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Abstract
Zigzag graphene nanoribbons (ZGNRs) are antiferromagnetic in the ground state with zero net
magnetization due to the compensation of contributions from opposite edges. The uniform
deformations (both shear and axial) do not produce magnetization due to the symmetry
restrictions. However, we report the results of first-principles calculations that predict that the
induction of spin density wave (SDW) in ZGNR under non-uniform periodic strain. Using
density functional theory (DFT) method, we show that a sinusoidal magnetization variation
along the axis of the ribbon occurs under a sinusoidal transversal shear strain. SDW appears due
to the presence of strain gradient that induced asymmetry of magnetization on opposite edges of
ZGNR which do not compensate each other. The amplitude of SDW is estimated at ~0.066p5
when deformations transverse to ZGNR axis have a sinusoidal profile with period of 88.6A and
amplitude of 1A. Our study suggests that the periodic lattice deformations strongly affect the

magnetic structure of ZGNRs in case of acoustic phonon or mechanical wave.
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1- Introduction

Properties of graphene, the strongest and most flexible as well as stretchable material can be
tuned by mechanical deformations.' In principle, by suitable engineering of local strain profiles,
all-graphene electronics could be integrated on a single graphene sheet. In other words, the
combination of in-plane stiffness and off-plane flexibility of graphene is extraordinary, and the
future applications of its mechanical effects will be valuable.

Several mechanical deformations of graphene and graphene nanoribbon (GNR), such as
roughening, bending, folding, buckling, and twisting, are controllably produced in laboratories,
2343 Periodic deformation occurs in case of phonon excitations or mechanical waves (intrinsic
ripples). These excitations are expected in the graphene-based electronic and spintronics
devices.® Mechanical deformations naturally appear in ZGNR. For example, AFM images of the
chemically derived ZGNRs deposited on substrate show substantial bending when nanoribbons
are less than 20nm wide. ’ Young et al. by using Raman spectroscopy have shown that the
distribution of strain across the graphene monolayer is relatively uniform at levels of applied
strain up to 0.6% but that it becomes highly nonuniform above this strain.® Moreover, there were
reports of controlled texturing on graphene nanoribbons and membrains. Bao et al. reported the
first direct observation and controlled creation of one- and two-dimensional periodic ripples in
suspended graphene sheets, using both spontaneously and thermally generated strains.” Xu et al.
demonstrated atomic control of strain in freestanding graphene using a local attractive force
created at the STM tip."® Moreover, mechanical vibrations in suspended nanoribbon were
generated by D. Garcia-Sanchez et al. with sinusoidal variation of strains."'

The magnetism of graphene has attracted considerable interest. An increase in the

difference between the number of removed A and B sites of the graphene bipartite lattice at zig-
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zag edges induces net magnetic moments and yields to ferromagnetism, particularly in nano-size
graphene flakes and nanopores.'” Recently, a clear hysteresis in magnetization reversal curves of
ferromagnetic (FM) zig-zag edged graphene was repor‘[ed.13 The magnetism is mainly was
proposed in modified graphene sheet and in GNR where magnetism comes on the zig-zag
termination of the graphene sheet.'* The ground state of zig-zag terminated GNR (ZGNR) is
antiferromagnetic (AFM). There were several proposals to stabilize the ferromagnetic (FM) state

in ZGNR by external factors, such as an interface with magnetic materials'*'®

, an application of
an external magnetic field'® or an electric field"’.

Long spin diffusion length (>2 pm at room temperature) offers an exceptional basis for
development of spintronic devices.'® Proximity effects were predicted in graphene by magnetic
insulators, such as EuO, point toward the possible engineering of spin gating.19 Spin-filtering at
interfaces between close-packed surfaces of Ni or Co and graphite or graphene were predicted
with ideal spin-injection.20 However, only a moderate (~10%) magnetoresistance (MR) was
observed at room temperature in a spin valve where graphene is sandwiched by two FeNi
electrodes.”’ Recently, a nearly 100% negative MR was observed at low temperatures, and
maintained MR=56% at room temperature.”> In addition, several theoretical studies have
suggested that GNRs could exhibit magneto-electronic properties, with a very large predicted
MR, 42324

Although, the study of magnetic properties and mechanical properties in graphene
systems were investigated in great details, the mutual effect of mechanical deformations and
magnetic properties has not been extensively addressed.

