figure 2:  (a) Emission spectra of the nine diluted solutions of a DS9 
sample, and (b) the intensity changes at the Trp band at λex/λem=275/355 
nm and Tyr band at 275/305 nm.  

 

Dilution effect  25 

 Analysis of the undiluted samples through the bioprocess 
showed relatively small spectral changes.  This was due to the 
relatively high chromophores and fluorophore concentrations 

causing high rates of IFE, ET, and quenching, which in 
combination reduce the magnitude of observable spectral change.  30 

One way to reduce IFE, ET, and quenching effects was to dilute 
the solution, and thus it was expected to resolve the spectral 
changes more clearly.  To determine the optimum dilution factor 
one typical DS9 sample was taken and mixed aliquots of 2, 5, 10, 
20, 40, 50, 60, 80, and 100 µL of the original solution with high 35 

purity water to give a final volume of 1 mL (i.e. dilution factors 
of between 1:500 and 1:10).  Fluorescence EEM data were 
acquired from these nine samples which were then analysed 
empirically by MCR-ALS (vide infra).  The overall EEM spectral 
intensity increased as the dilution factor decreased from 1:500 to 40 

1:10.  Taking a slice through the EEM at λex = 275 nm (Figure 2) 
shows how the main Trp emission band changed as the dilution 
factor decreased to 1:10.  The effect appears less dramatic for Tyr 
band (Figure 2b) because the Tyr signal was much weaker 
compared to Trp, however the rate was the same for both amino 45 

acids when one looks at the normalised intensity ratio (IX/I1:10).  
With more concentrated samples, dilution factors below 1:10, the 
increased rate of quenching and ET, IFE etc. caused band 
intensity to decrease once more.  Balancing the competing 
demands for high signal intensity and spectral detail, it was 50 

decided that a dilution factor of 1:20 was appropriate for 
generating EEM data suitable for chemometric analysis. 
 To better understand the biomass concentration induced 
spectral changes MCR-ALS was used to extract the changing 
fluorophore contributions from the EEM as the broth composition 55 

changed during the bioprocess.  For the MCR-ALS, a single 
sample-EEM augmented data matrix ۲ሺ18 ൈ 9, 40ሻ was 
generated using these 9 dilution samples, with 18 excitation and 
40 emission wavelengths.  In the MCR model,	۲ ൌ ୫ୣ܁ୣ୶܁ 
۳, the ܁ୣ୶ሺ18 ൈ 9, ݊ሻ matrix contained the excitation spectra (18 60 

wavelengths) obtained at the various dilutions for each n 
component, E was the residual matrix describing the variance not 
explained by	܁ୣ୶ୣ܁୫ and T meant the transpose of matrix.   
 In this MCR-ALS model the emission spectra Sem of the n 
components, common to all measurements, were constrained to a 65 

fixed profile (i.e. spectral shape) for each component but variable 
intensity.  In reality, this was not true for heterogeneous 
fluorophore mixtures because IFE and ET will cause distortions 
in the emission profile.  However, this was a necessary 
assumption required to implement MCR-ALS on this type of 70 

EEM data.69  These distortions in the data structure were 
commonly manifested by the appearance of additional 
components in MCR-ALS models of complex samples.65  
 IFE usually affects shorter wavelength regions most (due to 
higher absorbance in these regions); consequently the long 75 

wavelength emission was less likely to be affected by IFE than 
the excitation profile.  By inspecting the excitation spectra one 
obtained a better understanding of the IFE induced by varying the 
dilution factor.   
 Here MCR-ALS decomposed the dilution dataset into five 80 

components (Table 2) using non-negativity constraints.  The 
NPFPCA method 70 was applied to select five MCR-ALS 
components (Figure S-3, supplementary data).  Three of the 
components (Comps 1, 2, 3) were significant (Figure 3), and by 
comparison with the spectra of known fluorophores 85 

(Supplemental Information) it was established that Comp1 was 
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Trp and Comp2 was Tyr.36  The identity of the weak Comp3 was 
less certain, but it was likely to comprise of emission from 
several media components present in low (<5 µm) concentration 
(e.g. pyridoxine and riboflavin 36) and/or the glycoprotein product 
(vide infra).   5 

 
Figure 3:  (a) Emission spectra (area normalised) of the three most 
significant components deconvoluted from the dilution dataset by MCR-
ALS, and (b-c) their individual excitation spectra (from 1:500 up to 1:10 
dilutions), recovered by MCR-ALS using normalised emission spectra.  10 

The arrows show the direction of change with dilution. 

