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ABSTRACT 

Photonic crystals are materials that are used to control or manipulate the propagation of light 

through a medium for a desired application. Common fabrication methods to prepare photonic 

crystals are both costly and intricate. However, through a cost-effective laser-induced 

photochemical patterning, one-dimensional responsive and tuneable photonic crystals can easily 

be fabricated. These structures act as optical transducers and respond to external stimuli. These 

photonic crystals are generally made of a responsive hydrogel that can host metallic 

nanoparticles in the form of arrays. The hydrogel-based photonic crystal has the capability to 

alter its periodicity in situ but also recover its initial geometrical dimensions, thereby rendering it 

fully reversible and reusable. Such responsive photonic crystals have applications in various 

responsive and tuneable optical devices. In this study, we fabricated a pH-sensitive photonic 

crystal sensor through photochemical patterning and demonstrated computational simulations of 

the sensor through a finite element modelling technique in order to analyse its optical properties 

on varying the pattern and characteristics of the nanoparticle arrays within the responsive 

hydrogel matrix. Both simulations and experimental results show the wavelength tuneabilty of 

the sensor with good agreement. Various factors, including nanoparticle size and distribution 

within the hydrogel-based responsive matrices that directly affect the performance of the sensors, 

are also studied computationally. 
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INTRODUCTION 

Photonic crystals (PC) have applications in a myriad of applications such as optical devices, 

sensing materials and display technologies.[1] We studied the optical tuneability of one-

dimensional (1D) photonic crystals, also known as Bragg mirrors. The mechanism behind the 

operation of photonic crystals is governed by the periodicity of their lattice anatomy, which can 

directly affect the propagation of photons. Periodicity in lattices represents an alternating pattern 

of macroscopic dielectric media along a specific direction.[2, 3] If the absorption of light by the 

entire structure is minimal, and there is a large contrast between the dielectric strength of the 

alternating media, some frequencies are filtered out as they pass through the media. The 

excluded group of frequencies is called the photonic band gap (PBG). A wide array of optical 

applications have been devised, which utilise the band gaps of photonic crystals, such as Fabry-

Perot filters, distributed feedback lasers (DFBs),[4] reflective coatings for sunglasses or aircraft 

windows and anti-reflective coatings for light-emitting diode (LED) enhancement of output 

efficiency.[5] Photonic crystals can also be used as waveguides,[6, 7] wavelength 

multiplexers[8] and colour filters.[9] All of these devices have a wide range of commercial 

applications from telecommunications based on optical fibres and routing to medical fields for 

sensing and quantitative analyses.[10] 

Photonic crystal-based dynamic structural coloration in nature is rare. Notable examples 

include fish (e.g. Paracheirodon innesi),[11, 12] cephalopods[13] and beetles (e.g. Tmesisternus 

isabellae).[14, 15] The diversity of photonic structures might provide camouflage, warning 

colouration, superiority in reproductive behaviour, signal communication, thermoregulation and 

conspecific recognition. The dynamic coloration is generally achieved by altering the dielectric 

Page 3 of 25 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 4

structure either by changing the thickness of the multilayers or the refractive index of individual 

layers through chemical reactions. The operational mechanism for these naturally occurring 

tuneable photonic crystals may seem quite simple, but difficulties arise in the fabrication of such 

structures in the laboratory. A photonic crystal is constructed according to the frequency range 

that the PBG must fall in. If infrared frequencies are required, micron dimensions must be used 

for a given geometry.[4] The higher the frequency band the smaller must be the photonic crystal 

structure. Hence, for the visible region, which is the main interest of this study, the fabrication is 

challenging and costly. Most typical strategies to fabricate a 1D geometry photonic crystal are 

based on either molecular beam epitaxy (MBE)[16] or chemical vapour deposition (CVD).[17] 

However, MBE is a slow and expensive process, while CVD lacks positional precision and 

compatibility with several notable materials.[18-24] Consequently, they do not fulfill the desired 

attributes for mass production capability and practical applications via low cost, and material and 

process flexibility. 

