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Abstract 

Zigzag graphene nanoribbons (ZGNRs) are antiferromagnetic in the ground state with zero net 

magnetization due to the compensation of contributions from opposite edges. The uniform 

deformations (both shear and axial) do not produce magnetization due to the symmetry 

restrictions. However, we report the results of first-principles calculations that predict that the 

induction of spin density wave (SDW) in ZGNR under non-uniform periodic strain. Using 

density functional theory (DFT) method, we show that a sinusoidal magnetization variation 

along the axis of the ribbon occurs under a sinusoidal transversal shear strain.  SDW appears due 

to the presence of strain gradient that induced asymmetry of magnetization on opposite edges of 

ZGNR which do not compensate each other. The amplitude of SDW is estimated at ~0.066µB 

when deformations transverse to ZGNR axis have a sinusoidal profile with period of 88.6Ǻ and 

amplitude of 1Ǻ. Our study suggests that the periodic lattice deformations strongly affect the 

magnetic structure of ZGNRs in case of acoustic phonon or mechanical wave. 
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1- Introduction 

Properties of graphene, the strongest and most flexible as well as stretchable material can be 

tuned by mechanical deformations.1 In principle, by suitable engineering of local strain profiles, 

all-graphene electronics could be integrated on a single graphene sheet. In other words, the 

combination of in-plane stiffness and off-plane flexibility of graphene is extraordinary, and the 

future applications of its mechanical effects will be valuable.  

Several mechanical deformations of graphene and graphene nanoribbon (GNR), such as 

roughening, bending, folding, buckling, and  twisting, are controllably produced in laboratories, 

2,3,4,5 Periodic deformation occurs in case of phonon excitations or mechanical waves (intrinsic 

ripples). These excitations are expected in the graphene-based electronic and spintronics 

devices.6 Mechanical deformations naturally appear in ZGNR. For example, AFM images of the 

chemically derived ZGNRs deposited on substrate show substantial bending when nanoribbons 

are less than 20nm wide. 7 Young et al. by using Raman spectroscopy have shown that the 

distribution of strain across the graphene monolayer is relatively uniform at levels of applied 

strain up to 0.6% but that it becomes highly nonuniform above this strain.8 Moreover, there were 

reports of controlled texturing on graphene nanoribbons and membrains. Bao et al. reported the 

first direct observation and controlled creation of one- and two-dimensional periodic ripples in 

suspended graphene sheets, using both spontaneously and thermally generated strains.9 Xu et al. 

demonstrated atomic control of strain in freestanding graphene using a local attractive force 

created at the STM tip.10 Moreover, mechanical vibrations in suspended nanoribbon were 

generated by D. Garcia-Sanchez et al. with sinusoidal variation of strains.11  

The magnetism of graphene has attracted considerable interest. An increase in the 

difference between the number of removed A and B sites of the graphene bipartite lattice at zig-
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zag edges induces net magnetic moments and yields to ferromagnetism, particularly in nano-size 

graphene flakes and nanopores.12 Recently, a clear hysteresis in magnetization reversal curves of 

ferromagnetic (FM) zig-zag edged graphene was reported.13 The magnetism is mainly was 

proposed in modified graphene sheet and in GNR where magnetism comes on the zig-zag 

termination of the graphene sheet.14 The ground state of zig-zag terminated GNR (ZGNR) is 

antiferromagnetic (AFM). There were several proposals to stabilize the ferromagnetic (FM) state 

in ZGNR by external factors, such as an interface with magnetic materials14,15,  an application of 

an external magnetic field16 or an electric field17.  

Long spin diffusion length (>2 µm at room temperature) offers an exceptional basis for 

development of spintronic devices.18 Proximity effects were predicted in graphene by magnetic 

insulators, such as EuO, point toward the possible engineering of spin gating.19 Spin-filtering at 

interfaces between close-packed surfaces of Ni or Co and graphite or graphene were predicted 

with ideal spin-injection.20 However, only a moderate (~10%) magnetoresistance (MR) was 

observed at room temperature in a spin valve where graphene is sandwiched by two FeNi 

electrodes.21 Recently, a nearly 100% negative MR was observed at low temperatures, and 

maintained MR=56% at room temperature.22 In addition, several theoretical studies have 

suggested that GNRs could exhibit magneto-electronic properties, with a very large predicted 

MR. 4,23,24 

Although, the study of magnetic properties and mechanical properties in graphene 

systems were investigated in great details, the mutual effect of mechanical deformations and 

magnetic properties has not been extensively addressed.  

