Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

ARTICLE

Cite this: DOI: 10.1039/xoxxooooox

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Recent Progress towards Transition Metal-Catalyzed Synthesis of γ-Lactams

Long-Wu Ye,*^a Chao Shu,^a and Fabien Gagosz*^b

The occurrence of the γ -lactam unit in the framework of various biologically active compounds has greatly contributed to the design and development of new synthetic transformations to access this important structural motif. Among the numerous methods developed so far, those based on transition metal catalysis are of high value as they generally allow an efficient and selective access to functionalized γ -lactams under rather mild reaction conditions. An overview of the recent advances in this field is presented herein. Metal-catalyzed processes are reviewed by highlighting their specificity and applicability, and mechanistic rationale are presented when possible.

Long-Wu Ye obtained his B.S. from Zhejiang University in 2003 and his Ph.D. in 2008 with Prof. Yong Tang at Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences (CAS). After postdoctoral works with Prof. Cheng Liu and Subhash Sinha at The Scripps Research Institute and Prof. Liming Zhang at the University of California at Santa Barbara, he joined Xiamen University in 2011 as an associate Professor. He was promoted to a full Professor in 2012. His current research interests include the development of new transition metal catalyzed reactions and their use in natural product synthesis.

Chao Shu was born in 1988 in Anhui, China. He received his BS degree from Anhui Normal University in 2011. He is currently a third year graduate student with Prof. Long-Wu Ye at Xiamen University. His current research interests focus on transition metal catalyzed synthesis of heterocycles.

Fabien Gagosz obtained his PhD with Prof. Samir Z. Zard at Ecole Polytechnique, France in 2002. After postdoctoral studies with Prof. William B. Motherwell at the University College, London, he returned to Ecole Polytechnique in 2004 to start his independent academic career as a Chargé de Recherche CNRS. He was promoted Directeur de Recherche in 2012. His research concerns homogeneous catalysis in general, with a focus on late transition metal-catalyzed methods.

1. Introduction

The γ -lactam moiety can probably be considered as one of the most important heterocyclic motifs used in chemistry. It is indeed found in a very large number of bioactive natural and non natural molecules (Figure 1) and has therefore been used as a privileged structural subunit for the design of several pharmaceutical agents.¹⁻² In addition, γ -lactams also served as valuable building blocks for the synthesis of complex

molecules due to their latent reactivity and the large panel of highly selective transformations they can undergo.³ The development of methodologies allowing their synthesis is therefore of major importance and various synthetic approaches⁴ to γ -lactam compounds have been established over the years among which are the expansion of β -lactams,⁵ formal [3+2] annulations,⁶ or Lewis acid catalyzed tandem reactions.⁷

The development of efficient transition metal-catalyzed C-C and C-heteroatom bond-forming reactions is a central subject in

RSCPublishing

Page 2 of 13

current organic synthesis.⁸ In line with the renewed interest for γ -lactams in organic and medicinal chemistry, substantial progress has been recently made in the development of practical and efficient metal-catalyzed protocols to access this heterocyclic motif.

As a very limited number of reviews have been published on this topic,⁹ the aim of this paper is to highlight the recent advances made during the last ten years in the field of transition metal-catalyzed synthesis of γ -lactams. It should be pointed that this review is strictly limited to the synthesis of this motif and that other 5-membered cyclic amides, such as oxindoles and phthalimidines, are not discussed herein.

2. Rhodium catalysis

2.1. Rh-catalyzed intramolecular carbenoid C-H insertion

Since Doyle's pioneering work in the late 1980s,¹⁰ the rhodiumcatalyzed intramolecular C-H insertion reaction of α diazoamides has emerged as one of the most attractive methods for the synthesis of a variety of γ -lactams. While of general interest, this approach often suffers from competitive reactions which result in the formation of regioisomers, including β - and γ -lactams, and/or stereoisomers. The ratio of products mainly depends on the nature of the substrates employed and the nature of ligands present on the rhodium complex used as catalyst. In particular, it was found that the nature of the substituent at position α to the carbenoid carbon could significantly affect the chemoselectivity and regioselectivity of the C-H insertion reaction, as originally reported by Wee and Padwa.¹¹

In a series of elegant studies, Jung and co-workers recently demonstrated that the presence of a phenylsulfonyl moiety at the α position of the carbenoid carbon could allow the regioand the stereoselective Rh-catalyzed formation of highly functionalized γ -lactams.¹² In this case, the phenylsulfonyl group was proposed not only to alter the electron density at the carbenoid center but also to exert a steric effect during the C-H insertion reaction thus explaining the high regioselectivity observed. In 2003, these authors reported the preparation of various γ -lactams **2** via a Rh-catalyzed cyclization of N-benzylated α -diazo- α -(phenylsulfonyl) acetamides **1**.¹³ It was found that the reaction could afford trans γ -lactams **2** as the major products in moderate to excellent yields with a high regioselectivity (Scheme 1). It should be mentioned that in this case, besides the phenylsulfonyl group, the *N*-benzyl moiety also appears to enhance the regioselectivity of the C-H insertion. The interest of this method was further demonstrated by the total synthesis of rolipram **3**,¹⁴ a known selective inhibitor of phosphodiesterase (PDE) type IV possessing antiinflammatory and antidepressant activities.

Scheme 1 Rh-catalyzed intramolecular C-H insertion of N-benzylated α -diazo- α -(phenylsulfonyl) acetamides 1.

Besides the phenylsulfonyl group, Afonso and co-workers found that a phosphoryl group could also be used to achieve high regioselectivity in Rh-catalyzed intramolecular C-H activation. In the presence of 1 mol% Rh₂(OAc)₄, the reaction of α -diazo- α -(dialkoxyphosphoryl)acetamides **4** indeed furnished the corresponding γ -lactams **5** in moderate to good yields with a good stereocontrol of the trans diastereoselectivity (Scheme 2).¹⁵ Importantly, the introduction of the bulky dialkoxyphosphoryl group significantly suppressed the formation of β -lactam **6**.

 $\label{eq:scheme 2} \begin{array}{l} \mbox{Scheme 2} \mbox{Synthesis of α-phosphory-γ-lactams 5 via Rh-catalyzed cyclization of α-diazo-α-(dialkoxyphosphoryl)acetamides 4. \end{array}$

Additional studies showed that such an intramolecular C-H insertion reaction could proceed well even in net water. For example, γ -lactam **8** could be readily obtained in water at 80 °C from α -diazo- α -phosphoryl-acetamide 7, thus highlighting the practicability of this methodology (Scheme 3).¹⁶

Scheme 3 Synthesis of $\gamma\text{-lactam}$ 8 via rhodium-catalyzed intramolecular C-H insertion.

