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 2 

ABSTRACT  1 

 2 

 3 

 4 

The copper(II) complexes of bis-thiosemicarbazones (Cu(btsc)) such as Cu(atsm) 5 

and Cu(gtsm) are neutral, lipophilic compounds that show promise as therapeutics for the 6 

treatment of certain neurological diseases and cancers. Although the effects of these 7 

compounds have been described at the cellular level, there is almost no information about 8 

their biochemical mode of action. In this work, we showed that Cu(atsm) and Cu(gtsm) 9 

displayed antimicrobial activities against the human obligate pathogen Neisseria 10 

gonorrhoeae that were more than 100 times more potent than Cu(NO3)2 salt alone. 11 

Treatment with Cu(btsc) also produced phenotypes that were consistent with copper 12 

poisoning, but the levels of intracellular copper were undetectable by ICP MS. We 13 

observed that Cu(btsc) interacted with proteins in the cell membrane. Systematic 14 

measurements of O2 uptake further demonstrated that treatment with both Cu(atsm) and 15 

Cu(gtsm) led to dose-dependent inhibition of respiratory electron transfer processes via 16 

succinate and NADH dehydrogenases. These dehydrogenases were not inhibited by a non-17 

btsc source of Cu
II
. The results led us to conclude that the biochemical mechanism of 18 

Cu(btsc) action is likely more complex than the present, simplistic model of copper release 19 

into the cytoplasm.      20 

  21 
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 3 

INTRODUCTION 1 

In the diagnosis and treatment of a variety of cancers and neurodegenerative 2 

disorders, the use of a class of neutral, lipophilic bis(thiosemicarbazonato)copper(II) 3 

complexes (Cu(btsc); Scheme 1) such as diacetyl- and glyoxal-bis[N(4)-4 

methylthiosemicarbazonato]copper(II) (Cu(atsm) and Cu(gtsm), respectively) is emerging 5 

as a promising strategy. There is already significant progress in the application of Cu(btsc) 6 

in nuclear medicine. The radioactive 
64

Cu isotope of Cu(atsm) is currently in human 7 

clinical trials as an imaging agent of hypoxia in head and neck cancer.(1) More recent 8 

studies in animal models have also demonstrated the therapeutic potential of Cu(atsm) and 9 

Cu(gtsm) for Parkinson’s(2) and Alzheimer’s(3) diseases, respectively. In addition, 10 

experiments using tissue cultures have shown that Cu(gtsm) also inhibited the growth of 11 

brain tumor(4) and prostate cancer(5) cells. 12 

Although the pharmacological effects of Cu(btsc) have been investigated in some 13 

detail (reviewed recently by Paterson and Donnelly(6)), a biochemical understanding of 14 

the interactions between these compounds and cells remains to be elucidated. Pioneering 15 

early studies suggested that Cu(btsc) compounds oxidised intracellular thiols(7-9), leading 16 

to global defects in metabolism, including inhibition of oxidative phosphorylation(10) and 17 

DNA synthesis(11). Incidentally, severe oxidative stress is also a hallmark of copper (Cu) 18 

poisoning (reviewed by Valko and colleagues(12)). Thus, the present model for the 19 

mechanism of Cu(btsc) action is generally linked to the ability of these complexes to 20 

increase retention of intracellular Cu ions.(13) Whether the intact Cu(btsc) unit itself exerts 21 

a toxic effect is not known.  22 

We are interested in the potential of Cu and Cu-containing compounds to fight 23 

bacterial infections. To date, the use of Cu as an antimicrobial agent has been met with 24 

relative success in environmental settings. The effects associated with physical contact 25 
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 4 

with metallic Cu surfaces have proven to be efficient in stemming bacterial 1 

cross-contamination in several hospital trials.(14, 15) By comparison, development of 2 

Cu-based drugs has been impeded by a general lack of selective toxicity against the 3 

infecting pathogens over host tissue. Their wide use in animal and clinical experiments 4 

suggests that Cu(atsm) and Cu(gtsm) are relatively well tolerated by healthy tissues. 5 

