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NIR Electrochemical Fluorescence Switching from 
Polymethine Dyes 

Seogjae Seo,a Simon Pascal,b Chihyun Park,a Kyoungsoon Shin,a Xu Yang,a 
Olivier Maury,b Bhimrao D. Sarwade,a Chantal Andraudb* and Eunkyoung Kima* 

A polymethine dye was used as a fluorophore and an electroactive modulator in order to achieve 
reversible electrochemical fluorescence switching in the near infrared (NIR) region. An NIR 
emissive polymethine dye, 3H-indolium, 2-[2-[2-chloro-3-[2-[1,3-dihydro-3,3-dimethyl-1-
(phenylmethyl)-2H-indol-2-ylidene]ethylidene]-5-(1,1-dimethylethyl)-1-cyclohexen-1-yl]ethenyl]-
3,3-dimethyl-1-(phenylmethyl)-, bromide (PM1), displayed high absorption and emission in the 
NIR region. In addition, it showed a relatively reversible electrochemical reaction between -0.5 V 
and 1.1 V vs. Ag wire. In contrast, a keto group (C=O) bridged polymethine analogue, 2,6-bis[2-
(1,3-dihydro-1-hexyl-3,3-dimethyl-2H-indol-2-ylidene)ethylidene]-4-(1,1-dimethylethyl) 
cyclohexanone (PM2), showed an irreversible electrochemical reaction, possibly due to the keto 
group interrupting the full conjugation of the entire molecule in PM2. The reversible redox reaction 
of PM1 allowed electrochemical fluorescence switching in the NIR region for the first time. The 
NIR fluorescence switching was visually observable through a visible light cut-off filter with a 
cyclability of over 100. 
 

 

1. Introduction 

Interest in stimuli-responsive fluorescence changes has grown 
rapidly due to a number of applications related to ion sensing,1, 2 
bioanalysis,3-5 fluorescence imaging,6, 7 and reversible control for 
optical memories.8, 9 In order to respond to these research demands, 
electrochemical fluorescence (EF) switching has become a 
promising approach, as it can provide reversible and stable 
fluorescence modulation based on the conversion of redox states.10-15 
The EF switching is based on the energy transfer between the 
fluorophore and the electroactive acceptor, or the intrinsic 
fluorescence quenching of the electroactive fluorophore, so 
reversible electrochemistry and its correlation with fluorescence is 
essential to obtain measurable EF switching.10, 13 Previous reports 
have employed poly(oxadiazole)s,7 poly(methylene-anthracene)s,16 
and various tetrazine derivatives12, 13, 17-19 as materials to design 
reversible and stable EF switching devices. In this context, we 
recently reported a solid-state EF device in which a tetrazine 
fluorophore was blended with a solid polymer electrolyte (SPE) to 
form an electrofluorochromic layer.17, 18 Furthermore, multi-color 
fluorescence switching was achieved by blending a naphthalimide to 
an electrofluorochromic layer, resulting in a white-blue-dark state of 
fluorescence.12 However, attempts has not been made to extend the 
switchable emission to near-infrared (NIR) spectral region, although 
optical properties in NIR region have attractive advantages in bio-
imaging, bio-analysis,20 and night vision devices.21, 22 Especially, in 

the biomedical imaging, the use of NIR emission is a promising 
approach because it can provide non-invasive and background signal 
free images.23 Based on these advantages, NIR dyes featuring 
absorption and emission bands are in the 700-1200 nm spectral range, 
are currently being studied extensively due to the high interest in 
various applications ranging from bioimaging to NIR modulation 
devices and dark field viewing devices.24, 25 Therefore, modulation 
of NIR emission can provide an additional functionality in imaging 
application, such as selective NIR fluorescence probe,26 and 
biomedical diagnosis.27 Also, with dark field viewing application, 
modulation of NIR emission can be a meaningful signaling device, 
and signal perturbing device.28 

Herein, we report NIR EF switching, for the first time, using an 
NIR emissive polymethine dye, after careful control of the redox 
reaction of the dyes within the working potential window. A 
polymethine dye was employed, because it gives fluorescence in 
NIR region with the excitation of visible to NIR incident light, while 
they are electroactive. To investigate the relationship of chemical 
structure on EF switching, a cationic (PM1) and neutral polymethine 
dye (PM2) were examined under the same experimental condition. 
Ultimately, the precise control of the applied potential resulted in the 
optimized ON/OFF switching, while minimizing irreversible 
decomposition.  