In this study, based on density functional theory (DFT) calculations, we show that a spin 

density wave is induced in sinusoidally shear-strained ZGNRs. These types of deformations 
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occur in case of phonon excitations as well as in case of propagation of mechanical waves. 

Specifically, this deformation corresponds to a transverse acoustic phonon mode in infinite 

graphene sheet with in-plane atomic displacements. 

2- Model and Computational Method 

We consider N-ZGNR (N zigzag chains in width) as a periodic supercell consisting 36 

primitive unit cells of total length L=88.6Å, where N=4,5, ..,12. The modeling of a sinusoidal 

strain deformation in nanoribbon is performed by sinusoidal transverse displacement 

uy=Asin(2πx/L), where x=0..L is the x-axis atomic positions, L=88.6Å is the nanoribbon length. 

The y-coordinate of an atom in the strained ribbon is calculated as yi=yi0+uy, where yi0 is y-

position of atom in unstrained ZGNR, Amplitude A is varied from 0 to 5Å. Figure 1 shows a 

schematic atomistic model of sinusoidally shear-strained 4-ZGNR. Although the model does not 

describe actual phonon excitations in ZGNR, it captures the origin of spin-lattice interactions. 

Specifically, it allows direct investigation of the effect of flexure (curvature) on the magnetism of 

ZGNR. To study the effects of the edge symmetry and width of N-ZGNR, we use the 5-, 7-, 9-, 

11-ZGNRs and the 4-,6-, 8-, 10-, 12-ZGNRs to represent asymmetric ZGNRs and symmetric 

ZGNRs, respectively. Moreover, to investigate the effect of period (L) of the sinusoidal 

strain, we considered 4-ZGNR of three period sizes: L= 88.6Å (supercell consisting of 36 

primitive unit cells), 59.07 Å (supercell consisting of 24 primitive unit cells), and 44.3Å 

(supercell consisting of 18 primitive unit cells). 

Our computational approach is based on an ab initio pseudopotential method in the 

framework of density functional theory. 25,26 The geometry relaxations and electronic structures 

of the nanoribbons are calculated by using SIESTA package,27 using numerical atomic orbitals as 

basis sets and Troullier-Martin type 28 norm-conserving pseudopotentials. Local Spin Density 
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Approximation (LSDA) is used with the exchange-correlation functional in Ceperley-Alder (CA) 

form.29 The self-consistent calculations are performed with a 350Ry mesh cutoff. A linear 

combination of numerical atomic orbitals with double-ξ polarizations (DZP) basis set is used. 

The convergence criteria for energy were selected to be 10-5 eV. The conjugate gradient method 

is used to relax the ionic coordinates until the force on each atom is less than 0.01 eV/Å.   

3- Results and Discussion 

We started by performing electronic and ionic relaxation for the planar N-ZGNRs with 

antiferromagnetic spin configuration to obtain   the ground state structures. Then, the 

nanoribbons were strained by applying a sinusoidally varying shear strains (described by its 

amplitude A). This deformation corresponds to a transverse acoustic phonon mode in infinite 

graphene sheet with in-plane atomic displacements. Our system models a frozen phonon with 

k=2π/L. This mode is higher in energy than the ZA acoustic phonon with out-of-plane 

displacements. However, if out-of plane displacements are suppressed this may become the 

lowest energy phonon excitation. We performed self-consistent electronic structure calculations 

for the strained nanoribbons while keeping the atomic positions frozen. Figure 2-(a) shows 

calculated magnetization induced locally, M, in 4-ZGNRs as a function of the amplitude A at 

L=88.6, 59.07 and 44.3Å. We find that symmetry between magnetic moment at opposite sides of 

ZGNR is lifted and magnetization is induced locally along the nanoribbon. The induced 

magnetization is calculated as a total magnetic moment for half-period of strained ZGNR with 

the same sign of the in-plane curvature. The induced magnetization increases nearly linearly 

with the increase of the strain amplitude A of the ribbon until it reaches a saturation value. 