Although present efforts are concentrated on the development Cu(btsc) as future 6 

therapeutics in neurological diseases and cancers, it ought to be possible to extend the 7 

work to treat bacterial infections. Data on the antimicrobial activity of Cu(btsc) is still 8 

limited, but a recent study suggested that they could be effective against Mycobacterium 9 

tuberculosis.(16) 10 

Here we show that Cu(atsm) and Cu(gtsm) are highly toxic to Neisseria 11 

gonorrhoeae (the gonococcus), which causes the sexually transmitted infection 12 

gonorrhoea. Using this bacterium as a model system, we further provide insight into the 13 

biochemical action of Cu(btsc) in cells and identify that their primary mode of action is via 14 

inhibition of  respiratory electron transport. 15 

 16 

RESULTS AND DISCUSSION 17 

Antimicrobial activity of Cu(btsc). The antimicrobial effects of Cu(btsc) were 18 

characterised in this work using the obligate human pathogen N. gonorrhoeae strain 1291 19 

as a model system. This bacterium tolerates excess Cu by expressing a Cu efflux pump 20 

encoded by a copA gene, and a mutant strain with a deletion in copA (1291copA) is 21 

susceptible to killing by Cu salts.(17) Exposure to 50 µM Cu(NO3)2 for 20–24 h led to a 22 

6-log reduction in the number of 1291copA colony forming units (CFU; Figure 1a). By 23 

contrast, the wild type strain (1291wt) remained fully viable up to 100 µM Cu(NO3)2. 24 

Compared to Cu(NO3)2, Cu(btsc) was several magnitudes more toxic. Viability of 25 
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1291copA decreased a million fold after exposure to only 100 nM of Cu(atsm) or 30 nM of 1 

Cu(gtsm) (Figure 1a). Both complexes were also effective against wild type N. 2 

gonorrhoeae at sub-micromolar concentrations. A reduction in the survival of 1291wt was 3 

detected in the presence of as little as 500 nM of Cu(atsm) or 50 nM of Cu(gtsm) (Figure 4 

1a). These concentrations are well below those tolerated by various human and animal 5 

tissues.(2, 5, 16) Notably, Cu(atsm) and Cu(gtsm) were more toxic than their respective 6 

copper-free ligands (Supplementary Figure 1), confirming that the Cu centre was required 7 

for toxicity.  8 

Cu(gtsm) was approximately 10 times more effective at killing N. gonorrhoeae 9 

strains than was Cu(atsm) (Figure 1a). This difference arises presumably due to the 10 

different degrees to which the compounds can increase bio-available levels of Cu
I
, which 11 

is cytotoxic (Scheme 1). Neutral Cu(btsc) complexes are thermodynamically and 12 

kinetically stable with respect to dissociation, but they are susceptible to reduction of the 13 

metal ion.(13) Due to a low Cu
II
/Cu

I
 reduction potential (E1/2 = [(Ep

red
 + Ep

ox
)/2] = -440 mV 14 

vs. AgCl/Ag), Cu(gtsm) is reduced readily by intracellular reductants such as glutathione. 15 

The resulting [Cu
I
G]

-
 species is unable to compete effectively with Cu

I
 sinks such as 16 

protein thiols, and thus the Cu
I
 ion is released (Scheme 1). By comparison, reduction of 17 

Cu(atsm) occurs at a more negative potential (E1/2 = -600 mV) and hence Cu(atsm) is 18 

thought to retain its Cu
II
 centre more efficiently. As a result of this subtle difference in the 19 

chemistry of these Cu(btsc) complexes, cells treated with Cu(gtsm) frequently accumulate 20 

higher levels of intracellular bio-available Cu
I
 compared to those exposed to Cu(atsm) 21 