 
Comp1 (Trp) and Comp2 (Tyr) dominated the EEM (Table 2) 
and these components comprised of emission from a variety of 
sources including: the free amino acids, a small proportion from 15 

peptides, the product glycoprotein, and host cell proteins.   
 The excitation spectra of Comp1 (Trp) resolved by MCR-ALS 
had an excitation band maximum at 275 nm when highly diluted 
(1:500 / 1:50) and this band shifted to ~285 nm as the biomass 
concentration increased (Figure 3b).  This excitation red-shift was 20 

indicative of significant IFE for Trp which was not as evident for 
Comp2 (Tyr) and Comp3 where the excitation spectra band 
maxima were constant at 275 and 290 nm, respectively.  The fact 
that the Trp undergoes much larger IFE was unsurprising since its 
absorption band overlaps the emission band of Tyr significantly 25 

and thus undergoes significant emission enhancement via energy 
transfer.  The change in the shape of the excitation profile for 
Comp1 was due to the overlap of the absorption spectra of Trp 
and Tyr.  This MCR-ALS study of a diluted DS9 sample 
indicates that one can easily extract information as to 30 

compositional changes.   
 
Table 2:  Significance of each component decomposed from the EEM 
spectra of nine dilute solutions (from 1:500 up to 1:10) by the MCR-ALS 
model.   35 

  Percent variance captured by MCR-ALS 
model 

# 

Component 

λem max. 

(nm) 

Fit 

(%Model) 

Fit 

(%Spectra) 

Cumulative 

Fit (%Spectra)

1 355 nm 96.06 96.05 96.05 
2 305 nm 3.69 3.69 99.74 
3 385 nm 0.19 0.19 99.93 
4 410 nm 0.04 0.04 99.97 
5 290 nm 0.02 0.02 99.99 

 
 

Bioprocess evolution  

 The next step was to see if MCR-ALS could be used to 
evaluate the compositional changes across a series of production 40 

lots, and more importantly observe any correlation with product 
formation.  For these bioprocess evolution studies, a 1:20 sample 
dilution was used as this gives a strong EEM signal in which the 
individual components are reasonably well-resolved.  The use of 
the diluted bioprocess broths and/or media was a departure from 45 

our previous methods where media were analysed in its prepared 
state.28, 29, 73  The approach was justified here because one needed 
to clearly observe the spectral contribution of the glycoprotein 
product, and this was easier to do once IFE has been reduced. 
 To demonstrate the method, EEM spectra collected from the 50 

12 samples (DS1-DS12) for a single production lot were selected.  
The triplicate EEM spectra were submitted to MCR-ALS with 
non-negativity constraints and five significant constituents were 
extracted (Table 3).  Figure 4 shows the individual emission and 
excitation spectral profiles generated by the MCR-ALS model.   55 
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Table 3:  Significance of each constituent decomposed by the MCR-ALS 
model of the EEM spectra from samples pulled from a single complete 
production lot sampled at 12 stages (DS1 to DS12).   

 

  % variance captured by MCR-ALS model 

# 

Component 

λex/λem max. 

(nm) 

Fit 

(%Model) 

Fit 

(%Spectra) 

Cumulative 

Fit (%Spectra)

1 275/355 nm 58.38 58.36 58.36 
2 275/305 nm 8.33 8.33 66.69 
3 275/365 nm 32.28 32.27 98.97 
4 240/385 nm 0.37 0.37 99.34 
5 265/350 nm 0.63 0.63 99.97 

 5 

 

 
 
Figure 4:  Emission spectra (top left) of the five significant constituents 
deconvoluted from the 2D fluorescence spectra of the bioprocess broths 10 

pulled from a single complete production lot sampled at 12 target stages 
(from DS1 up to DS12) by the MCR-ALS model.  The other plots show 
the changes in the individual excitation spectra for each component.   

