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Atomic properties and chemical bonding in the 
pyrite and marcasite polymorphs of FeS2: A 
combined experimental and theoretical electron 
density study 

Mette S. Schmøkel,a Lasse Bjerg,a Simone Cenedese,b, d Mads R. V. Jørgensen,a 
Yu-Sheng Chen,c Jacob Overgaard,*a Bo B. Iversen*a  

The electron density distributions in both polymorphs of the promising photovoltaic material 
iron disulphide have been determined by multipole modelling against state-of-the-art 
synchrotron X-ray diffraction data collected at 10 K using minute single crystals with 
dimensions less than 10 μm. Charge density analysis of FeS2 pyrite and marcasite offers a 
unique opportunity to relate local atomic properties, such as 2-center chemical bonding, atomic 
charges and d-orbital populations, to polymorphism in extended crystal structures. In 
combination with results from periodic calculations on the compounds in the experimental 
geometries using WIEN2k, the study provides unambiguous answers to a number of unsolved 
issues regarding the nature of the bonding in FeS2. The Fe-S bonds exhibit all the virtues of 
polar covalent bonds, with only minor charge accumulation but significantly negative energy 
densities at the bond critical points. Compared to a non-interacting model, the density is found 
to be concentrated along the Fe-S interaction line in support of a partial covalent bonding 
description. The homopolar covalent S-S interaction is seemingly stronger in pyrite than in 
marcasite, determined not only from the shorter distance but also from all topological 
indicators. The study also clarifies that the atomic charges are significantly smaller than the 
estimation based on crystal-field theory of Fe2+, S-1. The experimentally derived Fe d-orbital 
populations are found to deviate from the commonly assumed full t2g set, empty eg set,  and 
they fit exceptionally well with the theoretical individual atomic orbitals projected density of 
states showing a higher dxy participation in the valence band in marcasite compared with 
pyrite. Thus, the differences between the two polymorphic compounds are directly reflected in 
their valence density distributions and d-orbital populations. 
 
 

Introduction 

FeS2 has played a role in crystallography from the very birth of 
the field, and the crystal structure of the pyrite FeS2 polymorph 
was among the first structures to be solved by Bragg using the 
X-ray diffraction technique.1, 2 More recently, iron pyrite has 
attracted strong attention due to its photovoltaic properties: it 
combines a suitable band gap of 0.9 eV, an impressive optical 
absorption coefficient of the order 105 cm-1, high abundance 
and availability with non-toxicity of the constituents, thereby 
making it a candidate for future solar cell materials.3-7 
Unfortunately, these promising properties have never been 
exploited in actual applications, and many reasons for this have 
been mentioned, including the presence of surface states as gap 
states having a detrimental effect on the band gap, or the 

presence of epitaxial growth of the other, less stable FeS2 
polymorph, marcasite, on the pyrite surfaces.3 Nevertheless, 
due to the significant potential that FeS2 holds, applications of 
the pyrite polymorph in photovoltaic devices is far from 
abandoned.8, 9 Consequently, the structure and bonding in both 
of the two FeS2 polymorphs is a topic of continuing widespread 
scientific interest. Historically, the original bonding schemes of 
the FeS2 pyrite, marcasite and other related MX2 structures date 
back more than 40 years and were based on the crystallographic 
and structural differences between the compounds.10-23 More 
sophisticated approaches were naturally since adopted, 
including a study of the bonding trends in a range of iron 
sulphide compounds using topological analysis of theoretical 
electron densities by Gibbs et al.24, 25 Furthermore, it should 
also be noted that iron pyrite was the subject of one of the 
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Figure 2. Top: Edge-sharing of octahedra (left) and S2 dumbbells (right) along the 
c-axis in marcasite. The long, equatorial Fe-S interactions are shown in red 
(α∼82o). Bottom: Qualitative crystal field splitting of the Fe 3d levels in pyrite (S6) 
and marcasite (C2h) according to Hulliger and Mooser (1965) and Goodenough 
(1972). The assignment of d-orbitals to the various energy states is based on 
electrostatic considerations in a coordinate system with the z-axis along the 
short Fe-S interaction in marcasite (see Figure 10). 