(Scheme 1).(3, 5, 18, 19)   22 

Cu(btsc) treatment leads to a small increase in cytoplasmic Cu levels. Excess 23 

intracellular Cu in N. gonorrhoeae appears to exert a toxic effect by arresting heme 24 

biosynthesis at the step catalysed by coproporphyrinogen III decarboxylase (HemN; 25 
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 6 

Supplementary Figure 2).(20) This occurs presumably due to poisoning of the [4Fe-4S] 1 

cluster by bio-available Cu
I
 that accumulates in the cytoplasm. Consequently, there is a 2 

decrease in total intracellular heme levels, accompanied by a build-up of the biosynthetic 3 

intermediate coproporphyrin III (Cop III). The latter is detected by a fluorescent emission 4 

at 620 nm following excitation at 410 nm.(20)  5 

Growth of 1291copA in the presence of 10 µM Cu(NO3)2 led to a 10-fold gain in 6 

Cop III fluorescence (Figure 1b(i)). An increase in Cop III fluorescence was also detected 7 

in cells that were exposed to 30 nM Cu(gtsm) (Figure 1b(ii)) or 80 nM Cu(atsm) (Figure 8 

1b(iii)). This suggests that N. gonorrhoeae was able to metabolise both Cu(btsc) 9 

complexes to raise the levels of cytoplasmic Cu
I
 pools, although these concentrations of 10 

Cu were undetectable by ICP MS (Supplementary Figure 3). The amounts of Cu(NO3)2, 11 

Cu(atsm), and Cu(gtsm) used in these experiments led to a comparable inhibition in the 12 

growth rates of 1291copA (Figure 1c). However, cells exposed to Cu(gtsm) and Cu(atsm) 13 

produced less than 50% of the amount of Cop III generated by those treated with Cu(NO3)2 14 

(Figure 1b). These results suggested that Cu(btsc) might exert additional toxic effects other 15 

than those caused by the trapping of bio-available Cu
I
 in the cytoplasm.  16 

Cu(btsc) inhibits aerobic respiration by intact cells. The lipophilicity of 17 

Cu(atsm) and Cu(gtsm) has been shown to result in significant interactions with and 18 

retention in the cell membranes of glial and neuronal cell lines.(21) Similarly, addition of 19 

Cu(btsc) to a suspension of N. gonorrhoeae 1291wt followed by immediate sedimentation 20 

of cells led to trapping of the characteristic orange-red colour of Cu(btsc) in the bacterial 21 

pellet (Supplementary Figure 4). This association with the cell membrane could disrupt the 22 

action of membrane proteins, such as those involved in aerobic electron transfer.  23 

The sensitivity of the pathway for aerobic electron transport to inhibition by 24 

Cu(btsc) was examined by measuring the rates of O2 consumption by intact 1291wt cells 25 
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 7 

following incubation with Cu(atsm) or Cu(gtsm) (50 µM each). N. gonorrhoeae is able to 1 

efficiently use L-lactate, pyruvate, and glucose as carbon sources in aerobic metabolism 2 

(Scheme 2)(22, 23), but pre-exposure to Cu(gtsm) for 3 min led to a partial decrease in the 3 

rates of lactate respiration and a complete inhibition of pyruvate- and glucose-dependent 4 

respiration (Figure 2a). The reduction in rate was dose-dependent (Figure 2b) and 5 

immediate; it was observed at approximately 1 min after addition of Cu(gtsm) into the 6 

reaction (Figure 2c). By comparison, pre-treatment with Cu(atsm) induced only a minor, 7 

albeit detectable effect on the rates of aerobic respiration, regardless of the electron donor 8 

(Figure 2a). Extending the incubation time for up to 1 h did not lead to any further loss in 9 

respiration rates (Supplementary Figure 5). Due to poor solubility in the assay buffers, 10 

higher concentrations of Cu(atsm) were not tested. 11 

Cu(btsc) impairs electron transport to O2. The data in Figure 2 indicated that 12 

transfer of electrons from lactate, glucose, and pyruvate to O2 may be impaired by 13 