In 2005, Wee and co-workers reported a Rh-catalyzed cyclization reaction to prepare *N*-bis(trimethylsilyl)methyl (*N*-BTMSM) γ -lactams **10**. It was found that upon treatment with a Rh(II) catalyst, diazoamides **9** could be converted into the corresponding γ -lactams **10** in moderate to good yields (Scheme 4).¹⁷ It is worth mentioning that the bulky *N*-BTMSM

(Scheme 4).¹⁷ It is worth mentioning that the bulky *N*-BTMSM group plays an important role in this cyclization reaction since it helps in efficiently controlling the conformation of the tertiary diazoamide substrate 9.

Scheme 4 Synthesis of N-BTMSM protected γ -lactams 10 via Rh(II)-catalyzed C-H insertion reaction.

In subsequent work by the same group, they successfully extended the scope of the reaction to the use of *N*-BTMSM diazoamide substrates of type **12**. As described in Scheme 5, the Rh-catalyzed transformation furnished in this case highly functionalized trisubstituted γ -lactams **13** with good to excellent regio-, chemo-, and diastereoselectivities.¹⁸ In this case, the regioselectivity of the reaction could be explained not only by the presence of the BTMSM group but also by the electronic effect exerted by the OR² group. It was also proposed that the choice of the rhodium catalyst was crucial to perform an effective control of the product distribution. The synthetic utility of this methodology was highlighted by the total synthesis of (±)- α -allokainic acid **14**.¹⁹

Scheme 5 Rh(II)-carbenoid-mediated synthesis of γ -lactams 13 from N-BTMSM diazoamides 12.

2.2. Rh-catalyzed multicomponent-coupling reaction

Rhodium-catalyzed multicomponent-coupling reactions have been employed as a mild and efficient way to generate new carbon-carbon bonds.²⁰ Application of this strategy to the preparation of functionalized γ -lactams was investigated in 2006 by Shintani and Hayashi. It was found that the threemolecule four-component coupling reaction of 1,6-enyne **15**, phenylzinc chloride, and iodomethane in the presence of a rhodium catalyst could lead to the formation of γ -lactams **16** in good yields (Scheme 6).²¹

Scheme 6 Synthesis of $\gamma\mbox{-lactams}$ 16 via rhodium-catalyzed multicomponent-coupling reaction.

The reaction presumably proceeds following a two-step carborhodation-alkylation-transmetalation sequence, as shown in Scheme $7.^{21}$

 $\mbox{Scheme 7}.$ Plausible catalytic cycle for the rhodium-catalyzed synthesis of $\gamma\mbox{-}lactams\,16.$

2.3. Rh-catalyzed reductive cyclization of acetylenic aldehydes

Transition metal-catalyzed reductive coupling of alkynes with aldehydes has received considerable attention during the recent years, as it represents a powerful and efficient way to generate new C–C bonds.²² In 2006, Krische and co-workers reported that such a type of transformation could be used to produce γ -lactams in an enantioselective manner (Scheme 8). It was indeed found that the reductive cyclization of acetylenic aldehydes **17** into functionalized γ -lactams **18** could be efficiently performed in the presence of a rhodium catalyst under an atmosphere of hydrogen. Moderate to good yields and excellent enantioselectivities were obtained when (*R*)-Cl,MeO-BIPHEP was used as the ligand.²³ Deuterium labelling studies revealed that the reaction might proceed via an oxidative coupling, followed by a hydrogenolytic cleavage of the resulting metallacycle involving a σ bond metathesis.

Scheme 8 Synthesis of chiral $\gamma\mbox{-lactams}$ 18 via rhodium-catalyzed asymmetric hydrogenation.

2.4. Rh-catalyzed oxidative cyclization of diynes and enynes

Very recently, Tang and co-workers have shown that a Rh(I) catalyst could be used in combination with a pyridine oxide to transform N-tosylynamide derivatives 19 into unsaturated or cyclopropane ring fused γ -lactams of types 20 and 21 (Scheme 9). This oxidative cyclization proved to be efficient (56-88%) and allows a rapid and practical access to a variety of functionalized y-lactam derivatives under mild oxidative conditions.²⁴ Structurally similar fused γ -lactams could also be obtained under oxidative conditions using a Pd catalyst (see Section 4.2).

Scheme 9 Synthesis of γ -lactam derivatives 20 and 21 via a Rh-catalyzed oxidative cyclization

The following mechanism has been proposed to explain the formation of compounds 20 and 21 (Scheme 10). An initial Rhcatalyzed nucleophilic addition of the pyridine oxide onto the alkyne moiety in 19, followed by extrusion of pyridine, generate the key rhodium carbenoid I. Interaction of this latter with the pendent alkyne or alkene chain generates the corresponding new rhodium carbenoid II which is then oxidized to produce 20, or the cyclopropyl derivative 21.

Scheme 10 Proposed mechanism for the Rh(I)-catalyzed formation of γ -lactams 20 and 21.

3. Ruthenium catalysis

3.1. Ru-catalyzed intramolecular carbenoid C-H Insertion

Although extensive efforts have been directed towards the development of metal-catalyzed y-lactams synthesis by intramolecular carbenoid C-H insertion reactions using adiazocarbonyl substrates, relatively little work has been carried

4 | J. Name., 2012, 00, 1-3

out regarding the possibility to use other metal than rhodium in such transformations. In 2005, Yu and co-workers reported that α-diazoacetamides 22 could undergo smooth cyclization to give the corresponding γ -lactams 23 in serviceable yields albeit with minor cis-β-lactams 24 (Scheme 11).²⁵ Notably, this Rucatalyzed reaction, which corresponds to an intramolecular carbenoid insertion into aromatic C-H bond, did neither require a slow addition of the diazo compound nor the use of an inert atmosphere.

Scheme 11 Ruthenium-catalyzed intramolecular C-H insertion of α-diazoanilides 22

Another interesting procedure for the preparation of γ lactams via ruthenium catalysis was described by Maas and coworkers in 2006. By using dinuclear ruthenium complexes of type $[Ru_2(CO)_4(\mu-L1)_2L_{22}]$ as the catalysts, they found that N,N-dialkyldiazoacetamides 25 could be converted into γ lactams 26 in moderate to excellent yields (Scheme 12).²⁶ While being generally selective, this C-H bond insertion reaction also furnished in some cases β -lactams 27 as minor products.