In this study, based on density functional theory (DFT) calculations, we show that a spin

density wave is induced in sinusoidally shear-strained ZGNRs. These types of deformations
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occur in case of phonon excitations as well as in case of propagation of mechanical waves.
Specifically, this deformation corresponds to a transverse acoustic phonon mode in infinite
graphene sheet with in-plane atomic displacements.
2- Model and Computational Method

We consider N-ZGNR (N zigzag chains in width) as a periodic supercell consisting 36
primitive unit cells of total length L=88.6A, where N=4,5, ..,12. The modeling of a sinusoidal
strain deformation in nanoribbon is performed by sinusoidal transverse displacement
u,=Asin(2mx/L), where x=0..L is the x-axis atomic positions, L=88.6A is the nanoribbon length.
The y-coordinate of an atom in the strained ribbon is calculated as y;=yip+u,, where yj is y-
position of atom in unstrained ZGNR, Amplitude 4 is varied from 0 to 5A. Figure 1 shows a
schematic atomistic model of sinusoidally shear-strained 4-ZGNR. Although the model does not
describe actual phonon excitations in ZGNR, it captures the origin of spin-lattice interactions.
Specifically, it allows direct investigation of the effect of flexure (curvature) on the magnetism of
ZGNR._To study the effects of the edge symmetry and width of N-ZGNR, we use the 5-, 7-, 9-,
11-ZGNRs and the 4-,6-, 8-, 10-, 12-ZGNRs to represent asymmetric ZGNRs and symmetric
ZGNRs, respectively. Moreover, to investigate the effect of period (L) of the sinusoidal
strain, we considered 4-ZGNR of three period sizes: L= 88.6A (supercell consisting of 36
primitive unit cells), 59.07 A (supercell consisting of 24 primitive unit cells), and 44.3A
(supercell consisting of 18 primitive unit cells).

Our computational approach is based on an ab initio pseudopotential method in the

framework of density functional theory. >

The geometry relaxations and electronic structures
of the nanoribbons are calculated by using SIESTA package,”’ using numerical atomic orbitals as

basis sets and Troullier-Martin type ** norm-conserving pseudopotentials. Local Spin Density
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Approximation (LSDA) is used with the exchange-correlation functional in Ceperley-Alder (CA)
form.”” The self-consistent calculations are performed with a 350Ry mesh cutoff. A linear
combination of numerical atomic orbitals with double-§ polarizations (DZP) basis set is used.
The convergence criteria for energy were selected to be 10™ eV. The conjugate gradient method
is used to relax the ionic coordinates until the force on each atom is less than 0.01 eV/A.
3- Results and Discussion

We started by performing electronic and ionic relaxation for the planar N-ZGNRs with
antiferromagnetic spin configuration to obtain the ground state structures. Then, the
nanoribbons were strained by applying a sinusoidally varying shear strains (described by its
amplitude A). This deformation corresponds to a transverse acoustic phonon mode in infinite
graphene sheet with in-plane atomic displacements. Our system models a frozen phonon with
k=2m/L. This mode is higher in energy than the ZA acoustic phonon with out-of-plane
displacements. However, if out-of plane displacements are suppressed this may become the
lowest energy phonon excitation. We performed self-consistent electronic structure calculations
for the strained nanoribbons while keeping the atomic positions frozen. Figure 2-(a) shows
calculated magnetization induced locally, M, in 4-ZGNRs as a function of the amplitude 4 at
L1=88.6, 59.07 and 44.3A. We find that symmetry between magnetic moment at opposite sides of
ZGNR is lifted and magnetization is induced locally along the nanoribbon. The induced
magnetization is calculated as a total magnetic moment for half-period of strained ZGNR with
the same sign of the in-plane curvature. The induced magnetization increases nearly linearly
with the increase of the strain amplitude A4 of the ribbon until it reaches a saturation value.
At higher values of 4 the induced magnetization is approximately constant. The strain