Page 1 of 7 Chemical Science

C
h

em
ic

al
 S

ci
en

ce
 A

cc
ep

te
d

 M
an

u
sc

ri
p

t



ARTICLE Journal Name 

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

2. Experimental 

2.1 Materials  

Polymethine dyes PM1, PM2 were prepared following the 
previously reported procedures.25, 29, 30 [PM1: 1H NMR (500.10 
MHz, CDCl3, δ): 8.22 (d, 3J = 14 Hz, 2H, =CH), 7.42-7.23 (m, 18H, 
CHAr), 6.21 (d, 3J = 14 Hz, 2H, =CH), 5.56 (d, 2J = 16.5 Hz, 2H, 
CH2), 5.46 (d, 2J = 16.5 Hz, 2H, CH2), 2.62 (dd, 2J = 16 Hz, 3J = 4 
Hz, 2H, Heq), 2.07 (dd, 2J = 14 Hz, 3J = 14 Hz, 2H, Hax), 1.75 (s, 6H, 
C(CH3)2), 1.73 (s, 6H, C(CH3)2), 1.38 (m, 1H, CH), 0.99 (s, 9H, 
C(CH3)3); 

13C NMR (125.75 MHz, CDCl3, δ): 172.4 (Cquat), 150.4 
(Cquat), 144.1 (CH), 143.0 (Cquat), 141.0 (CH), 134.5 (Cquat), 129.4 
(CH), 129.1 (CH), 128.7 (Cquat), 128.4 (CH), 126.8 (CH), 125.5 
(CH), 122.5 (CH), 111.2 (CH), 102.7 (CH), 49.4 (Cquat), 48.6 (N-
CH2), 42.2 (CH), 32.5 (Cquat), 28.4 (C(CH3)2), 28.3 (C(CH3)2), 27.7 
(CH2), 27.6 (C(CH3)3). UV–vis (dichloromethane): λmax(ε) = 795 nm 
(370,000). ΦF = 0.29 (IR-125 as reference, ΦF = 0.13 in DMSO).] 
[PM2: 1H NMR (500.10 MHz, CDCl3, δ): 8.21 (d, 3Jtrans = 13 Hz, 
2H, =CH), 7.31-7.22 (m, 4H, CHAr), 6.95 (dd, 3J = 7 Hz, 2H, CHAr), 
6.73 (d, 3J = 8 Hz, 2H, CHAr), 5.53 (d, 3Jtrans = 13 Hz, 2H, =CH), 
3.72 (t, 3J = 7 Hz, 4H, N-CH2), 2.92 (d, 2J = 13 Hz, 2H, Heq), 2.18 
(dd, 2J = 14 Hz, 3J = 14 Hz, 2H, Hax), 1.78 (t, 3J = 7 Hz, 4H, CH2), 
1.73 (s, 6H, C(CH3)2), 1.72 (s, 6H, C(CH3)2), 1.50-1.37 (m, 13H, 
CH2 and CH), 1.11 (s, 9H, C(CH3)3), 0.96 (t, 3J = 7 Hz, 6H, CH3-
CH2). 