Cu(gtsm). The core electron transport chain in N. gonorrhoeae is organised into four 14 

complexes that resemble those present in mitochondria (shaded box in Scheme 2). 15 

Reduction of O2 to H2O is catalysed by a terminal oxidase (cytochrome cbb3). Upstream of 16 

this oxidase is a cytochrome bc1 complex (Complex III-like), which uses ubiquinol as an 17 

electron donor. The quinone (Q) pool accepts electrons from succinate and NADH 18 

dehydrogenases (SDH (Complex II-like) and Nuo (Complex I-like), respectively). In N. 19 

gonorrhoeae, additional primary dehydrogenases deliver electrons to the Q pool. These 20 

include a sodium-motive NADH dehydrogenase (Nqr) and an FMN-dependent 21 

L-lactate-ubiquinone reductase (L-LDH) (Scheme 2).(24) There is a previous suggestion 22 

that Complex I in the mitochondria (homologue of Nuo in N. gonorrhoeae) may 23 

participate in Cu(btsc) homeostasis.(25) However, to our knowledge, interactions between 24 
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 8 

Cu(btsc) and cytochrome oxidase, cytochrome bc1, SDH, and L-LDH have not been 1 

reported in any system. 2 

(1) Activities of cytochrome oxidase and lactate dehydrogenase are not affected. 3 

As shown clearly in Figure 2, lactate respiration by intact cells was susceptible to 4 

inhibition by Cu(gtsm). Thus, transport of electrons from L-LDH to the terminal oxidase 5 

may be impaired. To test this proposal, the components of the core respiratory chain in N. 6 

gonorrhoeae (shaded box in Scheme 2) were isolated from bacterial milieu by preparing 7 

cell-free membrane vesicles of 1291wt. The impact of Cu(btsc) was subsequently 8 

examined by measuring the rates of O2 consumption following treatment with Cu(gtsm) or 9 

Cu(atsm) (50 µM each). By using an excess of ascorbate-reduced TMPD to drive steady-10 

state reduction of c-type cytochromes and act as electron donors to cytochrome cbb3 11 

(Scheme 2), it was found that the activity of the terminal oxidase was not affected by 12 

Cu(gtsm) or Cu(atsm) (Figure 3a). Similarly, by using L-lactate as an electron donor to 13 

L-LDH (Scheme 2), no change was detected in the rate of O2 reduction (Figure 3b). Taken 14 

together, these results suggested that the entire chain of electron transfer from L-lactate to 15 

O2 via L-LDH, the Q pool, cytochrome bc1, and cytochrome cbb3 (Scheme 2) was not 16 

affected by Cu(btsc).  17 

(2) Cu(btsc) inhibits electron transfer via succinate dehydrogenase. Oxidation of 18 

L-lactate by L-LDH generates pyruvate, a central metabolite in the pathway for electron 19 

transport and energy production in N. gonorrhoeae (Scheme 2). Thus, the site of Cu(gtsm) 20 

inhibition in Figure 2 may occur within the branch of electron transfer fed by pyruvate. 21 

This molecule is also produced by the catabolism of glucose via the Entner-Doudoroff 22 

pathway (Scheme 2). It is subsequently oxidised by a cytoplasmic, NAD
+
-dependent 23 

pyruvate dehydrogenase complex (PDH), generating NADH and acetyl-CoA. The latter is 24 

oxidised further to succinate in the TCA cycle and electrons from succinate finally enter 25 
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 9 

the Q pool via SDH (Scheme 2). By measuring the rates of succinate-dependent 1 

consumption of O2, it was observed that pre-treatment with 0.5–50 µM Cu(gtsm) led to a 2 

dose-dependent reduction in the rates of electron transfer via SDH (Figure 4; Scheme 2). 3 