amplitude at which the saturation is reached depends on the period of applied strain L. For
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L=88.6A the saturation occurs at A=3A, while the saturation is reached at 4=2A for ZGNR
of L=44.3A. The value of the induced magnetization at saturation increases as function of
period L. This is expected because the induced magnetization depends on the number of
edge atoms in the half period. Additionally, the same amplitude of sinusoidal deformation
creates larger strain gradient in ZGNR with shorter period of deformation. We plot in
Figure 2-(b) the induced magnetization, M, per edge atom as function of the strain gradient
amplitudes, i.e. 4 multiplied by k-vector (kA). M(kA) for ZGNR of different period of
deformation collapse into one curve. Clearly, the magnetization per edge atom scales nicely
as function of strain gradient. Thus, the origin of induced magnetization is due to the
presence of strain gradient.

Figure 3 shows the induced magnetization as functions of the width of strained
asymmetric and symmetric ZGNRs for half (one arc) of the 88.6A period with amplitude A=1A.
At the low values of nanoribbon width (N=4 to 6), we find dependence of edge magnetization on
ZGNR thickness. When the width of the ZGNR changes form N=4 to 6 the value of the induced
magnetization decreases from about 0.775 pug to 0.635 ug. However, with increase of the width
the edge magnetization of the ribbon very quickly saturates, as we can see from the value of the
induced magnetization for widths N=6 to 12. In term of the edge symmetry dependent, there are
minor differences between the values of induced magnetization of asymmetric ZGNRs and
symmetric ZGNRs, but they are not striking.

The magnetization induced in the ZGNR is due to the change in the local magnetic
moments (LMMs) as function of the edge curvature. LMMs increase at the convex edge (with
the positive curvature) and decrease at the concave edge (negative curvature). Figure 4 shows the

LMMs of carbon atoms along half (one arc) of the 88.6A period of strained ZGNR with A=1A.
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Strikingly the LMM dispersed in space just like a spin density wave with overall modulation
similar to one of the frozen phonon displacements in real space. Thus, we observe the induction
of the spin density wave by phonon-like deformation.

Figure 5 shows the variation of local magnetic moments along the edges of sinusoidally
strained ZGNR with L= 88.6A as well as magnetization as function of the positions of the carbon
atom along the edge of 4-ZGNR x-axis. The latter is calculated as the sum of the local magnetic
moments on opposite edges. Clearly there is correlation between mechanical deformations and
the induced in spin density wave (SDW), with nodes of spin density wave occurring when
opposite edges have the same zero local curvature. Here, we define the spin density wave (SDW)
as a periodic modulation of electron spin density where period of modulation is different from
the one of the ions in the ideal lattice. The maximum of SDW occur at positions with the largest
difference in curvature of opposite edges. The fitting of SDW to the sin function shows nearly
perfect match. Thus, SDW has the same spatial characteristic as the underlying deformation
causing its appearance. The amplitude of SDW estimated at ~ 0.066ug for sinusoidal
deformation (of amplitude A=1A). This SDW amplitude is 1/3 of the local magnetic moments at
the ZGNR edges (~0.2up). Thus, spin-lattice coupling in graphene is very strong.

Typically, the spin-phonon coupling is relatively weak, but we find that in graphene this
coupling is significant. This result is valid in Born-Oppenheimer approximation (ABO) because
the frozen phonon-like deformation was used to model this coupling assuming that electronic
structure adjusts fast compared to slow phonon movements. The validity of ABO in application
to graphene has been discussed recently and our result could give an alternative way to explore
this issue. *°

Sinusoidal strain causes very small charge transfer at the edge atoms (less than
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0.005¢/site calculated per atomic sphere). Surprisingly, there is almost no charge transfer for sites
of largest curvature. Thus, charge transfer is unlikely cause of SDW.

The origin of the induced SDW comes from the response of the local magnetic moments
at two edges of ZGNR to the strain, specifically, non-uniform one. Although formally the in-
plane shear stress is the same at opposite edges of ZGNR, due to the termination, the edge stress
is quite different at two opposing edges due to the curvature of edges. We introduce the area
covered by radial from a carbon edge atom to two nearest carbon atoms as a measure of the local

strain. We defined this area as the edge area “Area”, which is calculated as:
1. .