A rapid, low-cost and efficient approach is to develop a PBG structure through creating a 

periodic structure via laser light.[25] It has been demonstrated recently that the light-directed 

fabrication of 1D photonic crystal structures in functionalised media allow tuning their PBG in 

response to external stimuli.[25] The photonic crystals therefore act as chemical sensors. The 

materials used to construct these photonic crystals were composed of a functionalised hydrogel 

and metallic silver nanoparticles; the resulting polymer was both transparent and elastic. The 

silver nanoparticles were organised within the hydrogel in particular formations (via laser 

photochemical patterning) such that it produces a periodicity through the thickness of the 

hydrogel (see Supporting Information for Electron Micrographs). 
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The nanoparticle-based multilayered structure that was formed within the hydrogel acts as a 

1D photonic crystal, which diffracts the frequencies of electromagnetic radiation that fall within 

the band gap region. When the band gap region shifts its position to higher or lower frequencies, 

different frequencies are back scattered. The functionalised hydrogels used as the medium for the 

multilayered structures have the ability to vary their thickness in response to chemical stimuli. 

For example, this may be achieved via protonation and deprotonation of carboxyl groups in pH-

sensitive hydrogels. Altering the thickness of the hydrogel directly changes the lattice constant of 

the photonic crystal periodicity and therefore induces a band gap shift. 

Here we demonstrate a theoretical and experimental study of a 1D photonic crystal-based 

tuneable sensor. A photonic crystal sensor sensitive to pH changes was fabricated using laser-

directed photochemical patterning. Computational simulations are utilized to analyze the 

tuneability and optical characteristics of the photonic sensor to achieve further improvements in 

the fabrication procedure. 

 

MODELLING OF PHOTONIC CRYSTAL SENSOR 

To present the working principle of the PC sensor, we used a finite element method based 

computational software, COMSOL Multiphysics
®

.[26] The photonic crystal consisted of 

periodic layers of nanoparticles in a hydrogel medium. The photonic crystal patterns consisting 

of stacks of randomly sized nanoparticles were generated using a MATLAB code. Since the 

hydrogel medium has a refractive index of 1.512, and the laser wavelength used for 

photochemical patterning was λ=532 nm, then λ/2n would give a lattice constant of l=176 nm to 

the nanoparticle-based multilayered structure. As shown in Figure 1, the 1D periodic array of 

stacks consisted of nanoparticles designed as nanospheres with different radii.  
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As a starting point, the number of nanospheres tested per stack was ~60, with 6 stacks in total. 

Along the vertical axis of each stack, the nanospheres were uniformly distributed, whilst in the 

horizontal axis, the nanospheres were distributed within the layers defined by the laser-induced 

photochemical patterning. To achieve this, a normal random distribution was performed with the 

mean positions of the stacks set with a distance equal to the lattice constant. Additionally, to 

render the photonic pattern more realistic in terms of representing a fabricated photonic 

multilayer system, a normal random distribution was also used to define the radii of the 

nanospheres. The mean value of the radii was set within a range from 4-24 nm, σ=5 nm. 

After generating the nanoparticle patterns in MATLAB, they were imported into COMSOL for 

two-dimensional (2D) modelling. The pattern of nanospheres was then surrounded with a square 

domain of a medium that mirrored the material of the hydrogel to have a refractive index of 

1.512. The remaining subdomains (i.e. nanospheres) were set to have an electrical conductivity 

of silver (61.6 mS/m). Since there is an absorption of electromagnetic radiation by the silver 

nanoparticles, a complex refractive index was required. This absorption should not affect 

significantly the propagation of light when taking into account a small number of stacks. 