 
 As before, the first two components extracted, Comp1 and 15 

Comp2, were Trp and Tyr respectively.  Comp3 showed very 
similar emission and excitation spectral profiles to Trp (but red-
shifted emission) and this constituent had the second highest 
apparent spectral concentration in the samples.  Comp4 was 
tentatively assigned to the glycoprotein product which contains 20 

16 tyrosine and 4 tryptophan residues.  MCR-ALS modelling of a 
pure solution of the glycoprotein product (Figure 5g-h) shows 3 

components (Gp1-3); the first two being Trp and Tyr, and the 
third component matches Comp4.  The first contributor (Gp1) 
comprised a broad emission band at the 335 nm and an excitation 25 

band at 280 nm.  This was very similar to the pure Trp EEM 
(Figure S-1) but with a blue shifted emission and red-shifted 
excitation indicative of the Trp being located in a more 
hydrophobic environment.  The second factor, Gp2 was definitely 
tyrosine because of its characteristic bands appearing at the 30 

λex/λem= 230/305 nm and 275/305 nm.  Gp1 and Gp2 were two 
main contributors explained 68.73% and 25.27% respectively of 
the EEM data variance.  The final factor, Gp3, weak ~5%,  gave a 
broad emission band from 320 to 465 nm with a maximum at 
~395 nm, and its excitation spectrum showed two local maxima 35 

at 230 and 290 nm respectively.  It was suspected that this 
emission was probably from dityrosine because there was one 
pair of adjacent Tyr residues in the product sequence).  This was 
confirmed via fluorescence lifetime measurements using 295 nm 
excitation made on a solution of the pure glycoprotein 40 

(Supplemental Information).  In these measurements, a long 
lifetime component of ~4.3 ns was observed (along with two 0.7 
and 1.49 ns components) and the fractional component increased 
to ~20% at 400 nm.  This long lifetime component was indicative 
of dityrosine.74  Thus Comp4 tracks the evolution of the 45 

dityrosine emission which originates from the glycoprotein 
product and was thus a unique marker of product formation. 
 The final component, Comp5 was likely to be a composite of 
the other fluorophores which were present in low concentration, 
e.g. pyridoxine, folic acid, riboflavin and others which emit at 50 

these longer wavelengths.  However, with these very complex 
samples, low sample numbers, and the domination of the Trp/Tyr 
signals it was not possible (or necessary) to resolve any further.   
 When the individual emission and excitation spectra of each 
constituent were normalized, a relative concentration (namely 55 

scores) profile was generated for each constituent at each stage of 
the bioprocess (Figure 5).  These curves show the evolution of the 
bioprocess in terms of comparative change.  At the present time 
it’s not feasible to convert these changes into accurate 
concentration values, because there are no in-process Trp/Tyr or 60 

glycoprotein product concentration measurements with which to 
standardise the scores.  It was also important to note that these 
scores do not represent the precise relative concentration changes 
either, as they do not take into account for the differences in 
quantum yield, molar absorptivity, and absolute concentration of 65 

each fluorophore type.  However, they do provide a facile method 
for evaluating the changes in bioreactor composition.  In many 
cases, this may be all that is required to monitor the health and 
progress of the process.  If exact concentrations of Trp/Tyr were 
required then orthogonal methods like off-line HPLC or a 70 

modified standard addition EEM based method could be 
implemented.36  
 Analysis of the changes in the component intensity uncovered 
some interesting trends.  Comp1 shows the effect of the addition 
of fresh media very clearly, whereas Comp2 and Comp5 show 75 

very little change.  The feed addition effect in terms of 
component signal increase was less strong for Comp3 and 
Comp4, indicating that these not media components but rather a 
metabolite and the glycoprotein product respectively.  Looking 
carefully at the change in signal, a decrease in intensity was 80 
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observed when the fresh basal media was added, and thus the saw 
tooth pattern was ascribed as being a simple dilution effect in 
these cases (Figure 5c&d). 
 

 5 

Figure 5:  (a-e) Temporal concentrations of the significant constituents in 
bioprocess broths pulled from a single complete production lot sampled at 
12 target stages over four bioreactors, which were resulted from the 2D 
fluorescence spectra by MCR-ALS model.  The ordinate was represented 
after both the emission and excitation spectra were normalized.   Error 10 

bars are standard error for n=3.  (f)  EEM landscape of a 10-2 g/L solution 
of the pure product glycoprotein solution.  (g-h) The excitation and 
emission spectra extracted from the EEM data of the product glycoprotein 
solution by MCR-ALS: ○─ tryptophan, ∆─ tyrosine, □─ Gp3, and the 
MCR-ALS model details. 15 