Area =—¥, xr,
2

where r, r; are vectors connecting the carbon atom at the edge to its nearest neighbors, as shown
in Figure 6. Because this area is connected to the bond angle in carbon edge “chain”, the
increase/decrease of the edge area measures local deformations including not only bond length
change but also the concavity. The connection between the shear strain and “Area” parameter is
shown in Figure 6. The shear strain is defined as Au,/a, where Au,=u,(x+Ax)-u,(x) is a
deformation along y-axis occurring between two points separated by Ax, and a=2.42A is a lattice
constant of graphene unit cell. Clearly, the edges of opposite concavity have opposite trends with
the increase of shear strain. i.e. this parameter is instrumental in distinguishing edges of different
curvature.

In Figure 7 we superimposed the LMM variation as function of “area” parameter. The
spin-density follows the sinusoidal distortions with the periodic modulations of local magnetic
moments. To clarify the origin of spin-lattice interactions we studied the response of ZGNR to
uniform deformations, i.e. tensile/compressive strains along the axis of the ribbon. We find that
the uniform tensile strain causes the magnetization of the edge increase nearly linearly with

8
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tensile strain, while compressive strain results in its near linear decrease as shown in Figure 6.

Clearly, there is overall correlation between results of uniform and non-uniform strain.
However, this correspondence is far from being very close. There is obviously different slopes of
M(A) for deformations at the opposite edges in case of sinusoidal deformations. Also, there is
noticeable non-linearity of M(A4). When amplitude of sinusoidal distortions increases, the
deviations from the dependence between LMMs and area become strongly nonlinear.

There is a drastic difference in the effect made by distortions on the electronic states in
ZGNR in case of uniform and non-uniform strains. The band structure in case of uniform
compressive and tensile strains shows change in the dispersion of bands as shown in Figure 8. As
we can see from the figure, the bands become more dispersed under compressive strain.
Particularly, the energy of bands close to Fermi energy (£r) at X point are not changing
significantly under uniform strain while at I" point the eigenvalues move further away, i.e. gets
lower below Er and higher above Er. However, in addition to change in dispersion, bands of
ZGNR with sinusoidal non-uniform strain shows an appearance of localized states which
manifest itself as flat bands across the Brillouin zone separated on the energy scale from
dispersed bands. Figure 9 shows a clear representation of this effect in Ex for 4-ZGNR at
L=88.6A and 4=1A.

The magnetization of unstrained ZGNR is zero due to the antiferromagnetic coupling of
the opposite edges. The presence of the sinusoidal strain in ZGNR does not change total
magnetization due to its symmetry. However, locally we may induce an asymetry between
opposite edges due to the difference in its curvatures that results in local magnetic moment. The
origin of this moment induction is due to the difference in the shift of electron states that appear

upon non-uniform strain at opposite edges. To illustrate it we plot local densities of states
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(LDOS:s) for atoms at the edges of curvatures with opposite sign and compare them to atoms of
near zero curvature, as shown in Figure 10(a and b) for 4-ZGNR with L=88.6A. LDOSs were
broadened by Gaussian with half-width 6=0.2 in SIESTA calculations to smooth out the sharp
peaks of LDOSs due to the localized states.The figure shows that the atoms C; and C, that are
located at the point of near zero curvature (although having a large shear strain) do not have
strong asymmetry in LDOSs (Figure 10 a) and give near zero magnetic moment between two of
them. Contrary, the atoms C; at the concave curvature point and Cy4 at the convex curvature point
have strong asymmetry in LDOSs with the main peak in majority LDOS for C,4 laying at lower
energy than the one of C; LDOS (Figure 10 b). It causes the difference in occupation of states
and resulting appearance of uncompensated local magnetic moment because C4 has larger
occupancy in majority LDOS than C;.

