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Army Ants Tunneling for Classical Simulations  
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Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, 

University of Minnesota, Minneapolis, MN 55455-0431 

 

Abstract. The classical trajectory method (also called molecular dynamics) is the most 

widely used method for ensemble averaging and calculating rate constants of complex 

dynamical systems; however it has the serious drawback of not allowing tunneling. Here, 

we show how to include tunneling efficiently in real-time classical trajectories by using 

the army ants algorithm for quantum mechanical rare event sampling and partially 

optimized semiclassical tunneling paths based on valence internal coordinates. Three 

examples, HN2 dissociation and two kinds of HCOH isomerizations, are used to illustrate 

the tunneling method. We show that the army ants tunneling algorithm is very efficient 

(even lower computational costs than calculations without tunneling) and yields 

physically reasonable rate constants. The new algorithm is straightforward to include in 

any molecular dynamics package, and it allows sampling of regions of phase space that 

are classically inaccessible but that may lead to different products or different energy 

distributions than are populated by non-tunneling processes. 
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Introduction 

The classical trajectory method1,2 is the most widely used approximation for 

molecular dynamics simulations of chemical processes. It is very general, and it can be 

approximately justified because the de Broglie wavelength for nuclear motion is usually 

small compared to the characteristic length on which the potential energy changes. The 

classical trajectory method has two well known major deficiencies though: (1) bound 

vibrational motions can have any energy with no reference to quantized vibrational 

energy levels of the quantum mechanical stationary states; (2) tunneling is neglected. 

Deficiency no. 1 is most serious for low vibrational energies, and a chief 

symptom is that systems are not required to have zero point energy. (Zero point energy is 

an exact constraint only for stationary states, but we know from extensive experience 

with approximate and accurate solutions of the Schrödinger equation that it is an 

approximate local constraint on bound vibrational modes even during dynamics.) Various 

approximation schemes have been proposed to alleviate this difficulty, e.g., quantization 

at the beginning of a trajectory3 (the so called quasiclassical trajectory method), 

enforcing energy transfer between modes during a trajectory,4,5 or treating bonds with 

high-frequency vibrations as rigid.6 None of these procedures is satisfactory for all 

situations, but nevertheless they can be helpful and have been found useful. But including 

ZPE in classical trajectories is beyond the scope of the present article.  

Deficiency no. 2 affects not just classical trajectory calculations but also many 

wave packet methods where the center of the wave packet follows a classical trajectory.7 

In this article, we propose a simple method, called army ants tunneling, to include 

tunneling in real-time classical trajectory calculations.  

A variety of semiclassical methods have been proposed for tunneling calculations, 

but we will limit our attention here to the ones most related to the present work. 

Previously, semiclassical methods for calculating tunneling probabilities have been 

developed successfully for calculating thermal reaction rates in the variational transition 

state theory framework, where dominant tunneling paths start and end near a minimum 
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energy path.8 In approximations (called large-curvature tunneling9,10 and least action 

tunneling11,12) that turned out to have the broadest general validity,13 tunneling occurs 

along straight-line (rectilinear) paths (in the limit of large reaction-path curvature) or 

optimized paths (in the more general case) from a caustic surface of bound vibrational 

motion in the reactant region to a caustic surface of bound vibrational motion in the 

product region. (A caustic is a surface that separates the region visited by classical 

trajectories from regions not visited.) Similar tunneling paths emanating from caustic 

surfaces were proposed for electronically nonadiabatic processes where the state with the 

largest tunneling probability will dominate, and this will often be the state with the 

shortest tunneling path.14 In general, from a semiclassical perspective, the optimum 

tunneling path is the one with the least imaginary action,11,12 which is a compromise 

between a low-energy path, a short path, and a path with a low reduced mass. In this 

semiclassical spirit, adding straight-line tunneling paths normal to caustic surfaces was 

suggested for use in classical trajectory simulations15 via a branching model that was 

originally proposed16 for surface hopping. 

