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A series of microporous carbons (MPCs) were successfully prepared by an efficient one-step 
condensation and activation strategy using commercial available dialdehyde and diamine as carbon 
sources. The resulting MPCs have large surface areas of up to 1881 m2/g, micropore volumes (up to 0.78 
cm3/g), and narrow micropore size distributions (0.7-1.1 nm). The CO2 uptakes of the MPCs prepared at 10 

high temperatures (700-750 °C) are higher than those prepared at mild conditions (600-650 °C), because 
the former samples possess the optimal micropore sizes (0.7-0.8 nm), highly suitable for CO2 capture due 
to enhanced adsorbate-adsorbent interaction. At 1 bar, MPC-750 prepared at 750 °C demonstrates the best 
CO2 capture performance and can efficiently adsorb CO2 molecules of 2.86 mmol/g and 4.92 mmol/g, at 
25 and 0 °C, respectively. Particularly, the MPCs with optimal micropore sizes (0.7-0.8 nm) have 15 

extremely high CO2/N2 adsorption ratios (47 and 52 at 25 and 0 °C, respectively) at 1 bar and initial 
CO2/N2 adsorption selectivity of up to 81 and 119 at 25 °C and 0 °C, respectively, which are far superior 
to the previously reported values for various porous solids. These excellent data combined with good 
adsorption capacities and efficient regeneration/recyclability, make these carbons amongst the most 
promising sorbents reported so far for selective CO2 adsorption in practical applications. 20 

Introduction 

In view of the predicted detrimental effects (e. g., global climate 
warming) of CO2 emission, there is growing interest in 
developing new materials and technologies for CO2 adsorption 
and separation. At present, well-developed chemical processes 25 

based on adsorption and regeneration are employed for CO2 
separation on large scale using various aqueous amine-ammonia 
solutions in industry.1 However these processes are not only 
corrosive but also highly energy-costing because of the energy 
penalty necessary for regenerating aqueous amine-based solutions. 30 

Compared to the conventional chemical adsorption processes, the 
use of porous solid materials as sorbents based on the 
physisorption allows conveniently reversible processes to capture 
and release CO2, and thus it is a greener and more cost-efficient 
method. To date, numerous porous solids (e. g., porous carbons, 35 

zeolites, mesoporous silica, metal-organic frameworks (MOFs), 
and porous organic polymers) have been developed for CO2 
capture and separation.2-14  

Among these porous solids, porous carbons are considered to 
be one of the promising, sustainable for capturing CO2 due to 40 

their light weight, low cost, fast adsorption kinetics, large surface 
area, and high chemical and thermal stability.15-20 Lots of studies 
were performed to prepare various porous carbons and investigate 
their CO2 uptake capacities. For example, by direct pyrolysis of 
porous imine-linked polymers,21 self-assembled 45 

poly(benzoxazine-co-resol),10 and resorcinol-formaldehyde 
resin,11 various nitrogen-doped porous carbons were formed, 
showing CO2 adsorption capacities of 2.7-5.5 mmol/g at 0 °C and 
1 bar. Porous carbons, synthesized by the template method in 
which the combination of nanocasting and etching offing the 50 

templates is needed, demonstrated the CO2 adsorption capacities 
of 2.3-5 mmol/g at ambient temperature and pressure.22 Recently, 
Su and co-workers reported the modification of porous carbon 
monoliths by doping carbon nanotubes, and the resulting 
composite has a CO2 uptake of 3.5 mmol/g at 1 bar and 25 °C.23 55 

Although these porous carbons have been moderated to good CO2 
uptakes, they demonstrate the poor CO2/N2 adsorption selectivity, 
generally lower than 15. Because half of the anthropogenic CO2 
emission is ascribed to the combustion of fossil fuel in power 
plants, in which large amount of flue gases composed of 75% N2 60 

and 15% CO2 is let out,24 porous carbons with high adsorption 
ratio and adsorption selectivity of CO2/N2 are urgently on 
demand to capture and separate CO2 from these flue gases 
containing high concentration of N2.  