Figure 10(b-d) also illustrates the variation of LDOS of C3 and C4 atoms as function of
magitude of strain amplitude, in case of 4-ZGNR with L=88.6A. In unstrained (or uniformly
strained) ZGNR the highest occupied bands have equal share of states from each edge site, i.e.
each edge site has the same spin moment. However, with the increase of the amplitude of
sinusoidal deformation, the contribution of the state at C3 to these bands decreases, while LDOS
of C4 atom increases. At the amplitude A=3A the LDOS of C3 atom at the highest occupied
bands is very small and cannot reduce substantially with the further increase of the amplitude of
deformation as can be seen in Figures 10c and 10d. At the same time LDOS of C4 also saturates
at A=3A (compare Figures 10c and 10d). Thus, the magnetization induced by the sinusoidal
deformations is saturating at 4=3A and does not increase substantially with the further increase
of A as can be seen in Figure 2.

The discussed above edge asymmetry can be used to induce a local magnetic moment in

10
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graphene nanoribbons by inducing a curvature as we observe in sinusoidally strained ZGNR.
Periodically strained edges may naturally appear in graphene nanoribbons without hydrogen
termination.” Particularly, mechanical vibrations in suspended nanoribbon may generate a
standing wave in graphene nanoribbons with sinusoidal variation of strains."" The local moment
can be measured by local probe methods such as sensitive magnetic force microscopy or spin-
polarized scanning tunneling microscopy. The coupling between spin (magnon) and lattice
(phonon) excitations can also be potentially observed in measurements of respected quasi-
particle dispersions.
4- Conclusions

We show that sinusoidal strain deformations induce a spin-density wave along the axis of
ZGNR with induced local magnetic moments modulating sinusoidally as well. While, the
uniform deformations of ZGNR (both shear and axial) do not produce magnetization due to the
symmetry restrictions, the deformations with gradient of strain (curvature) result in the local
breaking of the symmetry and induction of local magnetization. SDW is induced due to the
presence of strain gradient, the induced magnetization on opposite edges are not compensating
each other. We estimate an amplitude of SDW of ~ 0.066p5 that produced from the bending of
ZGNR with the sinusoidal profile du,=Asin(2nx/L) with A=1A and L=88.6A. Our study suggests

that magnetic structure in ZGNR can be controllably modified using strain engineering.
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List of figure captions

Figure 1. Atomistic model for zig-zag graphene nanoribbon (4-ZGNR) with length L under
sinusoidal deformation.

Figure 2. (a) Induced magnetization, M, defined as total magnetic moment on the half of
the period of shear deformation, i.e. x=0..L/2 in Figure 1, as a function of amplitude of
shear deformations (4) for three periods of deformation L (88.6, 59.07 and 44.3A). (b)
Induced magnetization, M, per edge atom as function of the strain gradient amplitudes, i.e.
A multiplied by k-vector (kA).

Figure 3. Induced magnetization as functions of the width (N) of strained asymmetric and
symmetric ZGNRs for half (one arc) of the 88.6 A period with amplitude A=1A.

Figure 4. Local magnetic moments as function of the x-position of the carbon atom along the
edge of 4-ZGNR for the undeformed nanoribbon and the one sinusoidally strained with L=8§8.6
A and A=14.

Figure 5. (Top panel) Local magnetic moments (LMMs) along the edges of sinusoidally strained
4-ZGNR. (Bottom panel) Spin density wave along the axis of ZGNR.

Figure 6. The edge area “Area” of sinusoidally strained (circles: convex edge, triangles: concave
edge) 4-ZGNR as function of shear strain (Au,/a).

Figure 7. Local magnetic moments (LMMs) as function of the edge area of uniformly (black
squares) and sinusoidally strained (circles: convex edge, triangles: concave edge) 4-ZGNR with
L=88.6 A. Main graph is for amplitude 4=14, insert is for A=34.

Figure 8. The band structure of 4-ZGNR under compressive (1%) (upper panel) and tensile (1%)
(lower panel) shown in red (xxx) compared to band structure of unstrained ZGNR shown in

black (+++).
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Figure 9. The band structure of 4-ZGNR with sinusoidal strain at A=1A (upper panel) compared
to band structure of unstrained 4-ZGNR (lower panel) at L= 88.6 4.

Figure 10. Local densities of states (LDOSs) calculated for atoms of smallest local curvature (a)
and the largest local curvature (b-d) for 4-ZGNR with sinusoidal strain at 4=1, 3, 4 A at L= 88.6

A. Notations of atoms follow Figure 1.
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