13C NMR (125.75 MHz, CDCl3, δ): 186.5 (Cquat), 162.3 
(Cquat), 144.3 (CH), 139.7 (Cquat), 141.1 (Cquat), 132.8 (CH), 127.6 
(CH), 126.5 (Cquat), 121.8 (CH), 120.4 (CH), 106.6 (CH), 46.5 
(Cquat), 43.6 (CH), 42.6 (N-CH2), 32.6 (Cquat), 31.5 (CH2), 28.8 
(CH3), 28.7 (CH3), 27.5 (CH3), 26.9 (CH2), 26.8 (CH2), 26.1 (CH2), 
22.6(CH2), 14.0 (CH3). MS (ESI) m/z: [M+H]+ calcd for C46H65N2O, 
661.5091; found, 661.5081. UV–vis (dichloromethane): λmax(ε) = 
508 nm (52,000). ΦF = 0.05 (Rubrene as reference, ΦF = 0.27 in 
methanol).] Tetrabutylammonium hexafluorophosphate (TBAPF6) 
and dichloromethane (MC) were obtained from Aldrich were used as 
a liquid electrolyte. Ag wire, which was used as a reference 
electrode was purchased from Nilaco Corp. All solvents and 
chemicals were reagent grade and were used as purchased.  

 

2.2 Preparation of the EF switching cells 

The fluorescence switching devices consisted of an electrolyte that 
was packed between two ITO electrodes (13 Ω sq-1), with Ag wire (d 
= 0.1 mm) as the reference electrode. The electrolyte solution was 
prepared by mixing the polymethine dyes (0.01 M) in a 0.2 M 
concentration of TBAPF6/MC solution. The switching device was 
prepared by assembling the ITO electrode, with Ag wire as the 
reference electrode, between the working and counter electrodes. 
The electrolyte was carefully injected into the device through holes 
drilled into the counter electrode. The holes were sealed by heating 
with a hot melt 25-μm-thick Surlyn polymer film (Surlyn, Solaronix 
Meltonix 1170-25). The device was then finally sealed with an 
epoxy resin.12 

 

2.3 Measurements 

Electrochemical measurements for the prepared EF switching cells 

were obtained using a universal potentiostat [model CHI 624B (CH 
Instruments, Inc.)]. Cyclic voltammetry (CV) and differential pulse 
voltammetry (DPV) were performed after 5 min of nitrogen purging. 
UV-Vis spectra were obtained using the spectrometer Lambda 750 
(PerkinElmer). Fluorescence spectra were measured using the Model 
LS55 luminescence spectrometer (PerkinElmer). NIR photography 
was obtained with a digital camera (IR cut-off filter removed, Power 
Shot A640, Canon) with a visible light cut-off filter (720 nm, 830 
nm cut-off filter), and with 785 nm excitation source (optical power 
= 3 mW, Su Semiconductor, Korea). The light intensity of excitation 
source was determined by dividing the optical power by the 
irradiation area. When recording the fluorescence along with the 
external voltage, the in-situ fluorescence of the switching device was 
obtained using a luminescence spectrometer.  
 
3. Results and Discussion 

3.1. Optical and electrochemical properties of the 
polymethine dyes 

The optical properties of polymethine dyes were well matched 
with the previous report.25 The cationic polymethine dye (PM1) 
was well soluble in organic solvents and took green color in 
solution. The absorption and fluorescence bands were 
maximized in NIR spectral range, as expected from the long 
electron delocalization between the two electron-donating 
groups through the hydrocarbon skeleton.31 The maximum 
absorption band for PM1 was observed at 795 nm with an 
extremely high extinction coefficient of 370,000 L·mol-1·cm-1 

(Figure 1). The fluorescence appeared as a sharp band in NIR 
region and maximized at 822 nm. The absorption and emission 
colors in the NIR region for PM1 were almost imperceptible 
without the aid of the visible light cut-off filters. On the other 
hand, a neutral polymethine dye (PM2) took on a pale red hue 
when dissolved in dichloromethane, showing an absorption 
max at 508 nm with an extinction coefficient of 52,000 L·mol-
1·cm-1, (Figure 1). This absorption resulted in a bright 
fluorescence band in visible range (max. at 555 nm). Because 
PM2 is a neutral polymethine dye with an electron-donating 
indole group, the absorption band appears in the shorter 
wavelength region compared to the PM1. Ketocyanines, such as 
PM2 can be easily protonated in acidic media, leading to a 
cationic dyes exhibiting intense and red-shifted absorption.29, 30, 