At present, the effective chemical activation and nitrogen 65 

functionalization of carbonaceous materials are flexibly 
performed to obtain porous carbons with variable porosity, pore 
size distribution, and surface basic functional groups, thus leading 
to different CO2 uptake capacities and CO2/N2 adsorption 
selectivity. Recently biomass-based carbonaceous materials, 70 

polymers, templated porous carbons, and carbide-derived carbons 
were activated by KOH to create large porosity in final porous 
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carbons. These carbons show good CO2 adsorption capacities, but 
they have poor CO2/N2 adsorption selectivity lower than 17.22, 25-

29 The activation of graphene-filled polypyrrole or polyaniline by 
KOH led to a similar CO2/N2 adsorption ratio (<17) as the un-
doped ones.30-31 Moreover, the CO2 uptakes of these activated 5 

carbons evidently decrease as the increment of the activation 
temperature because of pore widening. Especially it has been 
confirmed that pores smaller than 0.8 nm contribute to most of 
the CO2 uptake because of the enhanced CO2-adsorbent 
interactions.32-34 Thus we expect to prepare novel porous carbons 10 

possessing optimized pore size of 0.8 nm with enhanced CO2 
adsorption capacity, and very high CO2/N2 adsorption ratio and 
initial adsorption selectivity. 

Recently, we reported the activation of porous imine-linked 
polymer with KOH to form nitrogen-incorporated porous carbons 15 

with very high surface areas of up to 3100 m2/g,35 which have 
CO2 uptakes of up to 5.3 mmol/g at 1 bar and 0 °C. And the 
calculated initial CO2/N2 adsorption selectivity up to 23 and 
adsorption ratio of 6.6 at ambient pressure were obtained, which 
are better than most of the previously reported values. For 20 

practical applications in CO2 adsorption and separation from the 
flue gases containing 75% N2 and 15% CO2, the adsorption ratios 
and initial adsorption selectivity of CO2/N2 for these porous 
carbons should be improved greatly. Furthermore these imine-
linked polymers using multialdehydes and multiamines as 25 

monomers were prepared using large amount of high boiling 
point toxic organic solvents,21, 36-38 and therefore the synthesis 
processes are not environmentally friendly.  

In this paper, we develop an efficient one-pot condensation and 
activation strategy to synthesize microporous carbons (MPCs) 30 

using commercial available m-phenylenediamine and 
terephthalaldehyde as carbon sources, in which the additional 
step of preparing porous polymer in toxic organic solvents is 
avoided. Thus the present process for forming MPCs is very 
environmentally friendly and sustainable. The resulting MPCs 35 

have high surface areas, large micropore volumes, and narrow 
micropore size distributions as well as small amount of nitrogen 
doping depending on the activation temperatures (600-750 °C). It 
is worth noting that the samples prepared at high temperatures 
(700-750 °C) demonstrate smaller pore systems (0.7-0.8 nm) than 40 

those synthesized at relatively low temperatures (600-650 °C). 
The resulting MPCs have not only good CO2 uptake capacities, 
but also extremely high CO2/N2 adsorption ratio (47-52) at 1 bar 
and initial adsorption selectivity (81-119). Therefore these MPCs 
have great potentials in CO2 adsorption and separation from the 45 

flue gases of the fossil-fuel-fired power plants. 

Experimental 

Material synthesis 

All reagents (m-phenylenediamine, terephthalaldehyde, 
potassium hydroxide (KOH), and concentrated HCl) were 50 

purchased from commercial sources (Sigma-Aldrich) without 
purification before use. Deionized water was used in all 
experiments. 

The aromatic ditopic amine and aldehyde, m-
phenylenediamine and terephthalaldehyde, are simple organic 55 

small molecules used as carbon sources in the present research. 

The mixture of amine and aldehyde (1:1 molar ratio) were added 
into KOH pellets with KOH/(amine+aldehyde) mass ratio of 3/2. 
Then the mixture was ground manually in a mortar with a pestle 
to crush KOH pellets for 20 min, resulting in thoroughly 60 

homogeneous mixture powder. This mixture was then placed into 
an alumina combustion boat and calcinated in a tubular furnace at 
the expected temperature for 1 h (ramp rate: 3 ºC/min) under an 
argon flow. After cooling to room temperature, the sample was 
thoroughly washed several times with 10 wt% HCl to remove 65 

inorganic salts, large amount of distilled water until neutral pH, 
and finally dried at 80 ºC overnight in an oven. The final carbons 
were named as MPC-T, where MPC is the abbreviation of 
microporous carbon and T is the activation temperature in ºC. 