However, the absorption can reduce the efficiency of diffracted light when considering photonic 

crystals that have a high number of stacks. Figure 1 shows how the photonic crystal was 

represented when fully constructed in the Comsol Multiphysics
®

 software. The electromagnetic 

waves were incident on the photonic crystal from the left and propagated from left to right along 

the array of nanoparticle stacks. The left boundary of the cell was set to a scattering boundary 
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condition. The light source was defined as a plane wave of varying wavelengths obeying by the 

following equation[26]: 

 

� � �� � ��� � 	
�� � �	
�1 � 
 ∙ ����������	
��        (1) 

where, n is the complex refractive index, Hz is the magnetic field strength at position r, k is the 

propagation constant and Hoz is the initial magnetic field strength. Meshing was performed with 

the smallest finite element size of ~2 nm to resolve each nanoparticle. Once meshing was 

established, a computation was performed via a parametric sweep, providing the ability to solve 

for a range of wavelengths in a single simulation run. The wavelength parameter values set 

covered a range from 400 nm to 900 nm within the entire visible spectrum. Finally, using “Power 

outflow and time average” boundary integration, the relevant data of transmission of the waves 

was collected. By analysing the results, the amount of radiation reaching the opposite end of the 

photonic crystal can be estimated. 

 

Figure 1. A simulated geometry of a photonic crystal (a) Model geometry showing silver 

nanoparticle stacks within a hydrogel medium. (b) Meshing of the silver nanoparticle pattern. 

 

Simulation results 
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 8

Figure 2 shows the simulated optical transmission results for the photonic crystal. Figure 2(d) 

illustrates the transmission spectrum for the PC. The spectrum shows peak reflectivity at ~532 

nm, corresponding to the wave propagation for a lattice spacing of 176 nm, shown in Figure 2(a). 

This is the wavelength that undergoes lowest transmission due to Bragg diffraction, which 

defines the green diffracted colour of the photonic crystal system. This demonstrates that the 

colour of the photonic multilayer device is dictated by the spacing between the nanoparticle 

stacks. 
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Figure 2. Model geometries and wave propagation results for the Bragg diffracted waves for 

photonic multilayer structures with lattice constants of (a) 176 nm, (b) 215 nm and (c) 270 nm. 

(d) The simulated transmission spectra for different photonic crystal lattices. A red shift in the 

reflection bands was observed with the increase in lattice constants. 

Additional simulations were performed to analyse the effect of expanding the nanoparticle 

lattice on the reflection band gaps. Here, the photonic multilayer structure was expanded, while 

keeping the number and dimensions of the nanoparticles constant, simulating the tuneable nature 

of a hydrogel-based photonic crystal device. Tuneable hydrogel-based systems are functionalised 

and tailored to respond to an external stimulus, such as a pH change. This response results in a 

corresponding shrinkage or expansion of the hydrogel, and hence, of the multilayered lattice 

within it. As shown in Figure 2(b-c), the lateral expansion of the photonic crystal system results 

in an increase in the effective-stack spacing, stack size and a reduction in the concentration of 

nanoparticles per stack. The overall effect of these changes on the wave propagation was clearly 

observed in the simulated transmission results. The transmission spectra (Figure 2(d)) show a red 

shift in the reflection bands with an increasing stack spacing. The expanding multilayer structure 

displayed a changing colour (reflection band) varying across the visible spectrum from 

approximately 532 nm to 815 nm. It was also observed that with an increase in stack spacing, the 

efficiency of the multilayer structure decreases, shown by the decrease in the intensity of the 

reflection band. This could be due to the decrease in the concentration of nanoparticles present in 

each stack, which reduces the effective index contrast between the nanoparticle stacks and the 

surrounding medium.  

 

PC Sensor fabrication  
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 10

Based on the working principle of a tuneable 1D PC (as demonstrated in the simulated results), a 

pH-sensitive photonic crystal sensor was fabricated. The PC sensor consisted of a poly(2-

hydroxyethyl methacrylate) (pHEMA) film (~10 μm thick) on a glass substrate. First, the glass 

substrate was treated with 3-(trimethoxysilyl)propyl methacrylate in acetone 1:50 (v/v) to 

promote adhesion of the methacrylate polymer to the substrate (Figure 3a). A monomer solution 

(200 µl) consisting of 2-hydroxyethyl methacrylate (HEMA) (91.5 mol%), ethylene 

dimethacrylate (EDMA) (2.5 mol%), and methacrylic acid (MAA) (6 mol%) was prepared. The 

solution was mixed by 1:1 (v/v) with 2% (w/v) 2-dimethoxy-2-phenylacetophenone (DMPA) in 

propan-2-ol and the resulting solution was polymerised on the silanised glass substrate using UV 

light-induced free radical polymerisation for an hour (Figure 3b). The resulting pHEMA and 

glass substrate system was rinsed with ethanol (100%) in order to remove unreacted compounds 

(Figure 3c). 