 

Part 2. Experimental and theoretical methods 

2.1 Synthesis. 

Marcasite and pyrite single crystals were obtained from an 
autoclave synthesis similar to the one outlined by Drábek et al. 
(2005).65 A glass vial was cut to fit inside a teflon-coated steel 
autoclave and filled with 3 mL saturated iron sulphate 
(FeSO4·7H2O) solution. 4 mL thiosulfate (Na2S2O3·5H2O) 
solution (∼1 M) was added to the autoclave and the glass vial 
with the iron sulphate solution was placed inside. The autoclave 
was closed and heated at 200o for around 120 hours. The 
marcasite product was obtained in the form of thin plates on the 
iron sulphate solution/gas interface and on the walls of the glass 
vial. Very small impurity amounts of minute pyrite single 
crystals were found by careful investigation of the sample 
under a high-magnification optical microscope. 

2.2 Data collection. 

Single crystal synchrotron X-ray diffraction data were collected 
at the ChemMatCARS beam line, 15-ID-B, at the Advanced 
Photon Source, ANL, Chicago on two single crystals of FeS2 
with the marcasite and pyrite structure, respectively. An 
octahedrally shaped ∼10x10x10(3) μm3 sized pyrite crystal and 
a plate-like ∼5x7x10(3) μm3 sized marcasite crystal were glued 
onto very thin glass fibres. A Bruker APEX II CCD detector 
was used to record the diffracted intensities at λ = 0.4428 Å and 
T = 10(5) K. A total of 15 and 23 full rotation (360o) ϕ-scans 
were collected for the pyrite and marcasite crystals, 
respectively. The ϕ-scans were collected at 2θ  angles of 0 o, 
10o, 30o and 50o and differing ω-angles with exposure times of 
0.3 seconds and, for a few of the high-order runs, 0.5 seconds. 

2.3 Data reduction. 

The integration was carried out with SAINT+ in which the 
integration box sizes were optimized manually by careful 

inspection of each run.66 Three of the runs from the pyrite data 
collection were omitted for the final data processing, due to 
high Rsymm values, without affecting the completeness. The data 
were scaled in the program SADABS67 which was also used to 
carry out an absorption and oblique correction. Finally, data 
averaging was performed with the program SORTAV.68, 69 
Selected crystallographic data are listed in Table 2. 

2.4 Theoretical calculations.  

Theoretically derived electron densities and structure factors of 
the FeS2 marcasite and pyrite structures were obtained from 
periodic ab-initio DFT calculations in the experimental 
geometry using the WIEN2k program package. Calculations 
were done using the PBE functional on 21×17×27 (marcasite) 
and 17×17×17 (pyrite) k grids with RKmax=8.5. The charge 
density within the atomic spheres was expanded to include 
spherical harmonics up to l=10. Atom and orbital-projected 
DOS were calculated using the QTL subprogram, and these 
were furthermore used to obtain d-orbital populations using the 
local coordinate system shown in Figure 10. 
 

Table 2. Crystallographic information and experimental details. 

 Pyrite Marcasite 
Formula FeS2 FeS2 
Crystal system Cubic Orthorhombic 
Space group Pa-3 (205) Pnnm (58) 
Z 4 2 
μ (mm-1) 2.79 2.72 
T (K) 10(5) 10(5) 
λ (Å) 0.4428 (28 keV) 0.4428 (28 keV) 
Crystal size (μm) ∼10x10x10 ∼5x7x15 
a(Å) 5.4155(2) 4.4330(3) 
b(Å) - 5.4261(3) 

c(Å) - 3.3887(2) 
α,β,γ(o) 90 90 
V (Å3) 158.82(2) 81.51(2) 
Tmin, Tmax 0.89, 0.95 0.91, 0.96 
Completeness 99.5 % 97.2 % 
Nmeasured, Nunique 36550, 663 29560, 1041 
Rint, <N> 4.54 %, 55.1 4.47 %, 28.4 
(sinθ/λ)min, (sinθ/λ)max (Å