 
 DS3/5/7 samples were solutions of cells and spent basal media 
just prior to transfer to next, larger-sized bioreactor, and this 
explains why Comp1 (Trp) followed the indicated trend, e.g., it 
was being consumed by cell growth.35  It was suspected that this 20 

component was free Trp in solution.  The spikes in the Comp1 
scores for the DS4/6/8 datasets were therefore clearly due to the 
addition of extra Trp in the fresh basal media added to advance 
process scale-up.  The overall downward trend in Comp1 was 
indicative of consumption due to cell growth.  Comp3 which 25 

looks very like Trp, also followed a similar trend to Comp1 with 
an increase with the addition of fresh media and a large decrease 

in the final growth phase of the bioreactor.  But critically it was 
time-shifted and the maxima correspond to the DS5/7 samples 
which were cells and spent media, and also the DS9 samples 30 

which were cells with spent & fresh basal media. 
It was possible that this component was a fluorescent metabolite 
of tryptophan, e.g. 5-Hydroxytryptophan (5-HTP).15  The change 
in Comp2 (Tyr) was less striking during the early bioreactor 
stages, but once the growth phase was induced in DS9 a dramatic 35 

decrease occured due to cell consumption of the amino acid.  In 
general for all components the biggest changes can be seen over 
the DS9–12 samples, which follow the final stages of 
fermentation up to harvest.  During this phase, feed media was 
also added at specific times, and it was interesting to note that 40 

there were no major changes that can be ascribed to these 
additions. 
 Overall MCR-ALS provides a good insight to the evolutionary 
changes as the bioprocess progresses, and although the method 
does not provide accurate quantitative estimates of specific 45 

component change, it does provide a useful tool for process 
monitoring. 
 

Correlation with product yield 

 The next stage in the method was to see if it was possible to 50 

predict the final glycoprotein yield from the EEM data collected.  
PLS regression was applied to each individual sample dataset 
using the pre-processed spectra in order to associate fluorescence 
spectra with the glycoprotein yield (Table 4).  The calibration 
models were then validated using the test sets, and the 55 

appropriate PLS component number was determined using the 
randomization test (Table S-2, Supplemental Information).  When 
the full EEM spectrum (720 variables) was used for each dataset, 
the resulting PLS models were poor with R2 < 0.7.  In addition, 
the very low RMSEC values indicated an over optimistic 60 

calibration model, which may have arisen from the high variable-
to-sample ratio pertaining to the full spectrum data.  It was also 
suspected that useful information in the EEM data was being 
swamped by the large number of uninformative signal/variables 
present.  The overlap between glycoprotein product emission and 65 

other bioprocess broth signals (media, metabolites, host cell 
protein) was very significant since the glycoprotein yield range 
for these samples was between 0.67–0.92 g/L, while the dissolved 
solid concentration of the original media was significantly 
greater.   70 

 Therefore variable selection was implemented to try and first 
extract the informative variables from the EEM data and second 
reduce the variable/sample ratio to generate more reliable, less 
optimistic calibration models.  To ensure a robust selection of key 
variables, a histogram of variable selection probability was built 75 

for each sample set by repeating both the CoAdReS calculation 
500 times and the ACO 100 times in the MC manner.  
 
Table 4:  Summary of PLS models generated using 9 different sample 
sets.  RMSEC/RMSECV errors are given in g/L of the final protein 80 

product titre.  Values are the mean values obtained from 500 different 
individual models (see main body text for details).  In each case five 
samples were used for the test set.  Dataset sample size (in parentheses) 
varied according to sample availability. 

 85 
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Data set 
# 

Vars. 
LVs RMSEC RMSECV 

RECV
% 

R2 

Full spectrum based models 
DS4 (28) 720 8 0.006±0.001 0.086±0.018 10.73 0.26
DS5(28) 720 7 0.009±0.002 0.078±0.019 9.61 0.24
DS6(28) 720 6 0.014±0.002 0.078±0.017 9.61 0.26
DS7(29) 720 7 0.008±0.001 0.062±0.010 7.74 0.39
DS8(31) 720 8 0.007±0.001 0.071±0.019 8.59 0.27
DS9(25) 720 7 0.010±0.002 0.080±0.015 9.99 0.21

DS10(31) 720 7 0.012±0.001 0.076±0.016 9.42 0.23
DS11(30) 720 7 0.013±0.001 0.071±0.014 8.76 0.33
DS12(28) 720 9 0.004±0.001 0.049±0.010 6.04 0.65

CoAdReS based models 
DS4 (28) 57 8-7 0.011±0.001 0.030±0.006 3.79 0.96
DS5(28) 79 7 0.010±0.001 0.037±0.008 4.63 0.94
DS6(28) 70 6 0.013±0.001 0.031±0.010 3.68 0.94
DS7(29) 80 7 0.008±0.001 0.022±0.005 2.80 0.98
DS8(31) 86 8-5 0.010±0.001 0.032±0.009 3.97 0.92
DS9(25) 68 7 0.010±0.001 0.030±0.007 3.64 0.97