The addition of tunneling paths to trajectories has been used for calculating 

isomerization tunneling splittings where the final terminus of the tunneling path is taken 

as a caustic of the isomerized well and where one calculates an average tunneling 

amplitude by averaging a trajectory in one well rather than branching.17,18,19 Why is 

tunneling not incorporated in classical simulations more broadly? One reason is that the 

proposed branching15 is carried out as for the anteater algorithm16 originally proposed 

for surface hopping. In particular, when a system reaches a turning point in some mode, a 

tunneling probability tP  is computed for a straight tunneling path along the direction of 

that mode, and the tunneling path is followed if tP  exceeds a random number λ (all 

random numbers in this article are uniform on [0,1]). If tP  is, for example, 10-3 or less, it 

means that one tunneling path is followed on average for each one thousand or more 

tunneling events; therefore trajectories will rarely tunnel, and the method will be 
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inefficient for sampling tunneling events. A second reason is that rectilinear tunneling 

paths (i.e., paths that are straight in Cartesian coordinates) in the direction normal to a 

caustic surface may be far from optimum and may even lead to negligible tunneling 

probability. Here we propose improvements motivated by both of these shortcomings. 

Prior to the army ants algorithm, two methods were used for sampling trajectories.  

In one, called the ants algorithm, trajectories would be bifurcated at a quantum event 

(tunneling in the present context, surface hopping in the original context16), and one 

would follow the quantum branch with weight tP  and the non-quantal branch with 

weight 1 − Pt ; this has the disadvantage of often leading to an impractically large 

number of branches to follow, where the large number of branches resemble a swarm of 

ants. The alternative is to follow the quantal branch with probability Pt  or the non-

quantal branch with probability 1 − tP  (like an anteater, this scheme follows mainly the 

paths where ants i.e., trajectories, are most likely to found); this has the disadvantage for 

small tP  that one seldom follows the interesting quantal branches. To make rare-event 

sampling more efficient we replace the anteater algorithm16 by the army ants algorithm 

introduced earlier20 for rare events in surface hopping.  

Furthermore we partially optimize the tunneling paths by using curvilinear 

coordinates instead of rectilinear coordinates, i.e., using valence internal coordinates. It is 

known from vibrational spectroscopy and successful molecular mechanics methods that 

valence internal coordinates (bond stretches, bond angle bends, and torsions) are much 

less strongly coupled than rectilinear normal modes,21 and normal-mode motion is only 

valid for small amplitude motion since normal modes are based on the harmonic-

oscillator approximation. In fact, even along reaction coordinates, rectilinear motion is 

much less physical than valence coordinate motions.22,23 Thus a simple way to partially 

optimize tunneling paths for general situations is to replace rectilinear motion by motion 

along an valence internal coordinate, such as a bond stretch, bond angle bend, or torsion, 

or by motion along a combination of two or more valence internal coordinates, such as a 
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difference of two stretch coordinates for atom-transfer reactions.  Therefore, in the 

application presented here, we use motion along internal coordinates as our tunneling 

paths. 

A consequence of the variational principle that the optimized tunneling path is the 

tunneling path with the least imaginary action is that the optimum tunneling path should 

have the largest tunneling probability. In practice it is impractical to completely optimize 

the tunneling path. The specific partial optimization scheme proposed in the paper is only 

one possibility, but it is sufficient to illustrate the new method for including tunneling. 

Experience shows that partial optimization of tunneling paths is often very useful, and it 

has been used successfully in many previous applications of multidimensional tunneling 

methods with variational transion state theory; this includes reactions in the gas phase, in 

liquid-phase solution, at gas-solid interfaces, and in enzymes.8,11,13,24 The present paper 

allows one to include this kind of tunneling calculation in molecular dynamics 

simulations. 

Methods 

In this section we present the details of the army ant branching algorithm for the 

sampling of rare events and how the tunneling path is computed in internal 

coordinates. 

Army ants branching algorithm. Each trajectory starts with a weight of unity. 

When a tunneling probability Pt  is calculated for a possible tunneling path, we take two 

steps to determine if the trajectory is branched or not and how the weight of a trajectory 

is changed: (1) one computes γ = max(η, Pt ) where η is a parameter, and picks a random 

number λ1. If λ1 > γ, there is no tunneling, and the classical trajectory continues without 

changing its weight. (2) If λ1 < γ, one picks another random number λ2, and if λ2 > 0.5, 

there is still no tunneling, but the weight of the trajectory is decreased by a factor 1 – 

Pt /γ . However if λ2 < 0.5, one accepts the tunneling path and its weight is changed by a 

factor of Pt /γ . Consequently we follow tunneling events about half the time when η is 
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chosen to a value close to 1, but they are weighted to ensure that the result converges to 

the same probability of tunneling as in the anteater method. Since, very often, Pt  << 0.5, 

the statistics on tunneling events are greatly improved, and we can efficiently explore 

regions of space reached only by tunneling. 