Material characterization 70 

Nitrogen adsorption isotherms were collected at -196 oC using a 
Quantachrome Autosorb 1C apparatus. Prior to the gas adsorption 
measurement, the samples were degassed in vacuum at 150 oC 
overnight. Specific surface areas were calculated using the 
Brunauer-Emmett-Teller (BET) equation (p/p0 = 0.05-0.20). The 75 

total pore volume was determined at relative pressure p/p0 = 0.98. 
The pore size distribution was estimated according to the 
quenched solid density functional theory (QSDFT) method based 
on the equilibrium model for slit pores using the Autosorb 1.56 
software from Quantachrome. The micropore volume and surface 80 

area were obtained via the t-plot analysis. 
Nitrogen adsorption measurements at 0 or 25 oC and up to 1 

bar were carried out using a Quantachrome Autosorb-1 
instrument. Transmission electron microscopy (TEM) 
investigations were performed using a 200 kV JEOL 2010CX 85 

TEM instrument. SEM images were recorded using a JEOL JXA-
8100 scanning electron analyzer. Powder X-ray diffraction (XRD) 
analysis was performed using a Rigaku D/MAX-λ B instrument 
with Cu Kα1 radiation (40 kV, 60 mA). Fourier-transform 
infrared (FT-IR) spectroscopic investigation was carried out on a 90 

Nicolet FT-IR 205 spectrometer. Elemental analysis was carried 
out using a CHN elemental analyzer (Model 2400, Perkin-Elmer, 
Norwalk, CT). Thermal analysis (TGA) was performed using a 
Netzsch STA-449/C instrument. X-ray photoelectron spectra 
were recorded on a Kratos Axis Ultra DLD spectrometer 95 

employing a monochromatic Al KR X-ray source (75-150W) and 
analyzer pass energy of 160 eV (for survey scans) or 40 eV (for 
detailed scans).  

CO2 capture measurements 

The CO2 adsorption measurements were carried out using a 100 

Quantachrome Autosorb-1 instrument at 0 or 25 oC in low 
pressure range of up to 1 bar. Before the measurement the 
samples were degassed at 150 oC in vacuum for 24 h to remove 
any moisture and CO2 molecules adsorbed in the pores. After the 
sample was cooled down to 0 or 25 °C, the CO2 supplied was 105 

introduced into the system. To investigate the recyclability of 
MPCs for CO2 capture, the used porous carbon was regenerated 
by evacuating at 150 °C for 1 h in vacuum and then re-used in 
CO2 adsorption test. 
 110 
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Fig. 6 Nitrogen adsorption isotherms (a) and QSDFT pore size 
distribution curves of various MPCs. 

The chemical compositions of the resulting MPCs determined by 
CNH elemental analysis are illustrated in Table 2. All MPCs 5 

contain variable nitrogen elements (0.36-0.86 wt%) controlled by 
the activation temperatures, which are far lower than those (5.6-
8.7 wt% nitrogen contents) obtained by direct pyrolysis of porous 
imine-linked polymer.21 This phenomenon indicates that the 
nitrogen atoms tend to liberate during the one-step condensation 10 

and activation process. The nitrogen content (0.36 wt%) of MPC-
750 prepared at the highest temperature of 750 °C is significantly 
lower than those of other samples. Also the hydrogen content 
gradually decreases with increasing the activation temperature in 
the following order: 1.01 wt% (600 °C) > 0.74 wt% (650 °C) > 15 

0.48 wt% (700 °C) > 0.31 wt% (750 °C). These results show that 
the heteroatom species can be easily removed due to the 
decomposition/oxidation.46 The loss of the heteroatoms is caused 
by the heat-treatment at high temperature, resulting in the 
formation and release of the nitrogen/hydrogen-containing 20 

compounds.  

Table 2. CNH chemical elemental analysis of various MPCs. 