-1) 0.160, 1.439 0.146, 1.427 
 

2.5 Multipole refinements.  

A multipole model based on the Hansen-Coppens formalism70 
was refined against each of the two experimental and 
theoretical data sets using the program XD2006.71 The 
aspherical atom models employ scattering factors derived from 
STO relativistic wave functions found in the VM data bank of 
XD2006. All the symmetry-allowed multipole parameters up to 
the hexadecapole level were refined for each atom for both 
experimental and theoretical structure factors. In the 
experimental data refinement the scale factor, the atomic 
positions, and the ADPs were allowed to vary as well. Also, in 
the case of marcasite, an isotropic, Type I extinction correction 
was fitted whereas for pyrite, the Type II extinction correction 
was found to perform better; in both cases a Lorentzian mosaic 
distribution is assumed.72, 73 Anomalous dispersion was 

Free atom Oh S6 C2h

dz2

dx2-y2

dxy

dxz dyz
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included in the model and only reflections for which I/σ(I)>2 
and sinθ/λ<1.43 Å-1 (pyrite) or sinθ/λ<1.41 Å-1 (marcasite) 
were used together with statistical weights (1/σ2(I)). For the two 
theoretical data sets, a cut-off of sinθ/λ<1.43 Å-1 and unit-
weights were applied.  
 Concerning the modelling of the valence electrons on Fe as 
well as the radial description of S, refinement of several 
different models has been attempted for the two FeS2 structures. 
The Fe valence consists of a localized 3d shell and a diffuse 4s 
shell (Figure 3). Describing these two features simultaneously 
through fitting of the valence density can be difficult. In 
particular, refining a model describing the diffuse 4s valence 
electrons against experimental data is generally troublesome 
due to the fact that their main contribution to the scattered 
intensity lie in a few of the lowest-order reflections which are 
also the part of the data most severely affected by extinction 
effects.26, 74-76 The final approach taken by Stevens et al. (1980) 
towards this problem in the case of pyrite was to transfer the 
two 4s electrons on Fe to the S valence, and leave only the 3d 
radial functions for the description of outer shell on Fe. The 
difference between the current study and the results of Stevens 
et al. is that inclusion of the population of the 4s shell as a 
variable in the refinement resulted in a physically meaningful 
positive population in our case, whereas Stevens et al. obtained 
unreasonable values. In order to avoid a mixing of the 3d and 
4s radial functions, the valence shell on Fe is split into two 
separate parts, each with an associated monopole governing the 
population that is refined. One part is related to the 3d shell, for 
which only even-order multipoles can be refined (due to 
symmetry restrictions), and the other corresponds to the 4s 
shell. Radial expansion contraction parameters, κ and κ‘, were 
refined for the Fe 3d shell, however, for the diffuse 4s part of 
the Fe valence only the monopole population parameter was 
allowed to vary (i.e. κ = κ’ = 1). Concerning the description of 
the sulphur valence shell, a combination of 3s and 3p type 
radial functions (3s23p4) were employed and a single valence 
population parameter was refined. The set of optimized nl radial 
function parameters for S determined by Dominiak et al. (2006) 
were used, which means that the standard set nl=(4,4,4,4) was 
substituted by the set nl=(2,4,6,8).77, 78 The optimized radial 
functions are illustrated in Figure 3 from which it can be seen 
that the multipole function for the dipole (l=1) is significantly 
contracted whereas the higher order multipoles (l=2,3,4) are 
becoming more diffuse for nl=(2,4,6,8) compared with the 
standard functions (nl=4 for all l). One of the arguments for this 
choice of parameters (apart from lower R factors and residual 
density, Δρ) is that the resulting multipole-refined theoretical 
EDD reproduces the topology of the direct theoretical density 
better than when the standard nl-set is used. In particular, a 
negative value of the Laplacian at the S-S bond critical point 
(see Part III) was obtained with the modified model but not 
with the standard model.27 The results of the multipole 
refinements are presented in Table 3 and in the Supporting 
Information. 

 
Figure 3. Standard radial valence density functions, Rl, plotted as function of the 
radial distance, r, from the atomic nuclei for various combinations of valence 
shells of S (nl=4 for l=1-4) and Fe (nl=4 for 3d3d, nl=5 for 3d4s, nl=6 for 4s4s for 
l=1-4). Inset: The modified radial functions of S using nl=(2,4,6,8) for the 
multipoles with l=(1,2,3,4), respectively. The two plots are on arbitrary scales 
with respect to each other and they are both based on the Slater-type radial 
functions used in the Hansen-Coppens formalism. An αl value of 3.8512 bohr-1 
was used for S.78 In the case of Fe, αl=2·ζave, where ζave is a population-weighted 
average of the ζ-values associated with each valence orbital (3d, 4s) obtained 
from the VM databank in XD2006.71, 77, 79 

Table 3. Results from multipole refinements against experimental and 
theoretical data. s = sinθ/λ. Nrefl is the number of used reflections with 
I/σ(I)>2. For pyrite, x(S)=y(S)=z(S) and U11=U22=U33. In both cases, 
(x,y,z)=(0,0,0) for Fe. QMM are the atomic charges derived from the multipole 
populations. Max extinc. relates to the most extinction affected (hkl) 
reflection.  