The choice of η affects the rate of convergence with respect to the number of 

trajectories but not the converged results, so this choice is a practical matter.  All 

calculations in this article were carried out with η taken as 0.95. Some examples of 

calculations with other values of η are also given for discussion. 

Tunneling path. The trajectory is monitored at every integration step to see if it 

reaches a turning point of the tunneling coordinate, where that coordinate reaches a 

maximum or minimum, i.e., where p ⋅d0  is zero, where p is the momentum and d0  is 

the unit vector along the tunneling direction that defines the initial direction of the 

tunneling in (unscaled) Cartesian coordinate. In the current study, the tunneling direction 

is chosen to be a single valence internal coordinate or a combination of internal 

coordinates. The unit vector d0  is calculated as ∆x0 / ∆x0  where ∆x0  is a small 

displacement of Cartesian coordinate along tunneling direction from the current geometry. 

The Cartesian displacement can be calculated by  

 ∆x0 = A∆R0  (1) 

where A is a generalized inverse matrix of Wilson B matrix,25 and ∆R0 is a column 

vector of internal coordinate displacements. Equation 1 is only accurate to first order, and 

it is used iteratively until ∆x0  is converged.26 When the tunneling direction is along a 

single internal coordinate, all elements of ∆R0 are zero except one corresponding to the 

tunneling direction. More generally each element of ∆R0 represents a small displacement 

of an internal coordinate along the tunneling direction. Atom-transfer reactions involve 

significant changes of at least two bond lengths; for a bond length displacement of the 

breaking bond equal to ∆r  (where ∆r  > 0), we set the bond length displacement of the 

forming bond equal to −l∆r , where l is an adjustable synchronicity parameter. The 
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optimum tunneling path is the one with the greatest tunneling probability,11 so we can 

optimize the path by varying l.  It is possible to optimize trial tunneling paths with more 

parameters, but in the present article we restrict ourselves to the simply choices just 

presented. 

When a turning point is reached, we calculate the tunneling probability in the 

isoinertial coordinate system q related to the 3N-dimensional Cartesian coordinate x by  

 q =m1 2 x /µ1 2  (2) 

where m is a diagonal matrix of order 3N containing three copies of each the N atomic 

masses associated with each of the 3N unscaled Cartesian coordinates, and µ is any 

constant reduced mass. Then the tunneling probability is Pt = e
−2θ  where θ  is the 

imaginary action integral calculated along the tunneling path and given by 

 θ =
1
h

2µ V (q)−V (q0 )[ ]
0

ξmax
∫ dξ  (3) 

where ξ  is the distance along the tunneling path of position q relative to the starting 

point of tunneling path q0 , ξmax  is the length of whole tunneling path in isoinertial 

coordinates, and we have used the fact that the isoinertial coordinate system has the same 

reduced mass µ in all directions of 3N-dimensional space. The physical reasoning leading 

to eq. 3 is the same as used previously.9,15  

Calculations 

To illustrate the new method, we made calculations for hydroxycarbene 

isomerization and HN2 radical dissociation in their ground electronic states:  

 cis-HCOH → trans-HCOH (R1) 

 HN2 → H + N2 (R2) 

 trans-HCOH → H2CO (R3) 

The potential energy surface for R1 and R3 is calculated by the PDDG/PM327 method 

and the trajectories are carried out by direct dynamics by coupling a modified version of 
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the ANT28 program with the MOPAC-mn29 program. An analytic potential energy 

surface30 is used for the HN2 dissociation. Reaction R1 has a barrier of 1.09 eV along the 

H–C–O–H torsional coordinate, reaction R2 has a barrier to dissociation of 0.50 eV, and 

reaction R3 has a barrier of 1.57 eV to transfer H; see Fig. 1.  

The ensemble of initial states was selected to be random except for the fixed total 

internal energy E and zero total angular momentum fixed at zero. For each energy, NVE 

ensembles have 10,000 trajectories for R1 and 100,000 trajectories for R2 and R3. To 

obtain better convergence for demonstrating the results with various η values, we also ran 

400,000 trajectories for R2 at energy 0.44 eV. We used a 4th order Runge-Kutta 

integrator with a step size of 0.1 fs.  