Scheme 12 Synthesis of y-lactams 26 via ruthenium-catalyzed intramolecular C-H bond insertion

3.2. Ru-catalyzed dehydrative intramolecular N-allylation

Recently, Kitamura et al. found that a combination of [CpRu(CH₃CN)₃]PF₆ (**30**) with the chiral ligand Cl-Naph-Py-COOAll (31, All: allyl) was a suitable catalytic system for the intramolecular dehydrative N-allylation of N-Ts-protected ωaminocarbonyl allylic alcohols 28. The corresponding chiral α alkenyl y-lactams 29 were produced in excellent yields and good to excellent enantioselectivities (Scheme 13).²⁷

Scheme 13. CpRu-catalyzed asymmetric synthesis of $\alpha\mbox{-alkenyl}\ \gamma\mbox{-lactams}\ 29.$

3.3. Ru-catalyzed asymmetric transfer hydrogenation of N-(tertbutylsulfinyl)iminoesters

Very recently, Guijarro and co-workers reported a concise synthesis of chiral γ -lactam derivatives that involves a Rucatalyzed asymmetric transfer hydrogenation reaction. Treatment of *N* - (tert-butylsulfinyl)iminoesters **32** with a ruthenium catalyst in the presence of 2-amino-2-methylpropan-1-ol as a ligand and isopropyl alcohol as a hydrogen source produced the corresponding chiral γ -lactams **33** in excellent yields and enantioselectivities (Scheme 14).²⁸

Scheme 14 Synthesis of γ -lactams 33 by asymmetric transfer hydrogenation of N - (*tert*-butylsulfinyl)iminoesters 32.

3.4. Ru-catalyzed asymmetric auto-tandem allylic amidation/ATRC reaction

Another interesting Ru-catalyzed asymmetric synthesis of γ -lactams was recently reported by Okamura and Onitsuka.²⁹ It was found that the reaction of allylic chloride **34** with α -bromoamide **35** in the presence of planar-chiral Cp'Ru complex (*S*)-**37** could furnish the chiral γ -lactams **36** in good to excellent yields and mostly excellent enantioselectivities. The authors extended the scope of the reaction to the use of α -dichloroamide **38** as the substrates. In this case, the reaction delivered the corresponding chiral γ -lactam derivatives **39** which possess three consecutive stereogenic centers in moderate yields (Scheme 15).

Scheme 15 Synthesis of chiral $\gamma\mbox{-lactams}$ 36 and 39 by asymmetric auto-tandem catalysis.

The reaction presumably involves an asymmetric autotandem catalysis, consisting of an asymmetric allylic substitution (Ru^{II}/Ru^{IV}) and a diastereoselective atom-transfer radical cyclization (ATRC, Ru^{II}/Ru^{III}), as depicted in Scheme 16.

Scheme 16 Proposed reaction mechanism of asymmetric auto-tandem catalysis.

4. Palladium catalysis

4.1. Pd-catalyzed intramolecular allylation

In 2005, Craig and co-workers disclosed another elegant example of palladium-catalyzed synthesis of γ -lactams. It was found that the treatment of allylic carbonates **40** by a Pd⁽⁰⁾ catalyst allowed the formation cis-4,5-disubstituted γ -lactams **41** in good yields (Scheme 17).³⁰ This Pd-catalyzed intramolecular allylation provides a novel route to construct polysubstituted γ -lactams in a diastereoselective manner.

Scheme 17 Pd-catalyzed intramolecular allylation for the construction of polysubstituted γ -lactams carbonates 41.

4.2. Pd-catalyzed oxidation reaction of enyne

In 2007, an elegant method for the synthesis of γ -lactams from 1,6-enynes under Pd catalysis was reported by Sanford and coworkers. This oxidation reaction offers a concise and practical way for the stereospecific preparation of γ -lactams fused with a cyclopropane ring. As an example of this new protocol,

Page 6 of 13

treatment of *N*-methyl-3-phenyl-*N*-vinylpropiolamide **42** with 5 mol% of Pd(OAc)₂, 6 mol% of bipy and 1.1 equiv of PhI(OAc)₂ in acetic acid led to the isolation of γ -lactam **43** in 47% yield (Scheme 18).³¹

The authors rationalize this transformation by the mechanism depicted in Scheme 19. The alkenyl-Pd intermediate **I** is first formed by a *trans* acetoxypalladation of enyne **42**. A subsequent intramolecular olefin insertion followed by an oxidation with PhI(OAc)₂ provides the key Pd^(IV) intermediate **III**. γ -lactam **43** is finally produced following a reductive substitution type reaction after an attack of the vinyl acetate moiety on the carbon bonded to the Pd^(IV) fragment.

 $\label{eq:scheme 19} Scheme \ 19 \ {\sf Plausible} \ mechanism \ for \ the \ {\sf Pd}({\sf II})\mbox{-catalyzed oxidation reaction}.$

4.3. Pd-catalyzed allene carbopalladation/allylic alkylation reaction

In 2009, Prestat and Poli described a general route for the regioand stereoselective synthesis of 4-(α -styryl) γ -lactams involving a phosphine-free Pd-catalyzed allene carbopalladation/allylic alkylation domino sequence. As outlined in Scheme 20, the linear allenyl amide precursor 44 reacted with a variety of aryl iodides (electron-rich or electron-poor) to furnish the corresponding γ -lactams 45 in moderate to good yields (61-88%).³² This methodology was readily used in the facile synthesis of γ -lactam 46, a racemic aza analogue of the naturally occurring lignan (+)-oxo-parabenzlactone 47.

Scheme 20 Synthesis of $\gamma\text{-lactams}$ 45 via carbopalladation/allylic alkylation domino sequence.

The mechanism shown in Scheme 21 was proposed to explain the formation γ -lactam 45. An initial oxidative addition of the aryl iodide on Pd⁽⁰⁾ generates the aryl palladium electrophilic species I, which then coordinates to the allene moiety of the substrate sodium salt 44. A subsequent carbopalladation affords the π -allyl intermediate III, which is then trapped by the internal active methylene to afford the 5-exo cyclization γ -lactams 45.