At higher values of A the induced magnetization is approximately constant. The strain 

amplitude at which the saturation is reached depends on the period of applied strain L. For 
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L=88.6Å the saturation occurs at A=3Å, while the saturation is reached at A=2Å for ZGNR 

of L=44.3Å. The value of the induced magnetization at saturation increases as function of 

period L. This is expected because the induced magnetization depends on the number of 

edge atoms in the half period. Additionally, the same amplitude of sinusoidal deformation 

creates larger strain gradient in ZGNR with shorter period of deformation. We plot in 

Figure 2-(b) the induced magnetization, M, per edge atom as function of the strain gradient 

amplitudes, i.e. A multiplied by k-vector (kA). M(kA) for ZGNR of different period of 

deformation collapse into one curve. Clearly, the magnetization per edge atom scales nicely 

as function of strain gradient. Thus, the origin of induced magnetization is due to the 

presence of strain gradient.  

Figure 3 shows the induced magnetization as functions of the width of strained 

asymmetric and symmetric ZGNRs for half (one arc) of the 88.6Ǻ period with amplitude A=1Å. 

At the low values of nanoribbon width (N=4 to 6), we find dependence of edge magnetization on 

ZGNR thickness. When the width of the ZGNR changes form N=4 to 6 the value of the induced 

magnetization decreases from about 0.775 µB   to 0.635 µB. However, with increase of the width 

the edge magnetization of the ribbon very quickly saturates, as we can see from the value of the 

induced magnetization for widths N=6 to 12. In term of the edge symmetry dependent, there are 

minor differences between the values of induced magnetization of asymmetric ZGNRs and 

symmetric ZGNRs, but they are not striking.   

The magnetization induced in the ZGNR is due to the change in the local magnetic 

moments (LMMs) as function of the edge curvature. LMMs increase at the convex edge (with 

the positive curvature) and decrease at the concave edge (negative curvature). Figure 4 shows the 

LMMs of carbon atoms along half (one arc) of the 88.6Ǻ period of strained ZGNR with A=1Å. 
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Strikingly the LMM dispersed in space just like a spin density wave with overall modulation 

similar to one of the frozen phonon displacements in real space. Thus, we observe the induction 

of the spin density wave by phonon-like deformation.  

Figure 5 shows the variation of local magnetic moments along the edges of sinusoidally 

strained ZGNR with L= 88.6Ǻ as well as magnetization as function of the positions of the carbon 

atom along the edge of 4-ZGNR x-axis. The latter is calculated as the sum of the local magnetic 

moments on opposite edges. Clearly there is correlation between mechanical deformations and 

the induced in spin density wave (SDW), with nodes of spin density wave occurring when 

opposite edges have the same zero local curvature. Here, we define the spin density wave (SDW) 

as a periodic modulation of electron spin density where period of modulation is different from 

the one of the ions in the ideal lattice. The maximum of SDW occur at positions with the largest 

difference in curvature of opposite edges. The fitting of SDW to the sin function shows nearly 

perfect match. Thus, SDW has the same spatial characteristic as the underlying deformation 

causing its appearance. The amplitude of SDW estimated at ~ 0.066µB for sinusoidal 

deformation (of amplitude A=1Ǻ). This SDW amplitude is 1/3 of the local magnetic moments at 

the ZGNR edges (~0.2µB). Thus, spin-lattice coupling in graphene is very strong. 

Typically, the spin-phonon coupling is relatively weak, but we find that in graphene this 

coupling is significant. This result is valid in Born-Oppenheimer approximation (ABO) because 

the frozen phonon-like deformation was used to model this coupling assuming that electronic 

structure adjusts fast compared to slow phonon movements. The validity of ABO in application 

to graphene has been discussed recently and our result could give an alternative way to explore 

this issue. 30 

Sinusoidal strain causes very small charge transfer at the edge atoms (less than 
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0.005e/site calculated per atomic sphere). Surprisingly, there is almost no charge transfer for sites 

of largest curvature. Thus, charge transfer is unlikely cause of SDW.  

The origin of the induced SDW comes from the response of the local magnetic moments 

at two edges of ZGNR to the strain, specifically, non-uniform one. Although formally the in-

plane shear stress is the same at opposite edges of ZGNR, due to the termination, the edge stress 

is quite different at two opposing edges due to the curvature of edges. We introduce the area 

covered by radial from a carbon edge atom to two nearest carbon atoms as a measure of the local 

strain. We defined this area as the edge area “Area”, which is calculated as: 

212
1

rrArea
rr

×=  

where r1, r2 are vectors connecting the carbon atom at the edge to its nearest neighbors, as shown 

in Figure 6. Because this area is connected to the bond angle in carbon edge “chain”, the 

increase/decrease of the edge area measures local deformations including not only bond length 

change but also the concavity. The connection between the shear strain and “Area” parameter is 

shown in Figure 6. The shear strain is defined as ∆uy/a, where ∆uy=uy(x+∆x)-uy(x) is a 

deformation along y-axis occurring between two points separated by ∆x, and a=2.42Ǻ is a lattice 

constant of graphene unit cell. Clearly, the edges of opposite concavity have opposite trends with 

the increase of shear strain. i.e. this parameter is instrumental in distinguishing edges of different 

curvature.  