In each case, we define a complete set of 3N –  6 nonredundant internal 

coordinates, where N is the number of atoms.; then we define a tunneling direction. The 

tunneling direction for R1 is the torsion angle, for R2 it is the H–N1 bond length (where 

N1 is the nitrogen closer to H), and for R3 it is a combination of decreasing the forming 

C– Ht bond length and increasing the O–Ht bond length in a ratio l:1, where Ht is the 

transferred hydrogen atom, and l is a fixed parameter for a given calculation on an 

ensemble of trajectories. Thus for R1 and R2, the internal coordinate displacement 

vectors in eq. 1 have all elements zero along tunneling path except H–C–O–H dihedral 

angle and the bond length H–N1 respectively. For R3, the elements of the internal 

coordinate displacement vector corresponding the change of C–Ht and O–Ht bonds are 

−l∆r and ∆r  along the tunneling path and the other four internal coordinate 

displacements (C–H bond, C–O bond, H–C–O angle, and the bending angle of O out of 

the C–H–Ht plane) are zero. The value of ∆r  is zero at the initial turning point and 

gradually changes to a positive value that gives the same energy as that of initial turning 

point.  In defining a set of non-redundant internal coordinates for R3, we took care that 

any internal coordinate involving Ht that is not be fixed along the tunneling path should 

not be included in these 3N – 8 internal coordinates that are not involved in the tunneling 
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direction. For example, with our choice of internal coordinates, when Ht is moving along 

the tunneling path, the C–Ht–O angle are not fixed. 

Reaction is assumed to have occurred and the trajectory stopped when the torsion 

angle is between 130 and 180 deg or between -180, and -130 deg (R1), when the H–N1 

distance is equal to or larger than 4 Å (R2), or when the new C-H bond is equal or 

smaller than 1.2 Å (R3). The reaction probability Pr at time t equals the sum of the 

weights of trajectories that have already reacted divided by the sum of the weights of all 

trajectories at this point in time. 

To calculate rate constant k(E) , we assume the following relation between 

number of non-reactive trajectories ( Nnonreact ) and the total number of trajectories 

( Ntotal ) at time t for an ensemble with energy E if each trajectory is equally weighted 

 Nnonreact (E) = Ntotal(E)exp(−k(E)t) (4) 

If we write the reaction probability as Pr (t)= (Ntotal − Nnonreact ) / Ntotalat time t, then eq. 

4 can also be written as 

 ln(1−Pr ) = −k(E)t  (5) 

Therefore, reaction rate k(E) can be obtained by fitting the linear (or nearly linear) region 

of the decay curve of ln(1−Pr )  vs t.  When each trajectory is weighted by the army ants 

algorithm, the reaction probability Pr (t)  is given as  

 Pr (t) =

W j (t)
j=1

Nreact

∑

W
i
(t)

i=1

Ntotal

∑

 (6) 

where Nreact  is the number of reactive trajectories, and Wi (t)  is the weight of trajectory i 

at time t, and W j (t)  is the weight of reactive trajectory j at time t 
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Results and Discussion 

The decay of the logarithm of the nonreactive probability, ln(1−Pr ) , is plotted in 

Fig. 2 for reactions R1 and R2; the negative slopes of each line after the induction period 

are the steady-state rate constants, which will be given in a later figure. Without including 

tunneling, both reactions take a much longer time to reach the first order decay rate and 

have smaller decay rates by about two orders of magnitude. We noticed that the curves 

with tunneling are not as smooth as those without tunneling and also noticed that decay 

curves with tunneling have much smaller nonreactive probabilities. The scatter in the 

decay curves with tunneling occurs in the region where the number of remaining non-

reactive trajectories is small leading to inevitable numerical noise in the sampling if the 

simulation is carried to long enough time. (The scatter on the curves with tunneling does 

not result from the tunneling method but rather from following the ensemble until there 

are few nonreactive ensemble members remaining).  

For reaction R3, we optimized the tunneling path by adjusting the parameter l that 

appears in the definition of the tunneling direction. Figure 3 shows the natural logarithm 

of the non-reactive probability, ln(1−Pr ), of reaction R3 using various l values.  The 

simulation with l = 1 gives the smallest tunneling probabilities, as seen by the smaller 

rates of reaction when the energy is lower than barrier. The reaction probabilities of 

trajectories increase as l is decreased in Fig. 3, and reaction path with l = 0.7 is 

approximately optimized, at least in a canonical ensemble sense.  