 Pyrite Marcasite 
 experiment theory experiment theory 
smax (Å

-1) 1.43 1.43 1.41 1.43 
R(F) (%) 0.73 0.08 0.82 0.07 
R(F2) (%) 1.34 0.11 1.38 0.11 
Nrefl 588 749 874 1192 
±Δρ (e/Å3) -0.40/+0.44 -0.16/+0.14 -0.55/+0.57 -0.16/+0.09 
±Δρ (e/Å3) 
s<0.8 Å-1 

-0.29/+0.20 -0.07/+0.07 -0.31/+0.28 -0.09/+0.07 

x (S) 0.384879(6) 0.38488 0.20003(2) 0.20005 
y (S) - - 0.37820(1) 0.37819 
U11 (Fe) 0.00173(1) - 0.00154(2) - 
U22 (Fe) - - 0.00177(2) - 
U33 (Fe) - - 0.00180(2) - 
U12 (Fe) -0.00001(0) - 0.00000(1) - 
U11 (S) 0.00208(2) - 0.00193(3) - 
U22 (S) - - 0.00212(2) - 
U33 (S) - - 0.00214(2) - 
U12 (S) 0.00000(1) - -0.00014(1) - 
P3d (Fe) 6.1(2) 6.008(7) 6.0(1) 5.978(6) 
P4s (Fe) 0.4(4) 1.74(2) 1.5(2) 1.84(2) 
Pvalence (S) 6.7(2) 6.13(1) 6.2(1) 6.093(9) 
QMM(Fe) +1.5(6) +0.25(3) +0.6(4) +0.19(2) 
QMM(S) -0.7(2) -0.13(1) -0.2(1) -0.093(9) 
κ (Fe) 0.97(1) 0.9924(4)  0.97(1)  0.9949(4) 
κ’ (Fe) 1.04(3) 1.035(5) 1.06(4) 1.040(5) 
κ (S) 0.961(9)  0.9848(5)  0.985(9)  0.9870(4)  
κ’ (S) 0.93(7) 0.966(4) 0.93(5) 0.954(4) 
Max extinc. 5.6 % (200) - 5.6 % (101) - 
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2.6 Quality of refinement. 

Evaluating the quality of the models fitted to the four data sets 
in terms of normal probability and ΣFo

2/ΣFc
2 plots (Figure S3-

S4, S13), R-values and residual density (Table 3, Figure 4) 
provides highly satisfying results in all cases taking into the 
account the high resolution of both the experimental and 
theoretical data sets, and the high concentration of electron 
density in these inorganic, highly symmetric structures.28 In 
order to take a closer look at the distribution of residual density 
peaks around the atoms, plots of the residual density in 
different planes of the unit cell have been evaluated for the 
multipole refinements against the experimental data (Figure 4 
and Figure S6-S7). The residual density features are found to be 
reasonably low, though small systematic features are found 
around the iron atom in both structures which might indicate a 
need for improved radial functions for this element as well. In 
this context it is important to note that both Fe and S are 
situated at high-symmetry sites in the two structures implying a 
potential risk of error accumulation at or around these as well 
as other high-symmetry positions in the unit cell.80, 81 In case of 
the theoretical data sets, similar symmetrical features around 
iron are vaguely seen; however, the highest residuals are found 
in the vicinity of the atomic cores (Figure S14-S15) and could 
probably be ascribed to the radial functions.82, 83 

 
Figure 4. Residual density based on reflections with sinθ/λ < 0.8 Å-1 in one of the 
FeS4 planes of pyrite (left) and marcasite (right). The increment in the contours is 
0.1 eÅ-3. Positive contours are plotted with full, blue lines. Negative contours are 
plotted with dashed, red lines. The dotted, black lines are the zero contours. 