This result is consistent with the inability of intact N. gonorrhoeae cells to oxidise lactate, 4 

glucose, and pyruvate in the presence of Cu(gtsm) (Figure 2). 5 

A comparable loss in the rates of O2 reduction by succinate was also detected after 6 

exposure to Cu(atsm) (Figure 4). This result was unexpected, as the effects of Cu(atsm) on 7 

aerobic respiration by intact cells were negligible (Figure 2a and Supplementary Figure 5). 8 

This apparent discrepancy may be related to the orientation of SDH and lipophilicity of 9 

Cu(atsm). Like other respiratory dehydrogenases, SDH is located on the cytoplasmic face 10 

of the cell membrane.(26) It may be readily accessible by Cu(btsc) in isolated membrane 11 

vesicles but not in intact cells. Cu(atsm) is more lipophilic than Cu(gtsm), and thus it may 12 

cross intact cell membranes less efficiently.(21) Under our experimental conditions, 13 

prolonged incubation with Cu(atsm) did not result in an enhanced inhibition of aerobic 14 

respiration by intact cells (Figure 2a and Supplementary Figure 5). By comparison, a short 15 

exposure to Cu(gtsm) was sufficient to elicit a strong inhibitory effect (Figure 2). 16 

(3) Cu(atsm) suppresses electron transfer via NADH dehydrogenases. The rates 17 

of NADH-dependent consumption of O2 were also suppressed in a dose-dependent manner 18 

by 10–100 µM Cu(atsm) (blue traces in Figure 5a). This result indicated that the pathway 19 

of electron transfer via NADH dehydrogenases (NDHs) was also a likely site of Cu(atsm) 20 

toxicity in N. gonorrhoeae. As mentioned earlier, the genome of N. gonorrhoeae encodes 21 

for two putative NDHs, namely Nuo (H
+
-translocating, Complex I-like) and Nqr 22 

(Na
+
-translocating). To identify the specific enzyme that was inactivated by Cu(atsm), 23 

NADH oxidation was monitored in cell-free membrane vesicles of mutant strains, in which 24 

the gene encoding for the NADH-binding subunit of either one of the NDHs was deleted. 25 
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 10 

High turnover of Nqr was detected in the 1291nuoF mutant strain (Nuo-inactivated) and a 1 

relatively lower turnover for Nuo was observed in 1291nqrF (Nqr-inactivated) (black 2 

traces in Supplementary Figure 6). Both Nuo and Nqr were inhibited by Cu(atsm), but the 3 

impact appeared more pronounced for Nqr (blue traces in Supplementary Figure 6).  4 

(4) NADH dehydrogenases mediate redox cycling of Cu(gtsm). The rates of 5 

electron transfer from NADH to O2 were reduced slightly by low doses of Cu(gtsm), but 6 

this effect was reversed by higher concentrations of Cu(gtsm) and the rates of O2 7 

consumption became apparently stimulated (red traces in Figure 5a and Supplementary 8 

Figure 6). This phenomenon was investigated further by blocking the transport of electrons 9 

from NADH to O2 at the step catalysed by cytochrome bc1 using 10 µM myxothiazol 10 

(Figure 5c). This treatment efficiently suppressed the rates of NADH respiration in the 11 

absence of Cu(btsc) (grey traces in Figure 5b). However, consumption of O2 was resumed 12 

immediately upon addition of Cu(gtsm) (red traces in Figure 5b). NADH was apparently 13 

able to mediate one-electron transfer to Cu(gtsm). The reduction product, Cu
I
 (presumably 14 

as [Cu
I
G]

-
), is air-sensitive and was subsequently re-oxidised by O2 (Figure 5c).  15 

By contrast to Cu(gtsm), redox cycling of Cu(atsm) was not detected in our system 16 

(blue traces in Figure 5b). Reduction of Cu(atsm) occurs at a more negative reduction 17 

potential (E1/2 = -600 mV) than that of Cu(gtsm) (E1/2 = -440 mV), and thus it may not be 18 

favourable under our experimental conditions. NADH-dependent reduction of Cu(btsc) has 19 

been demonstrated previously in mammalian systems for Cu(atsm) and a related analog 20 