 Scheme
 21
 Proposed
 mechanism
 for
 the
 Pd-catalyzed
 allene

 carbopalladation/allylic alkylation reaction.

 </

4.4. Pd-catalyzed olefination of sp³ C-H bonds

A palladium-catalyzed C-H olefination reaction has also been employed to construct γ -lactam derivatives (Scheme 22). In 2010, Yu and co-workers demonstrated that the reaction of CONHAr amides **48** with benzyl acrylate could afford the corresponding γ -lactams **50** in moderate to good yields.³³ The formation of **50** could be explained by an initial selective sp³ C-H activation producing intermediate **49**, which undergoes a subsequent intramolecular 1,4-conjugate addition.

Scheme 22 Synthesis of $\gamma\text{-lactams}$ 50 via Pd-catalyzed olefination of sp^3 C-H bonds.

4.5. Pd-catalyzed tandem fluorination and cyclization of enynes

Recently, a novel and direct route for the synthesis of fluorinated γ -lactams by a Pd-catalyzed tandem alkyne fluorination/ enyne cyclization has been reported by Liu and co-workers. Treatment of enyne **51** with Pd(TFA)₂ (5 mol%), bathocuproine (7.5 mol%), 4-nitrophenol (20 mol%) and excess of NFSI and *i*PrOH in DMA afforded the γ -lactams **52** in moderate to good yields (Scheme 23).³⁴ This procedure represents a useful entry to fluorinated γ -lactams from readily accessible 1,6-enynes. It should be mentioned that the fluoropalladation step is cis-selective and that the subsequent cyclization step predominantly produces the E isomer of compound **52**.

The mechanism proposed for this Pd-catalyzed tandem fluorination and cyclization of enyne is presented in Scheme 24. The reaction is initiated by a favorable *cis*-fluoropalladation of the triple bond that generates a vinyl fluoro intermediate **I**. The latter undergoes an intramolecular alkene insertion to produce a new intermediate **II**, which is then reduced in the presence of *i*-PrOH to finally deliver the fluorinated γ -lactam **52**.

Scheme 24 Plausible mechanism for the Pd-catalyzed synthesis of fluorinated γ -lactams 52.

5. Gold catalysis

5.1. Au-catalyzed hydroamination of alkenes

In the last decade, homogeneous gold catalysis has proven to be a powerful tool in organic synthesis, leading to the formation of an incredible variety of different heterocyclic motifs.³⁵ The application of gold catalysis to the construction of the versatile γ -lactam motif was recently investigated. In 2006, Che *et al.* described a new procedure for the synthesis of γ -lactam Au^(I)-catalyzed intramolecular derivatives by an hydroamination of alkenes (Scheme 25). Treatment of benzamides 53 in the presence of 20 mol% Ph₃PAuOTf in toluene produced the corresponding γ -lactams 54 in moderate yields.³⁶ Notably, excellent yields could be achieved by employing a stoichiometric amount of Ph₃PAuOTf.

Scheme 25 Synthesis of $\gamma\text{-lactams}$ 54 through gold-catalyzed hydroamination of alkenes 53.

5.2. Au-catalyzed intramolecular addition of $\beta\mbox{-}ketoamide$ to unactivated alkenes

In 2007, Che *et al.* successfully used an analogous catalytic system to synthesize a variety of γ -lactams via an Au⁽¹⁾-catalyzed intramolecular addition of a β -ketoamide to an unactivated alkenes (Scheme 26).³⁷ It was found that in the presence of 5 mol% of the Au[P(t-Bu)₂(o-biphenyl)]Cl/AgOTf catalytic system, β -ketoamides **55** could be cyclized into the highly substituted γ -lactams **56** in excellent yields. Interestingly,

the reaction can be performed in aqueous media and is amenable to the large-scale preparation of γ -lactams. This transformation was the first reported one to show the potential of gold to catalyze the intramolecular addition of 1,3dicarbonyl moiety onto unactivated alkenes.

Scheme 26 Synthesis of $\gamma\text{-lactams}$ 56 via an intramolecular addition of $\beta\text{-}$ ketoamide to unactivated alkenes 55.

The mechanism of this interesting process is shown in Scheme 27. The cationic gold^(I) complex first coordinates to substrate **55** to produce the alkene gold-(I) complex **I**. A 5-exotrig addition of the enol form of the β -ketoamide subsequently gives intermediate **II**, which is proto-demetalated to finally afford γ -lactam **56** with regeneration of the gold catalyst.

Scheme 27 Mechanistic proposal for the gold-catalyzed synthesis of $\gamma\text{-lactams}$ 56.

5.3. Au-catalyzed oxidation-cyclopropanation sequence of enynes

In 2011, Zhang and Qian reported an interesting oxidative cyclization of 1,6-enynes of type **57** in the presence of a gold^(I) catalyst and a pyridine oxide (Scheme 28).³⁸ It is noteworthy that this transformation is efficient and leads to cyclopropane fused γ -lactams **58** which share noticeable structural similarities with those which can be obtained under Rh or Pd catalysis (see Section 2.4 and 4.2).

Scheme 28 Synthesis of cyclopropane fused $\gamma\text{-lactams}$ 58 via an oxidative cyclization of 1,6-enynes 57.

The formation of γ -lactams **58** was explained by the interception of a postulated gold carbenoid I by the pendent alkene chain (Scheme 29). Reactive intermediate I is supposed to be generated after a gold-catalyzed pyridine oxide addition on the alkyne in **57** followed by elimination of the pyridine moiety.

Scheme 29 Mechanism for the gold-catalyzed oxidative cyclization of 1,6-enynes 57.

Very recently, Li and co-workers also demonstrated a similar oxidative cyclization of 1,5-enynes of type **59** to produce the cyclopropane fused γ -lactams **60** (Scheme 30).³⁹ It should be mentioned that a range of functional groups including esters, aryl or acyl groups were tolerated under the acidic reaction conditions employed.

Scheme 30 Synthesis of cyclopropane fused γ -lactams 60 via an oxidative cyclization of 1,5-enynes 59.

The proposed mechanism of the gold-catalyzed oxidative cyclization of 1,5-enynes is presented in scheme 31. Firstly, pyridine *N*-oxide attacks the gold-activated *N*-allylynamides **59** to generate vinyl gold intermediate **I**. Subsequent intramolecular nucleophilic addition of an alkenyl moiety and loss of pyridine allow the formation of intermediate **II**, which can be further transformed into the final product **60** and regenerate the gold catalyst.