DS10(31) 71 7 0.012±0.001 0.029±0.007 3.58 0.95
DS11(30) 64 7-6 0.017±0.001 0.035±0.009 4.22 0.92
DS12(28) 90 9 0.006±0.001 0.018±0.004 2.30 0.98

ACO based models 
DS4 (28) 82 8-4 0.011±0.001 0.032±0.009 3.89 0.96
DS5(28) 111 7 0.013±0.001 0.032±0.007 3.98 0.96
DS6(28) 129 7 0.010±0.001 0.030±0.006 3.71 0.96
DS7(29) 148 8 0.007±0.001 0.024±0.005 3.02 0.98
DS8(31) 101 8-5 0.010±0.001 0.028±0.007 3.49 0.96
DS9(25) 140 7 0.010±0.001 0.034±0.008 4.25 0.95

DS10(31) 138 8 0.010±0.001 0.030±0.007 3.66 0.96
DS11(30) 71 7 0.017±0.001 0.033±0.008 4.06 0.93
DS12(28) 129 9-3 0.006±0.001 0.020±0.004 2.54 0.98

 
 

Variable selected PLS models  

 CoAdReS was implemented on each dataset and the selected 
variables were then used to generate quantitative PLS models 5 

(Table 4).  To ensure robustness CoAdReS was rerun 500 times 
using random calibration/test sample combinations (selected 
using MC), generating 500 sets of different key variables.  
Statistical analysis of these 500 variable sets generated a 
normalized histogram, and Figure 6a shows the variables with 10 

histogram values greater than a 0.24 limit (vide infra).  Most of 
these variables are associated with low intensity bands in the 
EEM.  To determine the number of the selected variables to be 
used for the optimal chemometric model, leave-one-out cross 
validation75 PLS modelling was performed with trial numbers of 15 

selected variables from 10 up to 300.  In practice, all the variables 
selected into the 500 sets were ranked according to the magnitude 
of the histogram values from largest to lowest.  Then, a number 
of the selected variables (from 10 to 300) were picked for PLS 
modelling and then the RMSECV values calculated.  The result 20 

(Figure 6b) showed that the RMSECV decreased to a minimum 
of 0.022 g/L with 57 variables which held the largest histogram 
values in descent, before increasing to ~0.065 g/L when more 
than 282 variables selected. 
 25 

 
 
Figure 6:  (a) CoAdReS variable selection result for the sample set DS4 
(red markers = variables with histogram values ≥0.24).  Superimposed 
mesh is the mean scattering-corrected EEM landscape in arbitrary vertical 30 

scales;  (b) Determination of number of the selected variables by means of 
LOOCV with CoAdReS-selected variables;  (c) ACO variable selection 
result for the DS4 (red markers = variables with histogram values ≥0.35);  
(d) Determination of number of the selected variables by means of 
LOOCV with ACO-selected variables.  Relevant variables selected by 35 

CoAdReS (e) and ACO (f) for the sample sets: DS4 to DS7 (○—DS4, 
□—DS5, —DS6, and —DS7).  Relevant variables selected by 
CoAdReS (g) and ACO (h) for the sample sets: DS8 to DS12 (○—DS8, 
□—DS9, —DS10, —DS11, and ×—DS12). 

 40 

 This suggested that 57 variables should be used for an optimal 
PLS model which corresponded to a threshold histogram of 0.24.  
Similarly, the procedure was completed on all the other datasets 
to select the optimal number of the variables.  This rather 
computationally intensive approach was necessary because of the 45 

complexity of the sample matrix, the relatively low number of 
samples, and the high variable-to-sample ratio in the full range 
EEM data.   
 With the CoAdReS selected variables, the improvement in 
PLS model quality was dramatic: R2 was >0.9, the 50 

RMSECV:RMSEC ratios were low ~2–3, and the RECV% values 
were low at between 2.3–4.6% (Table 4).  This significant 
improvement benefited from the removal of redundant variables 
(or more correctly those with low information content relating to 
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product yield).  For example a large proportion of the measured 
fluorescence signal originates from tryptophan, tyrosine and other 
nutrient sources which were present in the highest concentration 
(typical concentration ranges of 100–600+µM for Trp and Tyr),36, 