Cu
II
P (Cu

II
-pyruvaldehyde-bis(N4-methylthiosemicarbazone)). However, this occurs 21 

exclusively in hypoxic or xenocybrid mitochondria, where the reducing capacity of the 22 

system is high.(25, 27, 28)  23 

How do Cu(btsc) compounds exert their toxicity? Cu
II
 ions are known to 24 

damage components of the respiratory chain due to undesirable oxidation of crucial 25 
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 11 

thiols.(29, 30) Yet, recent work has demonstrated that the Cu
II
 ion trapped in both 1 

Cu(atsm) and Cu(gtsm) does not readily dissociate, even in the presence of an external 2 

high-affinity Cu
II
 scavenger such as EDTA.(13) Thus, indirect toxicity associated with the 3 

generation of “free” Cu
II
 ions in the solvent (Scheme 3a) and/or direct exchange of Cu

II
 4 

with protein ligands (Scheme 3b) is probably not the dominant mode of action of Cu(btsc) 5 

under our experimental conditions. Nevertheless, the Cu
II
 centre in Cu(btsc) was required 6 

for the inhibition of electron transfer via SDH and NDH, as the copper-free H2btsc ligands 7 

were not inhibitory (Figure 6b). Conversely, in control experiments where the Cu
II
 ion was 8 

complexed to a non-btsc ligand, ethyleneglycol tetraacetate (Cu(EGTA)), only minor 9 

losses were detected in the rates of electron transfer via SDH and NDH (Figure 6a). These 10 

results indicated that an intact Cu(btsc) unit was necessary to elicit an inhibitory effect. 11 

Although the Cu
II
 ion in Cu(btsc) is inert with respect to exchange and dissociation, 12 

it is susceptible to reduction to Cu
I
 in the presence of intracellular reductants (Scheme 13 

3c).(13) The fate of the immediate reduction product, [Cu
I
(btsc)]

-
, is complex. The btsc 14 

ligands displays a high affinity for Cu
I
 (Kd in the pM range) and thus release of “free” Cu

I
 15 

to the solvent (Scheme 3d) is not likely.(13) However, direct transfer of the Cu
I
 ion can 16 

still occur between [Cu
I
btsc]

-
 and high-affinity Cu

I
 sinks (Scheme 3e) such as thiols or 17 

iron-sulfur clusters(31, 32). This ability of Cu(btsc) compounds to act as a source of toxic 18 

Cu
I
 ions has in fact been identified as a major mechanism of their biological action 19 

(Scheme 1). However, it has already been demonstrated that “free” Cu
I
 ions do not affect 20 

SDH from Escherichia coli or the isozyme fumarate reductase.(31, 33)  21 

Furthermore, although the above model is true for Cu(gtsm), excess glutathione, 22 

ascorbate, or protein thiols are unable to effect reduction of Cu(atsm) in vitro, even in the 23 

presence of high-affinity Cu
I
 scavengers.(13) Thus, our observation that Cu(atsm) was able 24 

to suppress electron transfer via SDH (Figure 4) and NDH (Figure 5a) suggests that the 25 
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 12 

mechanism of inhibition likely involves direct binding of this compound to the 1 

dehydrogenases. This situation is plausible, as the non-redox active Zn(atsm) analogue was 2 

comparably efficient as an NDH inhibitor under the same conditions (data not shown), 3 

although a detailed follow-up study is required to confirm this model. Similarly, Cu(gtsm) 4 

may exert a direct inhibitory effect on SDH (Figure 4) and NDH (Figure 5a). However, the 5 

situation for Cu(gtsm) is more complex as this compound can also generate “free” Cu
I
.(13) 6 

As shown in Figure 5a, a low concentration of Cu(gtsm) led to an initial decrease in the 7 

rates of NADH respiration. However, as the concentration increased, Cu(gtsm) led to an 8 

enhancement of NADH oxidation (Figures 5a and 5b), presumably due to direct reduction 9 

of Cu
II
.  10 

The resulting Cu
I
 species from the reduction of Cu(gtsm) is also air-sensitive 11 