8 | J. Name., 2012, 00, 1-3

Page 9 of 13

Journal Name

Scheme 31 Proposed mechanism of the gold-catalyzed oxidative cyclization of *N*-allylynamides 59.

5.5. Au-catalyzed tandem cycloisomerization/oxidation of homopropargyl amides

Recently, Ye and co-workers developed a new gold-catalyzed tandem cycloisomerization/oxidation reaction for the synthesis of γ -lactams under mild conditions (Scheme 32).⁴⁰ Notably, this approach provides an expedient and general way for the preparation of a variety of optically active *N*-tosyl γ -lactams **62** from readily available chiral homopropargyl amides **61**. The synthetic interest of this methodology was highlighted by the enantioselective total synthesis of natural product (-)-bgugaine **63**.

Scheme 32 Gold-catalyzed synthesis of γ -lactams 62 from homopropargyl amides 61.

The formation of γ -lactams **62** could be explained by a goldcatalyzed oxycyclization producing vinyl gold intermediate, followed by an acid-accelerated oxidation (Scheme 33).

Scheme 33 Plausible mechanism for the gold-catalyzed synthesis of γ -lactams 62.

5.6. Au-catalyzed formal 1,6-acyloxy migration

Very recently, Hashmi and co-workers reported an unprecedented route based on a gold-catalyzed formal 1,6-acyloxy migration of propargylic esters for the synthesis of 3,4-disubstituted γ -lactams (Scheme 34).⁴¹ It was indeed found that in the presence 5 mol% of the [IPrAuCl]/AgSbF₆ catalytic system, a large variety of propargylic esters **64** could be transformed into 3,4-disubstituted pyrrolidin-2-ones **65** in good to excellent yields (43-92%). On the basis of this work, the same group also reported the similar gold-catalyzed formal 1,6-phosphatyloxy migration and 1,6-carbonate migration.⁴²

Scheme 34 Synthesis of γ -lactams 65 via gold-catalyzed formal 1,6-acyloxy migration of propargylic esters 64.

The mechanism shown in Scheme 35 has been proposed to explain this gold-catalyzed formal 1,6-acyloxy migration reaction. A gold-catalyzed [3,3]-sigmatropic rearrangement allows the initial formation of the allene-gold complex intermediate II, which undergoes a subsequent nucleophilic attack of the olefin to generate intermediate III. A final 1,5-migration of the acyloxy group via an eight-membered cyclic intermediate IV furnishes the γ -lactam product 65. This mechanism and more especially the involvement of intermediate IV was supported by DFT computational studies.

6. Copper catalysis

6.1. Copper-catalyzed intramolecular vinylation of amides

In 2005, Li and co-workers disclosed a mild and efficient protocol for the CuI-catalyzed intramolecular coupling of amides, with iodoalkenes to produce *N*-alkenyl lactams in moderate to excellent yields. For example, treatment of 4-iodo-N-phenylpent-4-enamide **66** with a catalytic amount of CuI (10 mol%) and *N*,*N*'-dimethylethylenediamine (20 mol%) led to the formation of the *N*-vinylic γ -lactam **67** which was isolated in 95% yield (Scheme 36).⁴³ Six- and seven-membered lactams could also be produced using this protocol.

7. Cobalt catalysis.

7.1. Co-catalyzed reductive coupling of nitriles with acrylamides

During the last decade, a lot of attention has been brought to the development of metal-catalyzed regioselective reductive coupling (RRC). Indeed, this type of transformation allows the synthesis of highly functionalized products in a generally stepand atom- economical manner.⁴⁴ In 2009, Cheng and coworkers disclosed a new type of Co-catalyzed reductive coupling for the preparation of γ -lactams. They discovered that the reaction of nitriles **68** with a variety of acrylamides **69** in the presence of 10 mol% of Co(dppe)I₂ and zinc could produce γ -lactams **70** in moderate to excellent yields (Scheme 37).⁴⁵

Scheme 37 Synthesis of $\gamma\text{-lactams}$ 70 via Co-catalyzed reductive coupling of nitriles 68 with acrylamides 69.

A proposed mechanism for the formation of lactams 70 is depicted in Scheme 38. The Co(II) precatalyst is first reduced by zinc to furnish a catalytically active Co(I) species. Coordination of nitrile 68 and acrylamide 69 to Co(I), followed regioselective cyclometalation, produces bv а the cobaltazacyclopentene intermediate I. А subsequent protonation of I furnishes the linear ketoamide II and a Co(III) species which can then be reduced by zinc to regenerate the active Co(I) species. A final cyclization of II delivers the γ lactam derivatives 70.

Scheme 38 Mechanistic proposal for the reaction of nitriles 68 with acrylamides 69.

8. Silver catalysis

8.1. Ag-catalyzed radical aminofluorination of unactivated alkenes

Very recently, Li and co-workers disclosed a rapid approach to y-lactams based on an Ag(I)-catalyzed radical aminofluorination reaction. It was found that the fluoro γ lactams 72 could be synthesized under mild reaction conditions by an intramolecular cyclization of unactivated amidoalkenes 71.⁴⁶ Various fluoro γ -lactams were isolated in fairly good yields by reacting 71 with 5 mol% of AgNO₃ and 10 mol% of Selectfluor[®], in a mixture of dichloromethane and water (Scheme 39). It should be pointed out that Selectfluor® served both as the fluorine source and the oxidant in this transformation.

The following reaction mechanism, in which silver is involved in the generation of the amidyl radical and in the transfer of the fluorine atom, was postulated to explain the formation of fluoro γ -lactams 72 (Scheme 40).

2

9. Conclusions

During the last decade, transition metal catalysis has proven to be a particularly powerful and highly versatile synthetic tool for the construction of polyfunctionalized y-lactams. The methodologies which have been recently developed to access this structural motif are varied. They involve catalytic systems based on the use of different transition metal, proceed generally under mild experimental conditions and are most of the time efficient and selective. Their synthetic interest has already been demonstrated, for some of them, through the total or formal synthesis of bioactive natural products. However, despite the numerous efforts recently made in this field, one has to admit that several aspects still need to be improved. This is more especially the case of the substrate scope and the functional group tolerance which should be extended, the nature of the catalytic systems which require more modularity and practicability, and the possibility to perform enantioselective transformations, which are still very limited. Given the increasing interest in the use of γ -lactams in chemistry and the fundamental synthetic potential of transition metal catalysis, one can imagine that even more new advances that will benefit both to academic and industrial chemists, will be made in the next decades.