Under red safe lighting, an AgClO4 solution (200 μl, 0.3 M) dissolved in propan-2-ol and DI 

water (1:1, v/v) was allowed to perfuse into the polymer layer for 3 min (Figure 3d). The excess 

AgClO4 solution was removed with a squeegee and the film was dried under a tepid air current 

for 5 s (Figure 3e). For 30 s, the pHEMA-glass system was submerged into a photosensitising 

bath, which consisted of lithium bromide (0.3 M, 40 ml) in 3:2 (v/v) methanol:H2O and 1,1'-

diethyl-2,2'-cyanine iodide (1:500, w/v, 1 ml) in methanol (Figure 3f). The slide was washed 

thoroughly with deionised (DI) water (Figure 3g). 
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Figure 3. Fabrication of a photonic crystal sensor via silver halide chemistry. (a) A glass slide 

was functionalised with silane chemistry; (b) the monomer mixture was polymerised on the glass 

slide; (c) the resulting system was rinsed with ethanol; (d) A AgClO4 solution was allowed to 

diffuse into the polymer; (e) the excess AgClO4 solution was removed and the system was dried; 

(f) Silver halide grains were formed in the pHEMA film; (g) the system was rinsed with DI 

water; (h) the system was exposed to a single pulse of a laser-light at 5°; (i) the latent image was 

developed to metallic silver; (j) the system was neutralised; (k) undeveloped silver halide grains 

were removed from the system; and (l) the system was rinsed with ethanol solution in order to 

remove the cyanine dye from the hydrogel matrix. 

Once the photosensitisation was achieved, the system was exposed to laser light and 

developed. A levelled Petri dish, with a mirror placed on the bottom surface, was filled with 

unbuffered ascorbic acid (2%, w/v) (pH 2.66). Polymer side facing down, the slide was 

immersed in the bath with an inclination of 5º. The polymer film was equilibrated in the bath for 

15 min. Next, the film was exposed to a single 6 ns pulse by Nd-Yttrium-Aluminum-Garnet 
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 12

(Nd:YAG) laser (350 mJ) with a spot size larger than the pHEMA-glass system (Figure 3h). A 

photographic developer (pH 13.0) comprising of 4-methylaminophenol sulphate (0.3%, w/v), 

ascorbic acid (2%, w/v), sodium carbonate (5%, w/v) and sodium hydroxide (1.5%, w/v) was 

dissolved in DI water. The film was submerged in the developer until no more darkening was 

seen (Figure 3i). The film was washed thoroughly with DI water and immersed in acetic acid 

(5%, v/v) solution to neutralise the developer (Figure 3j). The film was rinsed with DI water and 

immersed in 10% (w/v) sodium thiosulphate mixed with ethanol 1:1 (v/v) for 15 min to remove 

the undeveloped lithium bromide grains (Fig 3k). Finally, the film was submerged in an ethanol-

water (50% v/v) solution for 15 min to remove the cyanine dye from the polymer matrix and this 

process was repeated three times (Figure 3l). The result is a 1D photonic crystal consisting of 

silver nanoparticles layers within a dynamic hydrogel medium. Similar multilayer structures 

have also been reported earlier using this method (see Supporting Information). 

 

EXPERIMENTAL RESULTS 

Photonic crystal sensor response 

Optical measurements were performed on the fabricated pH-sensitive photonic crystal sensors. 