Sample N (wt%) C (wt%) H (wt%)
MPC-600 0.78 85.04 1.01 
MPC-650 0.79 84.25 0.74 
MPC-700 0.86 83.57 0.48 
MPC-750 0.36 89.13 0.31 

We further investigated the bonding location of N atoms in the 
MPCs on the basis of high-resolution N 1s XPS spectra. 
Quantitative elemental analysis results from the N 1s XPS spectra 25 

show the nitrogen contents in the MPCs are well in consistent 
with those of the chemical elemental analysis, indicating the 
surface of the MPCs has similar density of nitrogen functional 
groups as the bulk (Table S1). As shown in Fig. S3, two peaks at 
about 398.3 eV and 400.4 eV can be discerned from the N 1s 30 

spectra, which imply the presence of two forms of nitrogen, 
namely, pyridinic N and pyrrolic N.31, 47-48 The signal for binding 
energy of the pyrrolic N is much higher than that of the pyridine 
N, showing the higher concentration of the pyrrolic N in these 
nitrogen-containing carbons. The nitrogen-containing groups in 35 

porous carbons are expected to act as Lewis basic sites, 
efficiently active for binding acidic CO2 molecules via the acid-
base interaction and thus improving the CO2 uptakes.49 
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Fig. 7 CO2 adsorption isotherms for various MPCs at 25 °C (a) and 0 °C 40 

(b), respectively. 

Due to the combination of high microporosity in the range of sub-
nanosize and basic nitrogen functional groups, the resulting 
MPCs are expected to have great potential as the physisorbents 
for CO2 capture and separation.26 The CO2 adsorption isotherms 45 

of these MPCs collected at 25 and 0 °C, respectively are shown in 
Fig. 7. The desorption isotherms are almost consistent with the 
adsorption isotherms, and only a small hysteresis is formed (Fig. 
S4-S11). It shows that the capture of CO2 by these MPCs is fully 
reversible. The adsorption uptakes of CO2 at 1 bar are indicated 50 

in Table 3. At ambient pressure and 0 °C, MPC-600 and MPC-
650 demonstrate good CO2 uptakes of 102.2-105.2 mL/g (4.56-
4.70 mmol/g) because of their large micropore surface areas 
(1391-1422 m2/g), micropore volumes (0.61-0.62 cm3/g), and 
narrow micropore size distribution (1.0-1.1 nm). The CO2 55 

uptakes (0 oC) increase to 109.5-110.3 mL (4.89-4.92 mmol/g) 
for MPC-700 and MPC-750 prepared at higher temperature, 700 
and 750 °C respectively. This increase is due to not only the 
higher surface areas and micropore volumes, but also the 
narrower micropore size distributions (0.7-0.8 nm) of MPC-700 60 

and MPC-750 compared to MPC-600 and MPC-650 samples. In 
the previous report, all polymer-derived activated carbons 
prepared at high temperatures of over 700 °C possess lower CO2 
uptakes than present MPCs (4.89-4.92 mmol/g) obtained by one-
step condensation and activation of diamine and dialdehyde in the 65 

presence of KOH at 700 and 750 °C. In comparison with our 
results with the previous data, it can be concluded that the pore 
size is more important to increase gas adsorption capacities of the 
MPCs than the surface area and pore volume. The MPCs 
prepared over 700 °C possess narrow micropore sizes of 0.7-0.8 70 

nm that thus can increase the interaction of CO2 molecules and 
carbon and thus significantly improve adsorption selectivity of 
CO2 over N2. Furthermore, as shown in Fig. 7 and Table 3, the 
CO2 uptakes of these MPCs at ambient temperature diminish to 
2.67-2.81 mmol/g (59.6-63.8 mL). Because of an exothermic 75 

process of CO2 physisorption, the amounts of CO2 adsorbed 
decrease with increasing the environmental temperature. 
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Table 3. CO2 uptakes of various MPCs at 1 bar, and 0 °C or 25 °C. 