Acknowledgements

We are grateful for the financial support from the National Natural Science Foundation of China (No. 21102119 and 21272191), the Natural Science Foundation of Fujian Province of China (No. 2012J01051) and PCSIRT.

Notes and references

^{*a*} Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R. China.

^b Laboratoire de Synthèse Organique (DCSO), UMR 7652 CNRS / Ecole Polytechnique, Ecole Polytechnique, 91128 Palaiseau cedex, France.

1 A simple SciFinder search concerning the use of γ -lactams in biological activity studies retrieved more than 310000 hits.

- (a) X. Zheng, X.-J. Dai, H.-Q. Yuan, C.-X. Ye, J. Ma and P.-Q. Huang, Angew. Chem., Int. Ed., 2013, 52, 3494; (b) K.-Z. Hu, J. Ma, S. Qiu, X. Zheng and P.-Q. Huang, J. Org. Chem., 2013, 78, 1790; (c) S. P. Lathrop and T. Rovis, Chem. Sci., 2013, 4, 1668; (d) N. Armanino and E. M. Carreira, J. Am. Chem. Soc., 2013, 135, 6814; (e) K. L. Kimmel, J. D. Weaver, M. Lee and J. A. Ellman, J. Am. Chem. Soc., 2012, 134, 9058; (f) T.-h. Fu, W. T. McElroy, M. Shamszad and S. F. Martin, Org. Lett, 2012, 14, 3834; (g) Y. Wang, L.-L. Zhu, Y.-Y. Zhang and R. Hong, Angew. Chem., Int. Ed., 2011, 50, 2787; (h) N. Satoh, S. Yokoshima and T. Fukuyama, Org. Lett., 2011, 13, 3028; (i) B. Nay, N. Riache and L. Evanno, Nat. Prod. Rep., 2009, 26, 1044; (j) R. A. Shenvi and E. J. Corey, J. Am. Chem. Soc., 2009, 131, 5746; (k) T. B. Poulsen, G. Dickmeiss, J. Overgaard and K. A. Jørgensen, Angew. Chem., Int. Ed,. 2008, 47, 4687; (l) G. Ma, H. Nguyen and D. Romo, Org. Lett., 2007, 9, 2143; (m) D. Chauhan, L. Catley, G. Li, K. Podar, T. Hideshima, M. Velankar, C. Mitsiades, N. Mitsiades, H. Yasui, A. Letai, H. Ovaa, C. Berkers, B. Nicholson, T. H. Chao, S. T. Neuteboom, P. Richardson, M. A. Palladino and K. C. Anderson, Cancer Cell, 2005, 8, 407; (n) S. Fustero, M. García de la Torre, J. F. Sanz-Cervera, C. Ramírez de Arellano, J. Piera and A. Simón, Org. Lett., 2002, 4, 3651; (o) A. G. M. Barrett, J. Head, M. L. Smith, N. S. Stock, A. J. P. White and D. J. Williams, J. Org. Chem., 1999, 64, 6005; (p) E. J. Corey and W.-D. Z. Li, Chem. Pharm. Bull., 1999, 47, 1; (q) C. W. G. Fishwick, R. J. Foster and R. E. Carr, Tetrahedron Lett., 1996, 37, 3915.
- 3 (a) C. Gomez, M. Gicquel, J.-C. Carry, L. Schio, P. Retailleau, A. Voituriez and A. Marinetti, J. Org. Chem., 2013, 78, 1488; (b) K.-J. Xiao, A.-E. Wang and P.-Q. Huang, Angew. Chem., Int. Ed., 2012, 51, 8314; (c) G.-J. Lin, X. Zheng and P.-Q. Huang, Chem. Commun., 2011, 1545; (d) C. Shao, H.-J. Yu, N.-Y. Wu, P. Tian, R. Wang, C.-G. Feng and G.-Q. Lin, Org. Lett., 2011, 13, 788; (e) K.-J. Xiao, J.-M. Luo, K.-Y. Ye, Y. Wang and P.-Q. Huang, Angew. Chem., Int. Ed., 2010, 49, 3037; (f) G. Chouhan and H. Alper, Org. Lett., 2008, 10, 4987; (g) A. Agosti, S. Britto and P. Renaud, Org. Lett., 2008, 10, 1417; (h) A. Gheorghe, M. Schulte and O. Reiser, J. Org. Chem., 2006, 71, 2173; (i) T. Okino, Y. Hoashi, T. Furukawa, X. Xu and Y. Takemoto, J. Am. Chem. Soc., 2005, 127, 119; (j) S. Madan, P. Milano, D. B. Eddings and R. E. Gawley, J. Org. Chem., 2005, 70, 3066.
- For recent selected examples, see: (a) T. Fukuyama, N. Nakashima, 4 T. Okada and I. Ryu, J. Am. Chem. Soc., 2013, 135, 1006; (b) O. Pattawong, D. Q. Tan, J. C. Fettinger, J. T. Shaw and P. H.-Y. Cheong, Org. Lett., 2013, 15, 5130; (c) D. Q. Tan, A. Younai, O. Pattawong, J. C. Fettinger, P. H.-Y. Cheong and J. T. Shaw, Org. Lett, 2013, 15, 5126; (d) S. Roy and O. Reiser, Angew. Chem., Int. Ed., 2012, 51, 4722; (e) X. Zhao, D. A. DiRocco and T. Rovis, J. Am. Chem. Soc,. 2011, 133, 12466; (f) D. Q. Tan, K. S. Martin, J. C. Fettinger and J. T. Shaw, Proc. Natl. Acad. Sci., USA 2011, 108, 6781; (g) Y.-L. Liu, B.-L. Wang, J.-J. Cao, L. Chen, Y.-X. Zhang, C. Wang and J. Zhou, J. Am. Chem. Soc,. 2010, 132, 15176; (h) A. Shen, M. Liu, Z.-S. Jia, M.-H. Xu and G.-Q. Lin, Org. Lett., 2010, 12, 5154; (i) M. Rommel, T. Fukuzumi and J. W. Bode, J. Am. Chem. Soc,. 2008, 130, 17266; (j) R. B. Lettan, II, C. C. Woodward and K. A. Scheidt, Angew. Chem., Int. Ed,. 2008, 47, 2294; (k) S. Comesse, M. Sanselme and A. Daïch, J. Org. Chem, 2008, 73, 5566.