In Figure 7 we superimposed the LMM variation as function of “area” parameter. The 

spin-density follows the sinusoidal distortions with the periodic modulations of local magnetic 

moments. To clarify the origin of spin-lattice interactions we studied the response of ZGNR to 

uniform deformations, i.e. tensile/compressive strains along the axis of the ribbon. We find that 

the uniform tensile strain causes the magnetization of the edge increase nearly linearly with 
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tensile strain, while compressive strain results in its near linear decrease as shown in Figure 6. 

Clearly, there is overall correlation between results of uniform and non-uniform strain. 

However, this correspondence is far from being very close. There is obviously different slopes of 

M(A) for deformations at the opposite edges in case of sinusoidal deformations. Also, there is 

noticeable non-linearity of M(A). When amplitude of sinusoidal distortions increases, the 

deviations from the dependence between LMMs and area become strongly nonlinear. 

There is a drastic difference in the effect made by distortions on the electronic states in 

ZGNR in case of uniform and non-uniform strains. The band structure in case of uniform 

compressive and tensile strains shows change in the dispersion of bands as shown in Figure 8. As 

we can see from the figure, the bands become more dispersed under compressive strain. 

Particularly, the energy of bands close to Fermi energy (EF) at X point are not changing 

significantly under uniform strain while at Γ point the eigenvalues move further away, i.e. gets 

lower below EF and higher above EF.  However, in addition to change in dispersion, bands of 

ZGNR with sinusoidal non-uniform strain shows an appearance of localized states which 

manifest itself as flat bands across the Brillouin zone separated on the energy scale from 

dispersed bands. Figure 9 shows a clear representation of this effect in EK for 4-ZGNR at 

L=88.6Ǻ and A=1Å. 

The magnetization of unstrained ZGNR is zero due to the antiferromagnetic coupling of 

the opposite edges. The presence of the sinusoidal strain in ZGNR does not change total 

magnetization due to its symmetry. However, locally we may induce an asymetry between 

opposite edges due to the difference in its curvatures that results in local magnetic moment. The 

origin of this moment induction is due to the difference in the shift of electron states that appear 

upon non-uniform strain at opposite edges. To illustrate it we plot local densities of states 
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(LDOSs) for atoms at the edges of curvatures with opposite sign and compare them to atoms of 

near zero curvature, as shown in Figure 10(a and b) for 4-ZGNR with L=88.6Ǻ. LDOSs were 

broadened by Gaussian with half-width σ=0.2 in SIESTA calculations to smooth out the sharp 

peaks of LDOSs due to the localized states.The figure shows that the atoms C1 and C2 that are 

located at the point of near zero curvature (although having a large shear strain) do not have  

strong asymmetry in LDOSs (Figure 10 a) and give near zero magnetic moment between two of 

them. Contrary, the atoms C3 at the concave curvature point and C4 at the convex curvature point 

have strong asymmetry in LDOSs with the main peak in majority LDOS for C4 laying at lower 

energy than the one of  C3 LDOS (Figure 10 b). It causes the difference in occupation of states 

and resulting appearance of uncompensated local magnetic moment because C4 has larger 

occupancy in majority LDOS than C3.  

Figure 10(b-d) also illustrates the variation of LDOS of C3 and C4 atoms as function of 

magitude of strain amplitude, in case of 4-ZGNR with L=88.6Ǻ. In unstrained (or uniformly 

strained) ZGNR the highest occupied bands have equal share of states from each edge site, i.e. 

each edge site has the same spin moment. However, with the increase of the amplitude of 

sinusoidal deformation, the contribution of the state at C3 to these bands decreases, while LDOS 

of C4 atom increases. At the amplitude A=3Å the LDOS of C3 atom at the highest occupied 

bands is very small and cannot reduce substantially with the further increase of the amplitude of 

deformation as can be seen in Figures 10c and 10d. At the same time LDOS of C4 also saturates 

at A=3Å (compare Figures 10c and 10d). Thus, the magnetization induced by the sinusoidal 

deformations is saturating at A=3Å and does not increase substantially with the further increase 

of A as can be seen in Figure 2. 