32 

The transparent green and red solution of PM1 and PM2, 
respectively, are shown in the photographic images of Figure 
1c, which were obtained under room light with a normal 
camera without visible light cut-off filters. With the aid of a 
visible cut-off filter, the absorption and emission of the PM1 
solution became visible. The NIR images obtained by the 
digital camera through the cut-off filter with a cut-off < 720 nm 
and <830 nm displayed vivid blue and bright white color, 
respectively, for the PM1 solution. As the digital camera 
presents a processed image, which is white-balanced using a 
white background, the colors of the output image possibly 
indicates the color from the transmitted light out of the 
detectable light. Therefore, the blue color of the PM1 solution 
(Figure 1c, with a <720 nm cut-off) indicates that the light near 
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(Figure S3). The amount of oxidized PM2 at first switching step was 
calculated as 24 % of the whole PM2 in the device. Because PM1 
was reversibly switched by 11% of the total amount of PM1, the 
extra injected/ejected charge would be leading the irreversible 
decomposition. 

Ultimately, we fabricated a reversible NIR EF switching device in 
a 3-electrode system, and we achieved NIR intensity modulation by 
precisely controlling the working potential of the reversible redox 
reaction for PM1 (Figure 4). Upon exposure to a laser light source 
(785 nm), the switching device showed fluorescence in NIR range. 
This NIR emission passed through an optical filter to remove 
background light and was thus pictured by a digital camera. The 
electrode of the device was connected to a potentiostat in order to 
control the applied potential (Figure S5). The images in Figure 4c 
present the NIR switching results from the device containing PM1. 
The device showed the same vivid blue color (with <720 nm cut-off) 
and bright white color (with <830 nm cut-off) emissions seen from 
the PM1 solution. This emission was controlled reversibly by an 
applied potential, based on electrochemical conversion between the 
cation to the radical dication, as shown in Figure 4d. This process 
was reversible for over 100 cycles, but fluorescence loss was also 
observed due to the side reaction. Although the fluorescence contrast 
and cyclability of PM1 were relatively smaller than other EF 
switching devices working in the visible range,12, 15, 17 EF switching 
of the NIR region was observed here for the first time with PM1.  

4. Conclusions 

In summary, we have demonstrated the electrochemical switching of 
NIR fluorescence for the first time, using a polymethine dye (PM1). 
To investigate the relations between the chemical structures of 
polymethine dyes and their optical and electrochemical properties, 
NIR emissive PM1 was compared with a keto group (C=O) 
substituted analogue (PM2). Due to the conjugation of the methine 
chain, PM1 showed NIR emissions, under reversible electrochemical 
reactions. With an applied potential, PM1 undergoes oxidation to a 
radical dication (Dye•2+) and reduction to a neutral radical (Dye•). 
Although the radical dication is known to be unstable, because of its 
possible decomposition reaction such as dimerization and 
dehydrogenation, PM1 exhibited reversible electrochemical 
conversion arising from the steric hindrance of the bulky substituent 
and the reversible reactions between Dye•2+ and the neutral radical 
Dye•. This is in contrast to the electrochemistry of PM2, which 
showed irreversible electrochemical reactions due to the conjugation 
break of the polymethine chain by the keto group (C=O). A stable 
electroconversion of PM1 was applied in EF switching. The device 
showed NIR fluorescence switching with an ON/OFF ratio of ~1.5 
and a cyclability of ~100 cycles. These values were relatively small 
compared to other EF switching, but modulation of the NIR 
fluorescence was achieved for the first time through precise control 
of the redox reactions of polymethine dye. We believe that further 
modification, following this pioneering work, can improve the 
contrast and cyclability significantly. This would be an interesting 
goal to realize highly reversible NIR modulating device based on the 
reversible electrochemical conversion.  
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