 
In general, the results are in good agreement with respect to the 
Fe 3d and S valence density parameters in all four cases. The 
population of the iron 3d shell, P3d, refines to a value of almost 
exactly 6 e in all four cases as expected, in contrast to the study 
of Stevens et al. which yielded a value of 4.4 e. Considering the 
population of the 4s valence shell obtained from multipole 
refinement against the two marcasite data sets, values of around 
1.6 and 1.8 e are obtained from experiment and theory, 
respectively, indicating a good agreement between these two 
models as well. Also, for the refinement against the theoretical 
pyrite data a value in the same range (~1.7 e) is obtained. 
However, the experimental pyrite data yields a surprisingly low 
value of only 0.4(4) e and a correspondingly higher S valence 
population. Considering the previously mentioned problems 
associated with the fitting of the 4s population parameter, this is 

not surprising. The major scattering contribution from the 4s 
shell is below 0.2 Å-2 for which there are four reflections in the 
marcasite data set, but only two reflections in the case of pyrite 
due to the higher space group symmetry. Additionally, it is a 
well-known fact that the atomic charges obtained from 
multipole refinement are ambiguous due to overlap of the rather 
diffuse multipole functions on neighbouring atoms.84, 85 As 
shall be seen later, the discrepancy between the experimental 
and theoretical atomic charges for pyrite is smaller when 
evaluated from the atomic basin (ATB) populations. 
 

Part 3. 2-center chemical bonding in FeS2 

3.1. Static deformation densities 

The static model deformation densities, ρdef = ρmodel – ρIAM 
(IAM = Independent Atom Model), around Fe and in the 
various FeS4 planes of the two structures are shown in Figure 5 
and Figure S8 for the experimental EDDs. These plots show the 
expected features of an unfilled 3d valence around Fe in an 
electrostatic pseudo-octahedral field,26, 28 and the distorted 
character of the two octahedral fields is reflected in the 
deformations around the Fe sites which are not cubically 
symmetric. In accordance with the predictions of ligand field 
theory, exemplified in Figure 2, the deformation density of Fe 
shows maxima pointing towards the faces of the octahedra and 
minima pointing towards the six ligands. This complies with 
the view of localized 3d electrons being preferentially in the t2g 
orbitals. The positive density peaks in the internuclear Fe-S 
regions strengthen the idea of Fe eg orbitals being involved in 
Fe-S bond formation and indicate that some degree of 
covalence is present. Also, there is a hint that the axial 
(vertical) Fe-S interactions in marcasite are more covalent than 
the longer equatorial ones (Figure 5, right). 
 The static model deformation density in the FeS4 plane of 
pyrite qualitatively agrees with the dynamic model deformation 
density plot of Stevens et al. (1980) with respect to the fact that, 
along the line joining Fe and S, negative density (charge 
depletion) is found in the vicinity of Fe. However, the positive 
peaks indicating charge accumulation around the midpoint of 
the Fe-S bond is absent in the plot of Stevens et al.. In spite of 
this, the authors anticipate some degree of covalence in the Fe-
S interaction based on the fact that this would destabilize the S-
S bond in agreement with the long S-S bond length observed in 
FeS2 (d(S-S) = 2.16 Å) compared to the more ionic disulphide 
compound, SrS2 (d(S-S) = 2.103 Å)26, 86 Also, one should keep 
in mind that the plots cannot be directly compared since they 
depict different planes and since one is based on the static 
model density whereas the other one is dynamic and, as a 
consequence, more diffuse. Along these lines, Stevens et al. 
suggest that the absence of the covalent density peak in the Fe-
S internuclear region can most likely be assigned to the 
diffuseness of the density.  
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Table 4. Results from topological analysis of experimental (experiment) and 
theoretical (W2k) densities for marcasite (m) and pyrite (p). MM refers to 
theoretical electron densities obtained from multipole refinement, and 
CRYST98 to the results of Gibbs et al.24. The TOPXD program85 has been 
used for the multipole fitted densities. d: shortest distance between the atoms 
in Å. AIL: length of the atomic interaction line in Å. X: either Fe or S. b: 
bond critical point (bcp). ρb: electron density in e/Å3 evaluated at the bcp. 
∇2ρb: Laplacian of the electron density in e/Å5 evaluated at the bcp. 