The discussed above edge asymmetry can be used to induce a local magnetic moment in 
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graphene nanoribbons by inducing a curvature as we observe in sinusoidally strained ZGNR. 

Periodically strained edges may naturally appear in graphene nanoribbons without hydrogen 

termination.4 Particularly, mechanical vibrations in suspended nanoribbon may generate a 

standing wave in graphene nanoribbons with sinusoidal variation of strains.11 The local moment 

can be measured by local probe methods such as sensitive magnetic force microscopy or spin-

polarized scanning tunneling microscopy. The coupling between spin (magnon) and lattice 

(phonon) excitations can also be potentially observed in measurements of respected quasi-

particle dispersions.  

4- Conclusions 

We show that sinusoidal strain deformations induce a spin-density wave along the axis of 

ZGNR with induced local magnetic moments modulating sinusoidally as well. While, the 

uniform deformations of ZGNR (both shear and axial) do not produce magnetization due to the 

symmetry restrictions, the deformations with gradient of strain (curvature) result in the local 

breaking of the symmetry and induction of local magnetization. SDW is induced due to the 

presence of strain gradient, the induced magnetization on opposite edges are not compensating 

each other. We estimate an amplitude of SDW of ~ 0.066µB that produced from the bending of 

ZGNR with the sinusoidal profile δuy=Asin(2πx/L)  with A=1Å and L=88.6Å. Our study suggests 

that magnetic structure in ZGNR can be controllably modified using strain engineering. 

 

 

 

 

 

Page 11 of 25 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



12 

 

References 

1 F. Guinea, M. I. Katsnelson and A. K. Geim, Nature Physics, 2010, 6, 30-33. 
 

2 J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth and S.  
Roth, Nature, 2007, 446, 60-63. 

 
3 Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng and Z. X. Shen, ACS Nano, 2008, 

2, 2301-2305. 
 

4 T. W. Chamberlain, J. Biskupek, G. A. Rance, A. Chuvilin, T. J. Alexander, E. 
Bichoutskaia, U. Kaiser and A. N. Khlobystov, ACS Nano, 2012, 6, 3943–3953. 

 
5 L. Elías, A. R. Botello-Méndez, D. Meneses-Rodríguez, V. J. González, D. 

Ramírez- González, L. Ci, E. Muñoz-Sandoval, P. M. Ajayan, H. Terrones and M. 
Terrones, Nano Lett., 2010,10, 366-372. 

 
6 Y. Zhang, V. W. Brar, F. Wang, C. Girit, Y. Yayon, M. Panlasigui, A. Zettl and M. F. 

Crommie, Nature Physics, 2008, 4, 627 -630. 
 

7 X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science, 2008, 319, 1229-1232.   
 

8 R. J. Young , L. Gong , I. A. Kinloch , I. Riaz , R. Jalil and K. S. Novoselov, . ACS 
Nano, 2011, 5, 3079-3084.) 

 
9 W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames and C. N. Lau, Nature 

Nanotechnology, 2009, 4, 562-566.) 
 

10 P. Xu, Y. Yang, S. D. Barber, M. L. Ackerman, J. K. Schoelz, D. Qi, I. A. Kornev, 
L. Dong, L. Bellaiche, S. Barraza-Lopez and P. M. Thibado, Phys. Rev. B, 2012, 85, 
121406-121410(R).-  

 
11 D. Garcia-Sanchez, A. M. van der Zande, A. San Paulo, B. Lassagne, P. L. McEuen 

and A. Bachtold, Nano Lett., 2008, 8,1399–1403. 
 

12 E. H. Lieb, Phys. Rev. Lett., 1989, 62, 1201-1204. 
 

13 K. Tada, J. Haruyama, H. X. Yang, M. Chshiev, T. Matsui and H. Fukuyama , Phys. 
Rev. Lett., 2011, 107, 217203-217206. 

 
14 M. Fujita, K. Wakabayashi, K. Nakada and K. Kusakabe, J. Phys. Soc. Jpn., 1996, 

65, 1920-1923. 
 

15 Y. Cho, Y. C. Choi and K. S. Kim, J. Phys. Chem. C, 2011, 115, 6019–6023. 
 

16 W. Y. Kim and K. S. Kim , Nature Nanotech., 2008, 3, 408-412. 

Page 12 of 25Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



13 

 

 
17 Y-W. Son, M. L. Cohen and S. G. Louie, Nature, 2006, 444, 347-349. 

 
18 N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman and B. J. van Wees, Nature 

(London), 2007;448, 571-574. 
 