Buffer solutions (150 mM) consisting of Na2HPO4-citric acid (pH 3.00-8.00), Na2HPO4-HCl (pH 

9.00), Na2HPO4-NaOH (pH 10.00) were prepared to obtain the desired pH values. The sensor 

(0.5 cm × 2.5 cm) was first submerged into a cuvette and buffers in the range of pH 3.00-10.00 

were dispensed into the reservoir. The cuvette was centred in a goniometer setup having a white 

light source and spectrometer. The reflection spectra from the PC sensor were measured using 

the spectrometer. A bifurcated cable was used to feed the spectral data into a camera as well to 

capture images corresponding to the spectrometer measurements. Figure 4(a) shows the 
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 13

measurements of reflection spectra of the pH-sensitive photonic crystal sensor. With the increase 

in pH, the hydrogel expands, which consequently increases the lattice spacing between the silver 

nanoparticle layers. The reflection spectra was red shifted by ~280 nm, which was predicted by 

the simulation results. An increase in lattice spacing consequently reduced the effective index 

contrast, hence the efficiency of the multilayer structure decreased, also predicted by the 

simulations. The tunable wavelength shift as a function of pH is shown in figure 4(b) After every 

reading, the pH buffer was removed and the cuvette flushed consecutively three times for each 

new buffer point. A standard error bar in the figure 4(b) represents three replicates of the same 

sensor. Standard error bars in pH were approximated using linear interpolation based on the 

calibration curve. The apparent pKa value was calculated as 6.08 using the Henderson-

Hasselbalch equation. Figure 4(c) shows the camera images (colour readouts) for the PC sensor 

showing different colours diffracted in the presence of different pH values. The sensors operated 

within the visible spectrum as well in the near infrared. The spectrophotometer has a resolution 

of 0.5 nm wavelength shift, which corresponds to a minimum fringe swelling distance of 0.18 

nm, which obeys the Bragg’s law (λpeak = 2 n d cos(θ)), where λpeak is the wavelength of the first 

order diffracted light at maximum intensity, n is the average effective refractive index, d is the 

lattice spacing between the two consecutive layers, and θ is the angle of incidence of the 

incoming illumination. Since a ~10 µm thick hydrogel was fabricated in this study, it can 

theoretically accommodate ~55 fringes. In order to cause a resolvable spectral shift, the hydrogel 

needs to swell a minimum of ~9.7 nm. 
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Figure 4. (a) Visible-near-infrared diffraction spectra of a photonic crystal sensor swollen by 

different pH solutions using phosphate buffers. (b) The sensor response over three trials. The 

measured wavelength shifts in the reflection spectra. (c) Colorimetric readouts of the photonic 

crystal sensor at various pH, taken using a CCD camera. 

The pH-sensing range and the sensitivity of the sensor can be controlled through variation of 

the nature of the ionisable co-monomer in the polymer matrix and its concentration.[27] The 

sensor can also be synthesised to respond to other analytes such as glucose,[28] metal ions[29] 

and hormones.[30] 

 

Simulations of other parameters 

Further simulations were also carried out to study different parameters that could influence the 

performance of the presented PC sensor. This analysis will be helpful to optimise the fabrication 

of the current photonic crystal structures. 
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Effect of mean nanoparticle size 

The effect of varying nanoparticle radii on the performance of the photonic crystal was 

evaluated. Nine different geometries were generated with a range of mean nanoparticle radii 

from 6 nm to 22 nm. The number of nanoparticles per stack was kept constant at 60. The 

transmission plots in Figure 5 show that as the nanoparticle size increases, so does the intensity 

of the reflection band, which can be attributed to the area that these respective nanoparticles with 

varying sizes cover. It was stated in the previous simulation run that a higher effective refractive 

index of the stack will give a stronger reflection. Therefore, if all these configurations have the 

same number of particles, then those with larger particles will cover more area within the 

hydrogel medium, thus resulting in a higher effective refractive index. The disadvantage, 

however, of having a photonic structure with very large nanoparticles, is that these particles 

induce a very broad bandwidth and a redshift on their reflection band gap. 
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Figure 5. Simulated transmission for a variety of patterns consisted of silver nanoparticles of 

lattice constant 176 nm but different mean radius size. Large nanoparticle mean radius sizes lead 

to broader stop bands centered at longer wavelengths.  