  d AILX-b AILS-b  ρb  ∇2ρb  
 
m 
Fe-S1 
 

experiment 2.2355 1.007 1.233 0.606 5.512 
W2k MM 2.2355 1.016 1.220 0.559 5.662 
W2k  1.016 1.220 0.581 4.803 
CRYST98 2.231 1.024 1.207 0.598 5.140 

m 
 
Fe-S2 
 
p 

experiment 2.2530 1.013 1.241 0.528 5.981 
W2k MM 2.2530 1.016 1.237 0.549 5.437 
W2k  1.019 1.235 0.561 4.711 
CRYST98 2.250 1.028 1.222 0.575 4.967 
experiment 2.2631 1.009 1.255 0.526 6.205 
W2k MM 2.2631 1.018 1.246 0.538 5.542 
W2k  1.021 1.242 0.552 4.666 
CRYST98 2.263 1.032 1.231 0.565 4.923 

m 
 
S-S 
 
p 

experiment 2.2119 1.106 1.106 0.825 -0.370 
W2k MM 2.2120 1.106 1.106 0.774 -0.358 
W2k  1.106 1.106 0.781 -1.406 
CRYST98 2.212 1.106 1.106 0.762 -0.124 
experiment 2.1597 1.080 1.080 0.953 -0.902 
W2k MM 2.1596 1.080 1.080 0.850 -1.045 
W2k  1.080 1.080 0.855 -2.226 
CRYST98 2.178 1.089 1.089 0.806 -0.614 

 

 

  

Figure 7. Laplacian profiles along the line joining the nuclei for the short (top, 
left) and long (top, right) S-Fe interactions in marcasite, and for the S-Fe 
interaction in pyrite (bottom, left). The profiles are obtained from the multipole 
refined (black lines) and the IAM (red lines) density based on experimental data. 
The insets show an enlargement of the region around the bcp. A comparison of 
the S-Fe bond paths for pyrite (black line) and marcasite (red and turquoise line) 
based on the experimental multipole densities is also shown (bottom, right). 

 
Another hint comes from the position of the bcps. In all cases 
the distance of the AIL from Fe to the bcp is significantly 
shorter than its covalent radius (~ 1.3 Å)90 but longer than the 
ionic radius (~ 0.75 Å for Fe2+).98 This would indicate a picture 
in-between the neutral and doubly ionized description of iron. 