 Reaction rate constants k are plotted as functions of total energy E in Fig. 4 and 

Fig. 5. Although some total energies are greater than the barrier height, the reader should 

keep in mind that most of the initial energy is not in the reaction coordinate and is not 

available for surmounting the barrier due to approximate vibrational adiabaticity in the 

threshold region of a chemical reaction.31 Thus the reaction rate is dominated by 

tunneling at these energies. When tunneling is included, the rate constant k(E)  decreases 

smoothly as the energy is lowered until the classical rate is too slow to calculate. The rate 

constants depend on the l values for reaction R3, and the optimum l value for the rate 
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constants is approximately l = 0.7, which is consistent with Fig. 3. One expects that the 

tunneling may be underestimated because the tunneling paths are not fully optimized; full 

optimization is not practical in semiclassical methods, but research into optimization is an 

interesting subject of further research. 

Note that internal coordinates are nonlinear functions of atomic Cartesians, 

whereas conventional normal-mode coordinates are rectilinear in Cartesians. A major 

advantage of internal coordinates over rectilinear coordinates is that rectilinear 

coordinates usually become unphysical for large deviations from equilibrium structures. 

For example, HCOH has one normal mode for torsional motion, but a large-amplitude 

motion along this rectilinear normal-mode coordinate not only changes the torsion angle 

but also changes C–H and O–H bond lengths, which leads to nonphysical tunneling paths 

and negligible tunneling probabilities.  Our method overcomes this problem by using 

internal coordinates, and we do obtain appreciable tunneling probabilities. 

For the HCOH isomerization R1 when E = 1.56 eV, 2.4% of the trajectories react 

without tunneling; for the HN2 case when E = 0.74 eV, 24% of the trajectories react 

without tunneling. Here, “react without tunneling” refers to the trajectories that react 

before any tunneling branching criterion is satisfied; this becomes more important as the 

energy is raised even in simulations where tunneling is allowed. Note that although only 

76% of the reactive events occur by tunneling for the HN2 case with E = 0.74 eV, the 

reaction rate with tunneling at this energy is about two orders of magnitude larger than 

those calculated without considering tunneling because the rate is determined by the 

slope of the decay curves in Figure 2, and the decay of the reactant population is much 

faster when tunneling is allowed. However, at the lowest energy for which each reaction 

was studied, all reactions occur by tunneling; for these cases, the number of tunneling 

probabilities that falls into each range of order of magnitude is illustrated in Figs. 6 and 7. 

For R1 at 0.86 eV, we observed 10,682 tunneling events for 10,000 trajectories (some 

systems tunnel but do not satisfy the criterion given above for reaction, so we keep 

integrating, and then they tunnel back); for the cases in Fig. 6(b) and 7, we observe 
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100,000 tunneling events for 100,000 trajectories in each case. Note that these numbers 

of tunneling events are those followed according to the army ants algorithm, which 

means (since η is close to unity) that approximately the same number of potential 

tunneling events are not followed in the trajectories. In Fig. 6(a), most tunneling events 

have probabilities between 10−16 and 10−20, and tunneling events with probability 

10−20 or less are accepted 2313 times. In Fig. 6(b), most tunneling events have 

probabilities between 10−5 and 10−13
. However the trajectories with very small 

tunneling probabilities have small weights, and the rate constant for both R1 and R2 is 

dominated by trajectories with tunneling probabilities greater then 10-7.   

The tunneling probabilities are spread over a very large range in R3. Note that the 

trajectories with l = 1.0 have larger number of tunneling events in the peak range 

(probability from 10−14 to 10−22), but the rates are dominated by tunneling events with 

larger probabilities. The numbers of tunneling events at 0.82 eV total energy with 

probabilities in the range of 10−8 to 10−12 are 3072, 3508, 3708, and 3636 for l equals to 

1.0, 0.9, 0.8, and 0.7, respectively. 

Table 1 lists the computational cost for calculations with tunneling and without 

tunneling at a given total energy above threshold. Although calculating imaginary action 

integrals along tunneling paths adds some cost, we see speed up by factors of 3 to 60 due 

to the faster reaction rates. With the anteater algorithm, most trajectories will not tunnel, 

so the average time per trajectory will be similar to the runs without tunneling. However, 

since the dominant tunneling probabilities for reactions R1 and R2 are about 10−4 to 10−5, 

there will be an additional speedup (over and above the speedups in Table 1) of about 4 

to 5 orders of magnitude due to not having to run as large a number of trajectories to get 

good statistics.  
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Table 1 Computation timesa (in hours) 
___________________________________________________________ 
Reaction  with tunneling  without tunneling 
___________________________________________________________ 
R1b 0.05 2.92  
R2c 0.03 0.10  
___________________________________________________________ 
aCalculations were performed in parallel using 80 processors on an HP Linux cluster, 
each with two quad-core 2.8 GHz Intel Xeon processors  

bTotal energy is 1.36 eV and 10,000 trajectories are calculated for the timing test. 
cTotal energy is 0.64 eV and 100,000 trajectories are calculated for the timing test.  