Sample CO2 uptake at 0 °C CO2 uptake at 
25 °C 

mL/g (mmol/g) mL/g (mmol/g) 
MPC-600 105.2 (4.70) 59.6 (2.67) 
MPC-650 102.2 (4.56) 63.8 (2.85) 
MPC-700 109.5 (4.89) 63.0 (2.81) 
MPC-750 110.3 (4.92) 64.1 (2.86) 

 
To determine the strength of the interaction between the 
CO2 molecules and carbon surface, the isosteric heat of 
adsorption (Qst) for the MPCs was calculated from CO2 5 

adsorption isotherms measured at two temperatures (0 and 25 °C) 
based on the Clausius-Clapeyron equation.  The calculated Qst 
values as a function of the CO2 uptake for the MPCs are shown in 
Fig. 8. The initial Qst values for all MPCs lie in the range of 18-
33 kJ/mol at low surface coverage, which are comparable to or 10 

higher than those reported for the previously reported activated 
carbons, MOFs, and covalent organic frameworks.21, 50-53 The 
high Qst values indicate that the MPCs strongly interact with the 
CO2 molecules. It is worth noting that the initial Qst values at low 
CO2 uptake for the MPCs prepared at 600-700 °C are evidently 15 

higher than that for MPC-750, possibly because MPC-750 has the 
lowest density of nitrogen functional groups among these porous 
carbons. This result implies that the surface nitrogen functional 
groups play very important roles in the initial interaction between 
CO2 molecules and carbon surface. The Qst values for MPC-600 20 

and MPC-650 significantly decrease to about 21-22 kJ/mol when 
the adsorbing amount of CO2 is 3.0 mmol/g, showing that two 
CO2 adsorption mechanisms coexist in these two MPCs; CO2 
molecules are adsorbed onto both the nitrogen functional groups 
and the non-doped porous carbon surface. Among these MPCs 25 

MPC-700 has the highest of ~28 kJ/mol at higher coverage (3.0 
mmol/g), which are superior to biomass-derived porous carbons 
(22 kJ/mol at 0.7 mmol/g)26 and porous polyamine (18 kJ/mol at 
2.2 mmol/g),54 since MPC-700 is characterized by both surface 
nitrogen functional groups and excellent textures. Sample MPC-30 

750 which has the lowest nitrogen content and highest CO2 
uptake value, has the lowest of 16 kJ/mol at high coverage. These 
results imply that the nitrogen functional groups dominate the 
interactions between the CO2 molecules and carbon surface at 
higher coverage. However for those porous carbons with lower 35 

nitrogen contents, both nitrogen functional groups and textural 
properties (i.e., pore size and surface area) influence the 
interaction of the CO2 molecules and carbon surface. All these 
data above show the importance of introducing basic nitrogen 
functional groups and controlling the textural properties of 40 

microporous carbons in improving CO2 uptake capacities. 
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Fig. 8 Isosteric heat of CO2 adsorption (Qst) for the MPCs as a function of 
CO2 uptake. 

We also investigated the recycle-use ability of the MPCs as CO2 45 

sorbents by performing the adsorption-desorption cycle for four 
times at 25 °C, and the observed CO2 adsorption capacities of 
MPC-750 are variable among 2.72-2.86 mmol/g at ambient 
pressure, implying the MPCs can be regenerated and reused 
without any evident loss of the adsorption capacity. Moreover the 50 

MPCs present here show comparable or higher uptakes compared 
to most of the previously reported porous polymers and carbons 
as solid adsorbents for CO2 adsorption. For example, the doping 
of MgO and S-CaO-MgO in porous carbons without activation 
only resulted in very low CO2 uptake of 0.28 mmol/g.3 At 25 °C 55 

and 1 bar, activated graphite fibers, olive stone-based carbons, 
nitrogen-incorporated hierarchical porous carbons, and nitrogen-
incorporated resin-based carbons showed poor CO2 uptakes of 
1.3, 2.0, 2.2, and 2.5 mmol/g, respectively,55-58 far lower than our 
values. The CO2 adsorption capacities of our MPCs also 60 

outperform the conjugated microporous polymer (1.45 mmol/g at 
25 °C and 1 bar),14 nanoporous melamine resin sponges (1.6 
mmol/g at 0 °C),59 and resin-based carbons (1.86 mmol/g at 
25 °C).60 At 1 bar, it can be found that the CO2 uptake of MPC-
750 is also evidently higher than those of various activated 65 

nanostructured carbons, such as widely used activated carbons 
(~2 mmol/g at 25 °C),61 hard-templated CMK-3 (2.2 mmol/g at 
25 °C), and CMK-8 (2.1 mmol/g at 25 °C).22 Moreover, MPC-
750 has similar CO2 adsorption capacity to recently reported 
nitrogen-containing carbon framework (4.9 mmol/g at 0 °C and 1 70 