- 5 (a) S. Dekeukeleire, M. D'hooghe and N. De Kimpe, J. Org. Chem., 2009, 74, 1644; (b) T. Sakai, K. Yamada and K. Tomioka, Chem. Asian J., 2008, 3, 1486; (c) B. Alcaide, P. Almendros, G. Cabrero and M. P. Ruiz, Org. Lett., 2005, 7, 3981; (d) W. V. Brabandt and N. De Kimpe, J. Org. Chem., 2005, 70, 8717; (e) W. V. Brabandt and N. De Kimpe, J. Org. Chem., 2005, 70, 3369; (f) J.-H. Park, J.-R. Ha, S.-J. Oh, J.-A. Kim, D.-S. Shin, T.-J. Won, Y.-F. Lam and C. Ahn, Tetrahedron Lett., 2005, 46, 1755; (g) B. Alcaide, P. Almendros and J. M. Alonso, J. Org. Chem., 2004, 69, 993; (h) L. Banfi, G. Guanti and M. Rasparini, Eur. J. Org. Chem., 2003, 1319.
- 6 (a) R. B. Lettan, C. V. Galliford, C. C. Woodward and K. A. Scheidt, J. Am. Chem. Soc., 2009, 131, 8805; (b) S. Comesse, M. Sanselme and A. Daich, J. Org. Chem., 2008, 73, 5566; (c) A. Romero and K. A. Woerpel, Org. Lett., 2006, 8, 2127; (d) P.-P. Sun, M.-Y. Chang, M. Y. Chiang and N.-C. Chang, Org. Lett., 2003, 5, 1761; (e) C. W. Roberson and K. A. Woerpel, J. Org. Chem., 1999, 64, 1434.
- (a) M. K. Ghorai and D. P. Tiwari, J. Org. Chem., 2010, 75, 6173;
 (b) G. Blay, V. Hernández-Olmos and J. R. Pedro, Org. Lett., 2010, 12, 3058;
 (c) S. H. Wiedemann, H. Noda, S. Harada, S. Matsunaga and M. Shibasaki, Org. Lett., 2008, 10, 1661;
 (d) T. Imanol, S. Sonia, H. M. Teresa, M. Isabel, D. Esther and S. M. Raul, J. Org. Chem., 2007, 72, 1526;
 (e) P. Manat, Y. Nattawut, T. Patoomratana, K. Chutima and R. Vichai, J. Org. Chem., 2007, 72, 5016;
 (f) M. E. Scott, C. A. Schwarz and M. Lautens, Org. Lett., 2006, 8, 5521.
- 8 J. F. Hartwig, Nature, 2008, 455, 314.
- 9 (a) P.-Q. Huang, In New Methods for the Asymmetric Synthesis of Nitrogen Heterocycles; Research Signpost: Trivandrum, India, 2005, pp 197-222; (b) M. B. Smith, In Science of Synthesis; S. Weinreb, Ed.; Georg Thieme Verlag: Stuttgart, Germany, 2005; Vol. 21, pp 647-711.
- (a) M. P. Doyle, M. A. McKervey, T. Ye, *In Modern Catalytic Methods for Organic Synthesis with Diazo Compounds*; Wiley-Interscience: New York, 1998; (b) M. P. Doyle, J. Taunton and H. Q. Pho, *Tetrahedron Lett.*, 1989, **30**, 5397; (c) M. P. Doyle, R. J. Pieters, J. Taunton and H. Q. Pho, *J. Org. Chem.*, 1991, **56**, 820.
- (a) A. G. H. Wee, B. Liu and L. Zhang, J. Org. Chem., 1992, 57, 4404; (b) A. P. Padwa, D. J. Austin, A. T. Price, M. A. Semones, M. P. Doyle, M. N. Protopopova, W. R. Winchester and A. Tran, J. Am. Chem. Soc., 1993, 115, 8669; (c) A. G. H. Wee and J. Slobodian, J. Org. Chem., 1996, 61, 2897.
- 12 (a) C. H. Yoon, M. J. Zaworotko, B. Moulton and K. W. Jung, *Org. Lett.*, 2001, **3**, 3539; (b) C. H. Yoon, D. L. Flanigan, B.-D. Chong and K. W. Jung, *J. Org. Chem.*, 2002, **67**, 6582; (c) Y. C. Jung, C. H. Yoon, E. Turos, K. S. Yoo and K. W. Jung, *J. Org. Chem.*, 2007, **72**, 10114.
- 13 C. H. Yoon, A. Nagle, C. Chen, D. Gandhi and K. W. Jung, Org. Lett., 2003, 5, 2259.
- 14 For the synthesis of (+)-rolipram, see: (a) J. Barluenga, M. A. Fernández-Rodríguez, E. Aguilar, F. Fernández-Marí, A. Salinas and B. Olano, *Chem. Eur. J.*, 2001, 7, 4323; (b) J. Demniz, L. LaVecchia, E. Bacher, T. H. Keller, F. Schurch, H. P. Weber and E. Pombo-Villar, *Molecules*, 1998, **3**, 107; (c) J. Mulzer, *J. Prakt. Chem.* 1994, **336**, 287; For the synthesis of (-)-rolipram, see: (d) K. Itoh and S. Kanemasa, *J. Am. Chem. Soc.*, 2002, **124**, 13394; (e) D. M. Barnes, J. Ji, M. G. Fickes, M. A. Fitzgerald, S. A. King, H. E. Morton, F. A. Plagge, M. Preskill, S. H. Wagaw, S. J. Wittenberger

and J. Zhang, J. Am. Chem. Soc., 2002, **124**, 13097; (f) M. Anada, O. Mita, H. Watanabe, S. Kitagaki and S. Hashimoto, *Synlett*, 1999, 1775.