A much clearer view is obtained when analysing the local 
energy densities which are obtained through the adoption of the 
Abramov approximation.99 In Table 5 the local kinetic, 
potential, and total energy density evaluated at the Fe-S and S-S 
bcps (b) are reported for the experimental and theoretical EDDs 
of pyrite and marcasite obtained from multipole refinement. 
 According to the classification schemes developed by 
Macchi, Sironi, Proserpio and Gatti,95, 96, 100 the covalent nature 
of the S-S bonds is emphasized by the negative total energy 
density, Hb<0, and by Gb/ρb<1. The same description emerges 
from Espinosa’s classification101 (|Vb|/Gb>2). When the two 
polymorphs are compared, the values of ρb, ∇2ρb, Hb as well as 
the bond lengths, suggest a slightly more covalent S-S 
interaction in pyrite compared to marcasite. Furthermore, the 
mixed shared/closed shell nature of the Fe-S interactions 
previously suggested is now confirmed. In all cases the total 
energy density, Hb, is negative which indicates that all the Fe-S 
interactions have some degree of covalent character. The values 
of Gb/ρb∼1 are typical for donor-acceptor interactions, while a 
value of |Vb|/Gb between 1 and 2 is associated with the so called 
“transit region” of incipient covalent bond formation, on the 
border between shared and closed shell interactions. The value 
of ρb is fairly low; however, as pointed out by Macchi et al. and 
others, the fact that ρb is small for diffuse interactions involving 
heavy elements is not necessarily a sign of a weak bond, but 
could rather be an indication of the diffuseness of the bonding 
electrons.95, 100 
 Comparing the topological descriptors evaluated at the bcp 
(Table 4 and 5) for the two polymorphs, the three different Fe-S 
interactions are clearly very similar. However, as evidenced by 
the shorter bond distance, the slightly higher ρb, the slightly 
smaller ∇2ρb and the slightly more negative Hb, the shorter Fe-S 
interaction in marcasite appears to be somewhat more covalent 
than the others. This is consistent with the less covalent S-S 
bond with respect to pyrite, as previously discussed, and the 
smaller charge found on the iron atom (see Part IV). In 
summary, the corresponding nature of the Fe-S and S-S 
interactions in the two structure types are in good agreement 
with the proposition that a strengthening of the Fe-S interaction 
will cause a destabilization of the S-S bond as mentioned in the 
introduction.16, 26 This may be related to the speculations of 
Eyert et al. who, based on electronic structure DFT calculations 
on pyrite, conclude that the chemical stability of the compound 
can be attributed mainly to Fe-S bonding.6 Assuming that the 
same arguments hold for the marcasite compound, one would 
expect this to be the more stable polymorph which is not the 
case.63 In this context one must keep in mind, though, that the 
degree of covalency cannot generally be equated with the 
overall bond strength since the electrostatic contribution to the 
bond energy cannot be ignored. 
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localized nature of the t2g shell is corroborated by the rather 
limited spread in the energy states associated with these 
electrons. That is, the t2g orbitals behave mostly as non-bonding 
orbitals in agreement with the molecular orbital schemes 
proposed in literature (Figure S2), and a population greater than 
1.5 e is always found. On the contrary, the Fe eg orbitals are 
located above and below the Fermi level and clearly mix with 
the sulphur valence states to form broad bonding and anti-
bonding bands, also in accordance with the MO/band theory 
description presented in Part I.6 Furthermore, the small (< 1 e) 
but non-negligible population of each of the eg orbitals 
indicates that the bonding part of the Fe(eg)-S(3s,3p) band is 
populated and that the charge is, to some extent, shared 
between Fe and S. The higher contribution of (empty) eg states 
above the Fermi level agrees with the statement by Kjekshus16 
and Goodenough19 that these states are mainly anti-bonding 
with respect to the Fe-S interaction. In this way the d-orbital 
populations and DOS account for the partial covalent character 
of the Fe-S interactions and the diamagnetic properties of FeS2. 
They also reflect the differences between the two polymorphs: 
In marcasite, the dxy population is higher than the population of 
the dxz and dyz orbitals. According to the general picture given 
by Goodenough on MX2 marcasite compounds the dxy orbital 
on the transition metal is capable of mixing with the anion 
valence states whereas the dxz and dyz are non-bonding.19 Since 
dxy is anti-bonding with respect to the anions it will be higher in 
energy than the other t2g states. When the dxy orbital is 
populated, as it inevitably is in FeS2, the concomitant repulsion 
with the ligands in the equatorial xy-plane will cause a 
lengthening of the equatorial metal-ligand bonds in order to 
diminish the dxy-anion overlap. As a result, dxy becomes non-
bonding and is lowered in energy. This is the reason for the 
relative ‘elongation’ of the Fe-S bonds in marcasite along the c-
axis. In pyrite, where all Fe-S interactions are equivalent and 
longer than those in marcasite, the t2g-type orbitals are close to 
degenerate in the chosen local coordinate system and, 
accordingly, have almost equivalent populations and orbital-
projected DOS (Table 7 and Figure 11 top).  
 According to the simplified but widespread electrostatic 
scheme depicted in Figure 2, the higher population of dxy in 
marcasite could suggest that the equatorial Fe-S bonds in 
marcasite are so long that the energy of dxy is in fact below that 
of dxz and dyz. However, as clearly illustrated by the DOS, this 
local orbital-based picture is no longer valid in the extended 
solid where orbitals are replaced by bands. From the marcasite 
DOS it seems that the dxy states right below the Fermi level 
peak at higher energies than the dxz and dyz, and the initial 
response would be to expect a higher population of the latter. 
The fact that this is not the case shows that there is a larger 
number of available dxy states below the Fermi level than above 
compared with dxz and dyz (Table 7 and Figure 11 bottom). That 
is, dxz and dyz contribute with a comparably higher number of 
states in the conduction band which, from the semiconducting, 
diamagnetic properties of the compound, is known to be empty. 
Generally, the distribution of the t2g-states both below and 
above the band gap explains why the valence band can be filled 

despite the fact that none of the t2g-like orbitals have 
populations as high as 2 e, as would otherwise be expected if 
the non-bonding d-orbitals were filled and fully localized below 
the Fermi energy.  
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Figure 11. Total and atom-projected DOS and Individual Atomic Orbitals 
projected DOS of the Fe d orbital states for pyrite (top pair) and marcasite 
(bottom pair). The results have been obtained from the periodic DFT calculations 
in WIEN2k using the experimental FeS2 geometries (see section 2.4). 