bar) obtained by self-assembly of poly(benzoxazine-co-resol)10 
and triptycene-derived benzimidazole-linked polymers (5.1 
mmol/g at 0 °C and 1 bar).12 Thus it can be believed that the 
present one-step condensation and activation strategy is efficient 
for preparing porous carbon adsorbents for CO2 capture with 75 

good capacity. 
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Fig. 9 CO2 and N2 adsorption isotherms for MPC-700 at 25 °C (a) and 
0 °C (b), respectively. 

Besides large CO2 adsorption capacities toward practical 
applications, the MPCs should show a high adsorption ratio for 5 

CO2 over N2. Thus we compare the CO2 and N2 adsorption 
capacities of MPC-700 at 1 bar, and 25 and 0 °C, respectively. As 
presented in Fig. 9, the amount of CO2 adsorbed is much higher 
than that for N2 at 1 bar. At 1 bar and 25 °C, the amount of 
adsorbed N2 (0.06 mmol/g) is only 2.1 % that of adsorbed CO2 10 

(2.81 mmol/g). With decreasing the adsorption temperature from 
25 to 0 °C, the amount of adsorbed N2 increases to 0.095 mmol/g, 
1.94% that of adsorbed CO2 (4.89 mmol/g). Therefore MPC-700 
prefers to adsorb CO2, especially at low temperatures. The 
calculated CO2/N2 adsorption ratio on MPC-700 at 1 bar is about 15 

47 and 52 at 25 °C and 0 °C, respectively. To our knowledge, the 
CO2/N2 adsorption ratio of MPC-700 is by far the highest among 
various known micro-/mesoporous carbon materials under similar 
testing conditions. As shown in Table 4, the CO2/N2 adsorption 
ratios of our samples are far higher than those reported in the 20 

previous literatures. For example, the activated porous carbons, 
prepared by KOH activation of polyimine, polypyrrole, and 
biomass-based chars, exhibited similar CO2/N2 adsorption ratios 
of 5-9.8 at 1 bar.21, 26, 29, 45 Kim and co-workers reported the 
chemical activation of graphene-modified polyaniline or 25 

polypyrrole with KOH, and the resulting graphene-based porous 
carbons showed that the CO2/N2 adsorption ratio at 1 bar and 
25 °C is 9 and 17, respectively.30-31 Direct pyrolysis of porous 
organic polymers/resins resulted in various porous carbons with 
different CO2/N2 adsorption ratios varying from 5 to 17.10-11, 35, 62 30 

Moreover, both nitrogen-doped templated and nanotube-modified 
porous carbons also demonstrate low CO2/N2 adsorption ratios of 
5.8-14.23, 63-65 Therefore it can be concluded that the CO2/N2 
adsorption ratios of the previously reported porous carbons at 
ambient pressure are much lower than those of our values.  35 

Table 4. The comparison of the CO2/N2 adsorption ratios for various 
porous carbon sorbents at 25 °C or 0 °C and 1 bar. 

Sample 25 °C 0 °C Ref. 
MPC-700 47 52 This work
NC-800 5 5 21 

CP-2-600 5.3 - 29 
AS-2-600 5.4 - 26 

PC-2 7.9 9.8 45 
NG-7 9 - 30 

a-NDC-6 17 - 31 
HCM-DAH-1 17 - 10 

NPC-650 5 6.6 35 
RFL-500 10 - 11 

HMT-80-900 14 - 62 
N-TC-EMC 14 - 63 
CEM-750 9.5 - 64 
Com-15 5.7 5.8 23 
CN-950 3.9 - 65 

Because the flue gases from fossil fuel-fired power plants are 
composed of 70% N2 and 15% CO2, we also calculate the initial 
adsorption selectivity of CO2/N2 of our samples based on the 40 

initial slopes of the CO2 and N2 adsorption isotherms at low 
pressure range (Fig. S12-S13). As shown in Table 5, the 
calculated adsorption selectivity for CO2 over N2 of MPC-700 is 
as high as 91 and 119 at 25 and 0 °C, respectively. These initial 
selectivities are significantly superior to those previously reported 45 