 

The broad bandwidth can be explained by the uneven uniformity in the width of the stacks in a 

photonic crystal pattern. For example, for r=22 nm, not all five stacks have the same width, 

because MATLAB attempted to generate a pattern where the nanoparticles were evenly spaced 

inside a stack and hence placed them with a modest degree of uniformity along the horizontal 

direction. The red shift can also be explained by the surface plasmonic resonances of the silver 

nanoparticles.[31] The excitation of surface plasmons arises from the excitation of a collective 

electron oscillation within the nanostructure induced by the incident light. This leads to a large 

optical local-field enhancement and a dramatic wavelength-selective photon scattering and 

localisation at the nanoscale. The plasmonic resonances are highly affected by the size, shape 

and the medium of silver nanoparticles. The reflected light/band gaps displayed by the PC sensor 

were highly influenced by the plasmonic resonance of the silver nanoparticles. As the average 

nanoparticle size increased, the peak plasmonic resonance underwent a red shift. Therefore, the 

band gaps broadened as they represent an effective reflection, which occurred due to the 

periodicity of the stacks and the surface plasmon resonances of the large silver particles.  

The ideal radius size should be between 8 nm and 10 nm even if they seem to give weaker 

reflections than the larger size particles. In this range, the surface plasmon resonance and the 

lattice constant dictated band gaps seem to coincide. The reflection intensity can also be 

improved by increasing the concentration of the particles as discussed later. 
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Effect of number of nanoparticle stacks 

The effect of changing the number of nanoparticle stacks was also studied. As shown in Figure 

6(a-c), three configurations were simulated, with all consisting of 60 nanospheres per stack with 

a mean radius of 10 nm and a lattice constant of 182 nm. Figure 6 (d) shows the transmission 

plots respectively for all configurations. All curves show a transmission dip at 550 nm. This 

shows that the reflection band does not change position by adding or removing stacks of silver 

nanoparticles with the same periodicity. By looking at the depth of each trough it can be clearly 

seen that, as the number of stacks increases, so does the intensity of the reflected diffraction. For 

6 stacks, there is a 60% reflection (0.4 normalised transmission), for 5 stacks there is a 48% 

reflection and for 4 stacks a 40% reflection. Therefore, at 6 stacks the reflection seems to be 

stronger than other two. It is also observed that the lower the reflection, the wider the trough 

appears to be. The full width at half maximum (FWHM) of the 4 stacks curve is 160 nm, 

whereas in a 6 stack it is 110 nm. Consequently, the greater the number of nanoparticle stacks, 

the deeper the PBG trough and narrower the bandwidth become. 
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Figure 6. Simulations were performed with (a) 4 stacks, (b) 5 stacks and (c) 6 stacks of silver 

nanoparticles, with a lattice constant of 182 nm. The wave propagation results are shown for the 

wavelength of 550 nm in each case. (d) Each curve represents the transmission along the patterns 

with the corresponding number of stacks. All of them show a stop band centered at 550 nm, 

however with varying depth. 

 

Effect of the number of nanoparticles per stack 

Four different configurations were used with varying numbers of nanoparticles per stack, ranging 

from 20 to 80 nanoparticles per stack (Figure 7). Comparing the model geometries, we can 

observe that as the number of nanoparticles per stack increases, the stacks become more uniform; 

like a continuous medium with fewer voids. This means that the effective refractive index of the 
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stacks is different in each case. As shown in the spectral results (Figure 7), the case with 20 

particles per stack gives very weak reflection. With an increasing number of particles the 

reflection band becomes stronger, with the deepest one reaching 65% of reflection for 80 

particles per fringe. Increasing the number of particles increases the index contrast between the 

layers with and without the nanoparticles, thus resulting in lower reflection. Also with the 

increase in the number of nanoparticles the net absorption increases leading to effectively lower 

transmission. By carefully observing the position of the trough it seems that it undergoes a red 

shift with the increase in particles per stack. At 20 particles per stack, the minimum point of the 

curves are located near 530 nm, but for the other two concentrations the minimum point is 

located at about 555 nm. This shift could be due to the overall increases in the size of the 

nanoparticles stacks and also due to a shift in the surface plasmon resonances caused by the close 

proximity of nanoparticles. Therefore, an increase in particle concentration per stack will result 

in a corresponding increase in the contrast characteristic of the photonic crystals.  
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Figure 7. Simulations were performed with (a) 20 particles, (b) 40 particles, (c) 60 particles and 

(d) 80 nanoparticles per stack. (e) The transmission spectra corresponding to above 

concentrations of particles per stack. 