19 H. X. Yang, A. Hallal, D. Terrade, X. Waintal, S. Roche, and M. Chshiev, Phys. 
Rev. Lett., 2013, 110, 046603-046607. 

 
20 V. M. Karpan, P. A. Khomyakov, A. A. Starikov, G. Giovannetti, M. Zwierzycki, M. 

Talanana, G. Brocks, J. van den Brink and P. J. Kelly, Phys. Rev. B, 2008, 78, 195419- 
195429. 

 
21 E. W. Hill, A. K. Geim, K. Novoselov, F. Schedin and P. Blake, IEEE. T. Magn., 

2006, 42, 2694-2696. 
 

22 J. Bai, R. Cheng, F. Xiu, L. Liao, M. Wang, A. Shailos, K. L. Wang, Y. Huang and 
X. Duan, Nat. Nanotechnol., 2010, 5, 655-659. 

 
 

23 F. Munoz-Rojas, J. Fernandez-Rossier and J. J. Palacios, Phys. Rev. Lett., 2009, 
102, 136810-136813. 

 
24 N. Al-Aqtash, H. Li, L. Wang, W. N. Mei and R. F. Sabirianov, Carbon, 2013, 51, 

102-109. 
 

25 P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864- B871. 
 

26 W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133-A1138. 
 

27 J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon and D. 
Sánchez-Portal, J. Phys.: Condens. Matter, 2002, 14, 2745-2779. 

 
28 N. Troullier and J. L. Martins, Solid State Commun., 1990, 74, 613-616. 

 
29 J. P. Perdew, A. Zunger, Phys. Rev. B, 1981, 23, 5048–5079. 

 
30 S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari and 

F. Mauri, Nature Materials, 2007, 6, 198-201. 
  

 

 

 

Page 13 of 25 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



14 

 

List of figure captions 

Figure 1. Atomistic model for zig-zag graphene nanoribbon (4-ZGNR) with length L under 

sinusoidal deformation. 

Figure 2. (a) Induced magnetization, M, defined as total magnetic moment on the half of 

the period of shear deformation, i.e. x=0..L/2 in Figure 1, as a function of amplitude of 

shear deformations (A) for three periods of deformation L (88.6, 59.07 and 44.3Å). (b) 

Induced magnetization, M, per edge atom as function of the strain gradient amplitudes, i.e. 

A multiplied by k-vector (kA).  

Figure 3. Induced magnetization as functions of the width (N) of strained asymmetric and 

symmetric ZGNRs for half (one arc) of the 88.6 Å period with amplitude A=1Å. 

Figure 4. Local magnetic moments as function of the x-position of the carbon atom along the 

edge of 4-ZGNR for the undeformed nanoribbon and the one sinusoidally strained with L=88.6 

Å  and A=1Å.  

Figure 5. (Top panel) Local magnetic moments (LMMs) along the edges of sinusoidally strained 

4-ZGNR. (Bottom panel) Spin density wave along the axis of ZGNR.  

Figure 6. The edge area “Area” of sinusoidally strained (circles: convex edge, triangles: concave 

edge) 4-ZGNR as function of shear strain (∆uy/a).   

Figure 7. Local magnetic moments (LMMs) as function of the edge area of uniformly (black 

squares) and sinusoidally strained (circles: convex edge, triangles: concave edge) 4-ZGNR with 

L=88.6 Å. Main graph is for amplitude A=1Å, insert is for A=3Å. 

Figure 8. The band structure of 4-ZGNR under compressive (1%) (upper panel) and tensile (1%) 

(lower panel) shown in red (xxx) compared to band structure of unstrained ZGNR shown in 

black (+++).  
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Figure 9. The band structure of 4-ZGNR with sinusoidal strain at A=1Å (upper panel) compared 

to band structure of unstrained 4-ZGNR (lower panel) at L= 88.6 Å.  

Figure 10. Local densities of states (LDOSs) calculated for atoms of smallest local curvature (a) 

and the largest local curvature (b-d) for 4-ZGNR with sinusoidal strain at A=1, 3, 4 Å at L= 88.6 

Å. Notations of atoms follow Figure 1.  
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Figure 2 

b) 

a) 
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Figure 3 
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Figure 4 
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Figure 5 

Edge1 

Edge2 
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Figure 6 

r1 r2 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 

b) A= 1Å  

a) A= 1Å  

d) A= 3Å  

c) A= 4Å  
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