76 and were unlikely to show signal variances associated with 5 

product yield.  The high variable reduction factor of ~1 in 10 
indicated that the vast majority of the fluorescence signal was as 
expected not related directly or indirectly to the product yield.   
 It was interesting to note that for both sets of PLS models 
(Table 4) the RMSEC values were very close when the same 10 

number of PLS components was used for each sample set.  This 
implied that the variables which had the greatest contribution 
were present in the entire and CoAdReS selected variable 
datasets, but that their contribution to the PLS models when the 
entire spectra were used, was swamped by the mass of irrelevant 15 

variables, leading to very poor RMSECV values.   
 For DS4 when a histogram threshold of 0.35 was set, ACO 
selected 82 variables and a minimum RMSECV of 0.024 g/L was 
achieved (Figure 6c & d).  Overall, the ACO-PLS and CoAdReS-
PLS models had very similar performance in terms of 20 

RMSEC/RMSECV/RECV values.  Both approaches (Table 4) 
significantly improved the predictive ability compared to those 
resulted from the use of entire spectral data, with the ACO 
derived models having the R2 values >0.93, the 
RMSECV:RMSEC ratios around ~2–3, and the RECV% values 25 

between 2.5 and 4.3%.   
 In general, ACO selected approximately 1.5-2 times as many 
variables as CoAdReS except for DS11 where the variable 
numbers were very similar (Table 4).  Furthermore, ACO 
selected variables were located within the major high intensity 30 

fluorescence bands.  For the CoAdReS selected variables, these 
seem to correlate well with the emission properties of Comp4 
which was ascribed to the glycoprotein product.  However, since 
fluorescence emission bands are not very specific, we thus cannot 
discount the possibility that the variables selected for the PLS 35 

models may be attributed to a metabolite whose emission signal 
was correlated with glycoprotein concentration…i.e. a secondary 
correlation.   
 

Conclusions 40 

 The use of EEM spectroscopy coupled with both factor and 
regression based chemometric techniques provides a convenient 
method for monitoring (at-line or off-line) the progress of 
mammalian cell culture based processes.  The method uses small 
quantities of clarified bioprocess broth (<100 µL) which was 45 

diluted and then measured using standard off-the-shelf 
fluorescence spectrometers.  MCR-ALS provides an interpretive 
tool for visualising the changes in the bioprocess in terms of 
several fluorescent components e.g. tyrosine, tryptophan, and the 
glycoprotein product via its dityrosine emission component.  The 50 

relatively high resolution EEM spectra collected enabled the 
application of factor-based methods (MCR-ALS and among 
others) for more detailed analysis of bioprocess induced changes, 
something which was not as feasible using lower resolution filter-
based spectrometers.24  Compared to the use of Raman 55 

spectroscopy for bioprocess monitoring,27 this method provided a 
clearer correlation with a product signal because there are fewer 

species contributing to the fluorescence emission and the 
dityrosine signal was thus easily discriminated.  
 The use of PLS regression on variables selected by either 60 

CoAdReS or ACO then provided a predictive tool for evaluating 
bioprocess performance in terms of glycoprotein yield.  This was 
significant because these predictive models can be generated at 
the early, small scale stages of the industrial production process.  
Here there were ~30 samples which represent only a year’s 65 

production.  In practice one would recalculate the models 
regularly as more samples/data becomes available, and thus 
within a relatively short time (in the context of a manufacturing 
lifespan of decades) one would have a tool which can be used for 
early-stage process intervention.  A key advantage in being able 70 

to predict the end yield at all stages from the 100 to 5000L scale 
bioreactors is that one could use this prediction to intervene and 
stop a no-productive process at an early stage, thus saving 
process scale up costs.  Conversely, if a process was predicted to 
have a potential high yield one could optimise downstream 75 

purification processes in advance, which would provide 
significant benefirs. 
 Some of the other advantages with using this offline method 
are that it avoids issues with probe fouling in bioreactors, it 
generates better quality spectra in terms of signal-to-noise by 80 

virtue of using a dedicated bench-top spectrometer, and the 
method is more easily validated in a laboratory than on-site.  
These advantages outweigh the problems associated with sterile 
sampling and low throughput; however, these are not that 
significant in reality when one is monitoring a process over a 85 

long time period as is the case with many mammalian cell culture 
processes.  Thus the time-lag associated with this method may 
not be very important in the context of a 10-30 day bioprocess.  
Finally, this method is virtually identical to the EEM methods for 
the analysis of the raw materials,28, 73 and cell culture media,29 90 

and so providing a single integrated analytical platform. 
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Using Fluorescence Excitation-Emission Matrix Spectroscopy and chemometric methods we 

demonstrate an effective and rapid method for quantitative monitoring of a mammalian cell culture 

based manufacturing processes. 
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