 

Effect of anomalies in the photonic multilayered pattern 

The effect of anomalies in the photonic multi-layered pattern was evaluated by simulating four 

new pattern configurations, in which the mean sizes of the nanoparticles increases while moving 

from the first to the last stack (Figure 8). Such distortions are normally present in optically 

fabricated photonic crystal sensors, since the metallic nanoparticles are introduced into the 

polymeric matrices through a diffusion and reduction process, leading to inhomogeneous 

distribution of nanoparticle concentrations dispersed within the matrix. The simulated geometries 

contained six stacks and all begin with the first stack of nanoparticle mean radius of 10 nm. For 

example, Figure 8(a) shows a pattern with nanoparticle mean radius that increases by 2 nm per 

stack, so the first stack has a mean radius of 10 nm and last stack a mean radius size of 20 nm. 

The reason of performing these simulations is to evaluate how possible errors during the 

fabrication process, such as inhomogeneous nanoparticle distribution through the hydrogel can 

affect the optical properties of the photonic crystal. The transmission plots in Figure 8 show a 

reference curve for which there is a constant mean radius along all the stacks with the remaining 

curves representing a gradient change of mean radius size. In the worst-case scenario of an 

increase of 2 nm per stack, the curve shows a trough being much wider and centred on a new 

central wavelength of about 585 nm, rather than 550 nm.  

The lattice constant of the reference curve differs from the worst-case scenario, as the latter has 

a much smaller effective lattice constant. In Figure 8(d), it can be observed that the distance 
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between last two stacks is very small, almost unrecognizable; hence, the total effective lattice 

constant is smaller. Also, the spacing between each pair of stacks is non-uniform, which leads to 

several band gaps overlapping each other and effectively leading to a wide bandwidth. This may 

give a strong reflection, hence highly intense optical reflection from the photonic crystal, but 

poor selectivity (broadband response) in terms of an optical device that needs to display narrow 

peak diffraction. 

 

Figure 8. Four different patterns with the nanoparticle mean radius increasing by (a) 0.5 nm, (b) 

1.0 nm, (c) 1.5 nm and (d) 2.0 nm per stack along the horizontal direction of geometry. (e) 

Transmission spectra of these four patterns compared to a pattern of constant mean radius size. 

 

CONCLUSIONS 
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We have fabricated an optical photonic multilayer structure based on a stack of nanoparticle 

layers within a hydrogel-based system (1D photonic crystal) and computationally studied 

different parameters affecting its performance. The wavelength tuneability was studied both 

computationally and experimentally with good agreement. Further simulation results also 

showed that the degree of diffraction and bandwidth of the photonic crystal can be altered to the 

desired level by modifying some basic parameters of the geometrical structure. We have 

demonstrated that the reflection band increases in strength with an increasing number of 

nanoparticle stacks. The change in the reflection was dramatically increased, along with a 

narrowing of the bandwidth, even by the addition of two extra nanoparticle stacks. It was also 

found that an increase in the number of nanoparticles is proportional to both the depth and width 

of the bandwidth. Therefore, by rationally fabricating photonic crystals with high control over 

the entire system, including the size and distribution of the nanoparticles within the tuneable 

medium, one can avoid undesirable effects like red-shifted reflection and wider band gaps, and 

successfully obtain highly precise tuneable optical devices. Many further applications can follow 

from these results ranging from printable photonic crystal devices for biomolecular sensing to 

display and security applications, where specific photonic crystal patterns can lead to unique 

light transmission spectra. 
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