 
Conclusion 
As already expected from speculations on compounds with the 
pyrite and marcasite structure back in the 1960’s and 70’, there 
is a close relationship between the geometry, the bonding 
interactions, the d-orbital populations, and the band structure of 
this family of materials which has now been verified from 
experimental electron density analysis. This has been achieved 
even though inorganic extended solids such as transition metal 
sulphides represent a great challenge for X-ray charge density 
determination. By utilizing high-energy synchrotron radiation, 
minute single-crystals, and low temperatures we have managed 
to collect high resolution X-ray diffraction data with limited 
extinction effects on two polymorphs of FeS2 of sufficiently 
high quality to obtain an excellent match with ab inito periodic 
DFT calculations. 
 Analysis of the experimental and theoretical electron 
density distributions revealed that the Fe-S bonds are on the 
border between shared and closed shell interactions with both 
ionic and a non-negligible degree of covalent character. The 
charges on Fe and S of around +⅔ and –⅓ e, respectively, are 
significantly smaller than the formal +2 and −1 charges 
supporting the polar covalent nature of the Fe-S interactions. 
This description is directly obtained on a ‘local’ atomic level 
from both multipole refinements and from topological analysis. 
It is furthermore corroborated by band structure calculations, 
offering a non-local picture of the population of the electronic 
states in extended crystal structures, which show clear signs of 
covalent mixing between the valence states on sulphur and the 
3d eg-like states on iron. That is, irrespective of the approach 
taken, the same overall bonding description is obtained for the 
two FeS2 compounds. 
 The major discrepancy between the two structures in terms 
of bonding is found to be more covalent S-S interactions and 
correspondingly weaker Fe-S bonds in pyrite compared to 
marcasite. Furthermore, the distribution of the d-orbital-like 
density directly reflects a difference between the two 
polymorphs considering that the population of the dxy orbital is 
noticeably higher than the population of dxz and dyz in 
marcasite, whereas the distribution of electrons among the t2g 
states in pyrite is more even. A non-negligible population of the 
eg-like states again indicates the covalent component to the Fe-
S bonding, and the diamagnetic properties of the compounds, 
despite the non-zero eg population, can be explained in terms of 
‘delocalization’ of the eg electrons through hybridization with 
the valence states on sulphur causing them to participate in the 
collective electronic states extending across the entire solid. 
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† In the case of pyrite, this is achieved when selecting the option yielding 

the lowest population of both dz2 and dx2-y2. The x- and y-axis are lying 

almost in one of the FeS4 planes and almost along the Fe-S interactions, 

whereas the z-axis is slightly more misaligned. In the case of marcasite, 

the only option yielding a coordinate system for which the z-axis is 

pointing almost exactly along the shorter Fe-S bond is the one 

corresponding to the smallest population of dx2-y2. The x- and y-axes are 

lying almost in one of the FeS4 planes and almost along the Fe-S 

interactions, whereas the z axis is slightly more misaligned. The reason 

why the axes are not exactly along the bonds is probably related to the 

discretized grid used for the search. 

†† The populations and DOS have also been evaluated for a local 

coordinate system for which the z axis points exactly along the short Fe-S 

bond in marcasite and one of the Fe-S bonds in pyrite while x and y are as 

close as possible and equidistant from the equatorial Fe-S bonds in 

marcasite and from two other Fe-S bonds in pyrite (see Table S5 and 

Figure S25 in the Supporting Information). No significant differences are 

found between the results obtained from using the two slightly different 

coordinate systems. 

 

Electronic Supplementary Information (ESI) available: Additional 

illustrations, and figures and tables with the results from the multipole 

refinements and the topological analysis, together with additional results 

from DOS calculations. See DOI: 10.1039/b000000x/ 
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