 

Figure 8 shows that the induction time depends on the value of η used in the 

tunneling branching, i.e., smaller η values gives longer induction times. One can imagine 

that the induction time would be longer than the longest practical simulation time if η 

were zero (equivalent to the anteater algorithm) because probability of following a 

tunneling path is very low for small η, and it is hard to observe any tunneling events with 

a reasonable number of trajectories. However, as shown in Fig. 8, after the induction 

period is over, one obtains similar slopes and hence similar rate constants for the different 

values of η. Although reaction rate constants converged with respect to the number of 

trajectories would not depend on η, the reader should be aware that MD simulations with 

a finite amount of sampling always depend to some extent on the nature and extent of the 

sampling leading to some statistical uncertainty,32,33,34,35 as shown by the variation of 

about 15% in Fig. 8. The variation of the results with η is smaller than the combined 

uncertainty due to finite statistics, the initialization algorithm, and the induction time. 

We have shown previously in the context of variational transition state theory in 

which all degrees of freedom can be quantized36,37,38,39,40,41,42,43 that semiclassical 

tunneling methods can be quantitatively accurate for small molecules and for enzyme 

kinetics.13,44,45,46,4748,49 Here we combined the same kind of semiclassical tunneling 

methods with classical molecular dynamics in a practical way; this involves additional 

approximations because nontunneling degrees of freedom are not quantized in classical 

molecular dynamics simulations, an issue that is not solved here but that needs to be 
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addressed in future work. Nevertheless the method as presented eliminates the qualitative 

error of not including tunneling, and it allows simulations to access product regions that 

are inaccessible in the absence of tunneling. 

Concluding remarks 

In this article, we present the army ants tunneling method using internal 

coordinates to define tunneling paths for classical trajectories, and we demonstrate the 

method by calculating tunneling trajectories with tunneling in a single valence coordinate 

for two example reactions and in a combination of two internal coordinates for one atom-

transfer reaction. One of the main goals of the method is to allow one to explore regions 

of phase space reached only by tunneling, because they may lead to different products or 

different energy distributions than are populated by non-tunneling processes. The army 

ants algorithm allows tunneling to be included in classical trajectories very efficiently; 

the full calculations on an ensemble are less computationally expensive than calculating 

the reaction rate without tunneling. The army ants tunneling method is designed to be 

applicable to dynamical processes in arbitrarily large systems, for example, catalysis by 

enzymes or at heterogeneous interfaces, and it also can be extended to electronically 

nonadiabatic dynamics. It is reasonably straightforward to add to any classical molecular 

dynamics program so that one can explore regions of space reached only by tunneling.  
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Figure 1. Potential energy profiles 
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Figure 2. Natural logarithm of nonreactive probability ln(1−Pr )  vs. time at various total 
energies. The HCOH plots are for the cis-HCOH → trans-HCOH reaction, and the HN2 

plots are for the HN2 → H + N2 reaction.  
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Figure 3. Natural logarithm of nonreactive probability ln(1-Pr) vs. time for the trans-
HCOH to H2CO reaction (R3) at total energy E = 0.82 eV (a) and E = 1.22 eV (b), using 
various l values. 
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Figure 4. Rate constants k(E) of reactions R1 (a) and R2 (b). 
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Figure 5. Rate constants k(E) of the trans-HCOH to H2CO reaction (R3) obtained with 
various l values 
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Figure 6. Number of tunneling probabilities that fall into each range of order of 
magnitude. (a) 10000 trajectories of R1 with total energy 0.86 eV (b) 100000 trajectories 
of R2 with total energy 0.24 eV.  
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Figure 7. Number of tunneling probabilities that fall into each range of order of 
magnitude for the trans-HCOH to H2CO reaction (R3) at total energy E = 0.82 eV, 
obtained by various l values. The logarithms are common logarithms in this figure. 
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Figure 8. Natural logarithm of nonreactive probability ln(1−Pr )  vs. time using various η 
values for HN2 dissociation 
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