values for various porous CO2 sorbents. The initial selectivities 
for porous carbons derived from porous imine-linked polymer 
(12.5-23.4),21, 35 and fungi-based porous carbons (18.5-27.3) at 25 
or 0 °C are evidently poorer than those of present MPC-700.45 
Moreover these initial selectivities also surpass the triptycene-50 

derived benzimidazole-linked polymers (39-70),12, 66 
(benzoxazine-co-resol)-based porous carbons (27.8),10 bio-MOF-
11 (81),67 carbon nanotube/graphene modified porous carbons 
(17.9-34),23, 30-31 and porous carbon templated by IBN9 (27).68 It 
can be believed that MPC-700 has very high CO2/N2 adsorption 55 

ratio and initial absorption selectivity ascribed to its optimum 
micropore size (0.7 nm) as well as high micropore volume and 
some basic nitrogen functional groups. All these above results 
imply that the MPCs are potential selective sorbents for CO2 
separation from N2, highly advantageous for practical 60 

applications. 

Table 5. The comparison of the initial adsorption selectivity of CO2 over 
N2 for various porous materials calculated based on the initial slopes of 
the CO2 and N2 adsorption isotherms at 25 °C and 0 °C, respectively. 

Sample 25 °C 0 °C Ref. 

MPC-700 81 119 This work
NC-800 - 21 21 

NPC-650 12.5 23.4 35 
PC-2 18.5 27.3 45 

BILPs 39 63 12 
BILP-1 - 70 66 

HCM-DAH-1 27.8 - 10 
Bio-MOF-1 - 81 67 

Com-15 19.8 32.6 23 
a-NDC-6 34 - 31 

NG-7 17.9 - 30 
IBN9-NC1-A 27 - 68 

Conclusions 65 

Summarizing, we have developed an efficient one-step 
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condensation and activation strategy to synthesize a series of 
microporous carbons (MPCs) using commercial available 
terephthalaldehyde and m-phenylenediamine as carbon sources. 
During the physical mixing of carbon sources and KOH by 
grinding, the aldehyde and amine groups could partially condense 5 

to form the imine bonds. Upon heat-treatment (600-750 °C), the 
unreacted amine and aldehyde groups further reacted via 
condensation, and then the in-situ resulting polymer was 
activated by KOH to form novel MPCs. These MPCs particles 
possess many large smooth voids with pore size of over 10 µm, 10 

and possess high surface areas of up to ~1881 m2/g, large pore 
volumes of up to 0.85 cm3/g, narrow micropore size distributions 
(0.7-1.1 nm), small amounts of nitrogen functional groups (0.36-
0.86 %), and major fraction of porosity in the micropore range, 
depending on the activation temperatures (600-750 °C). It is 15 

worth noting that the samples (MPC-700 and MPC-750) prepared 
at high temperatures demonstrate smaller micropore systems (0.7-
0.8 nm) than those (MPC-600 and MPC-650) synthesized at 
relatively mild conditions. 

Because of well-defined micropore size (0.7-1.1 nm) and some 20 

basic nitrogen functional groups, these MPCs demonstrate good 
CO2 uptakes at ambient pressure. The high-temperature activated 
samples have higher CO2 uptakes than the low-temperature 
activated ones, because the former have an optimized micropore 
size (0.7-0.8 nm), highly advantageous for CO2 adsorption. MPC-25 

750 prepared at 700 °C has the best ability to capture CO2 of up 
to 2.82 mmol/g and 4.92 mmol/g at 25 and 0 °C, respectively 
which are among the highest values reported for porous carbons 
for CO2 capture. Moreover the MPCs also have extremely high 
CO2/N2 adsorption ratio of up to 47 (25 °C) and 52 (0 °C) at 1 bar 30 

and initial adsorption selectivity of CO2/N2 (81 at 25 °C and 119 
at 0 °C), which are the highest reported for porous carbon-based 
CO2 sorbents. Therefore these novel MPCs are potentially useful 
for highly selective CO2 capture from the flue gases of power 
plants burning fossil fuels. Further application of these novel 35 

MPCs with optimal micropore sizes as electrodes is currently 
being investigated. 
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