- 15 P. M. P. Gois and C. A. M. Afonso, Eur. J. Org. Chem., 2003, 3798.
- 16 N. U. Candeias, P. M. P. Gois and C. A. M. Afonso, J. Org. Chem., 2006, 71, 5489.
- 17 A. G. H. Wee and S. C. Duncan, J. Org. Chem., 2005, 70, 8372.
- 18 B. Zhang and A. G. H. Wee, Org. Lett., 2010, 12, 5386.
- For the synthesis of α-allokainic acid, see: (a) G. R. Cook and L. Sun, Org. Lett., 2004, 6, 2481; (b) D. Ma, W. Wu and P. Deng, Tetrahedron Lett., 2001, 42, 6929; (c) M. V. Chevliakov and J. Montgomery, Angew. Chem., Int. Ed., 1998, 37, 3144; (d) S. Hanessian and S. Ninkovic, J. Org. Chem., 1996, 61, 5418; (e) W. Oppolzer and H. Andres, Tetrahedron Lett., 1978, 3397.
- 20 For selected reviews, see: (a) T. Satoh, K. Ueura, M. Miura, *Pure Appl. Chem.*, 2008, **80**, 1127; (b) T. Hayashi and K. Yamasaki, *Chem. Rev.*, 2003, **103**, 2829; (c) K. Fagnou and M. Lautens, *Chem. Rev.*, 2003, **103**, 169.
- 21 R. Shintani, T. Yamgaami and T. Hayashi, Org. Lett., 2006, 8, 4799.
- For selected reviews, see: (a) J. C. Leung and M. J. Krische, *Chem. Sci.*, 2012, 3, 2202; (b) J. F. Bower, I. S. Kim, R. L. Patman and M. J. Krische, *Angew. Chem., Int. Ed.*, 2009, 48, 34; (c) M.-Y. Ngai, J.-R. Kong and M. J. Krische, *J. Org. Chem.*, 2007, 72, 1063; (d) J. Montgomery, *Angew. Chem., Int. Ed.*, 2004, 43, 3890; (e) H.-Y. Jang and M. J. Krische, *Acc. Chem. Res.*, 2004, 37, 653; (f) S.-I. Ikeda, *Angew. Chem., Int. Ed.*, 2003, 42, 5120.
- 23 J. U. Rhee and M. J. Krische, J. Am. Chem. Soc., 2006, 128, 10674.
- R. Liu, G. N. Winston-McPherson, Z.-Y. Yang, X. Zhou, W. Song,
 I. A. Guzei, X. Xu and W. Tang, J. Am. Chem. Soc., 2013, 135, 8201.
- 25 M. K.-W. Choi, W.-Y. Yu and C.-M. Che, Org. Lett., 2005, 7, 1081.
- 26 M. Grohmann, S. Buck, L. Schäffler and G. Maas, *Adv. Synth. Catal.*, 2006, **348**, 2203.
- 27 T. Seki, S. Tanaka and M. Kitamura, Org. Lett., 2012, 14, 608.
- 28 D. Guijarro, Ó. Pablo and M. Yus, J. Org. Chem., 2013, 78, 3647.
- 29 N. Kanbayashi, K. Takenaka, T.-a. Okamura and K. Onitsuka, Angew. Chem., Int. Ed., 2013, 52, 4997.
- 30 D. Craig, C. J. T. Hyland and S. E. Ward, *Chem. Commun.*, 2005, 3439.
- 31 L. L. Welbes, T. W. Lyons, K. A. Cychosz and M. S. Sanford, J. Am. Chem. Soc., 2007, 129, 5836.
- 32 C. Kammerer, G. Prestat, D. Madec and G. Poli, *Chem. Eur. J.*, 2009, **15**, 4224.
- 33 M. Wasa, K. M. Engle and J.-Q. Yu, J. Am. Chem. Soc., 2010, 132, 3680.
- 34 H. Peng and G. Liu, Org. Lett., 2011, 13, 772.
- For recent selected reviews on gold catalysis, see: (a) M. Rudolph and A. S. K. Hashmi, *Chem. Soc. Rev.*, 2012, 41, 2448; (b) A. Corma, A. Leyva-Pérez and M. J. Sabater, *Chem. Rev.*, 2011, 111, 1657; (c) J. J. Hirner, Y. Shi and S. A. Blum, *Acc. Chem. Res.*, 2011, 44, 603; (d) J. Xiao and X. Li, *Angew. Chem., Int. Ed.*, 2011, 50, 7226; (e) M. Rudolph and A. S. K. Hashmi, *Chem. Commun.*, 2011, 47, 6536; (f) S. Wang, G. Zhang and L. Zhang, *Synlett* 2010, 692; (g) A. Fürstner, *Chem. Soc. Rev.*, 2009, 38, 3208; (h) S. M. A. Sohel and R.-S. Liu, *Chem. Soc. Rev.*, 2009, 38, 2269.
- 36 X.-Y. Liu, C.-H. Li and C.-M. Che, Org. Lett., 2006, 8, 2707.

12 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 2012

Page 13 of 13

Journal Name

- 37 C.-Y. Zhou and C.-M. Che, J. Am. Chem. Soc., 2007, 129, 5828.
- 38 D. Qian and J. Zhang, Chem. Commun., 2011, 11152.
- 39 K.-B. Wang, R.-Q. Ran, S.-D. Xiu and C.-Y. Li, Org. Lett., 2013, 15, 2374.
- 40 (a) C. Shu, M.-Q. Liu, S.-S. Wang, L. Li and L.-W. Ye, J. Org. Chem., 2013, 78, 3292; (b) C. Shu, M.-Q. Liu, Y.-Z. Sun and L.-W. Ye, Org. Lett., 2012, 14, 4958.
- 41 A. S. K. Hashmi, W. Yang, Y. Yu, M. M. Hansmann, M. Rudolph and F. Rominger, *Angew. Chem.*, *Int. Ed.*, 2013, **52**, 1329.
- W. Yang, Y. Yu, T. Zhang, M. M. Hansmann, D. Pflästerer and A. S. K. Hashmi, *Adv. Synth. Catal.*, 2013, 355, 2037.
- 43 T. Hu, C. Li, Org. Lett., 2005, 7, 2035.
- For recent selected reviews, see: (a) H. A. Reichard, M. McLaughlin, M. Z. Chen and G. C. Micalizio, *Eur. J. Org. Chem.*, 2010, 391; (b) M. Jeganmohan and C.-H. Cheng, *Chem. Eur. J.*, 2008, 14, 10876; (c) R. M. Moslin, K. M. Moslin and T. F. Jamison, *Chem. Commun.*, 2007, 4441; (d) D. K. Rayabarapu and C.-H. Cheng, *Acc. Chem. Res.*, 2007, 40, 971.
- 45 Y.-C. Wong, K. Parthasarathy and C.-H. Cheng, J. Am. Chem. Soc., 2009, 131, 18252.
- 46 Z. Li, L. Song and C. Li, J. Am. Chem. Soc., 2013, 135, 4640.

ARTICLE