(Scheme 3f) and is able to rapidly reduce molecular O2. This model is supported by the 12 

observation that in the presence of myxothiazol, addition of Cu(gtsm) leads to stimulation 13 

of O2 uptake only (Figure 5b). Such redox cycling of Cu(gtsm) may generate toxic reactive 14 

oxygen species as the superoxide anion O2
-
 (cf. Figure 5c). This resembles the situation for 15 

Nuo in E. coli, where blockage of electron transfer and subsequent over-reduction of the Q 16 

pool led to production of O2
-
.(34)  17 

Concluding Remarks. Gonorrhea remains a major public health concern 18 

worldwide. Vaccines are not available and treatment has become particularly challenging 19 

due to the appearance of multidrug-resistant strains.(35) Our work here clearly 20 

demonstrated the efficacy of Cu(btsc) as a potential antimicrobial agent against N. 21 

gonorrhoeae. Sub-micromolar concentrations of Cu(atsm) and Cu(gtsm) well below the 22 

tolerability limit by human tissues and animal models were sufficient to reduce viability of 23 

N. gonorrhoeae by a million fold (Figure 1a).  24 
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More importantly, our results also established that electron transfer processes from 1 

succinate and NADH dehydrogenases are bona fide sites of Cu(btsc) action (Figures 4 and 2 

5, respectively). These dehydrogenases are flavoenzymes that contain iron-sulfur clusters 3 

and use ubiquinone as the electron acceptor. Although we cannot be precise about the 4 

mechanism, our results indicate that it is likely more complex than the existing model of 5 

Cu(btsc) reduction, Cu
I
 release, and subsequent redox damage (Scheme 1). The observed 6 

interaction between Cu(btsc) and these respiratory enzymes on the cell membrane may 7 

also suggest that the lipophilicity of Cu(btsc) play a key role. This property may help the 8 

compounds access hydrophobic pockets that would otherwise be inaccessible by “free” Cu
I
 9 

and Cu
II
 ions. Further investigations in mammalian mitochondria models will be important 10 

in the development of Cu(atsm), Cu(gtsm), and related compounds for anti-cancer 11 

strategies. 12 

   13 

EXPERIMENTAL 14 

Materials. Cu(atsm), Cu(gtsm), H2A, and H2G were synthesised following 15 

published procedures.(36) All other chemicals were from Sigma-Aldrich unless specified 16 

otherwise. 17 

Preparation of Cu stocks. Master stocks of Cu(NO3)2 (1 M) were prepared in 18 

deionised water. The [Cu
II
(egta)]

2-
 complex (10 mM) was prepared by titration of Cu(NO)3 19 

into a solution of the copper-free H4egta ligand in water, as monitored by the solution 20 

absorbances at 610 nm. Master stocks of Cu(atsm) and Cu(gtsm) (10 mM each) were 21 

prepared in neat DMSO. All other concentrations were prepared by serial dilutions of the 22 

master stocks in deionised water or DMSO.  23 

Bacteria culture conditions. N. gonorrhoeae strains were propagated on solid GC 24 

base (Oxoid) supplemented with 1% (v/v) IsoVitaleX enrichment (Becton Dickinson). 25 
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Where required, kanamycin was used at a concentration of 100 µg mL
-1

. Visible lawns 1 

were obtained after overnight incubation at 37 
o
C in the presence of 5% (v/v) CO2 and 2 

used as pre-cultures for further experiments. Liquid cultures were prepared in Chemically 3 

Defined Medium (CDM)(37) containing 0.5% (v/v) glucose as the sole carbon source. 4 

Cultures (50 mL) were grown in conical flasks (250 mL) at 37 
o
C and aerated by vigorous 5 

shaking at 200 rpm.  6 

Killing assays. Killing of gonococci by Cu(NO3)2 (0–100 µM), Cu(atsm) (0–1 µM) 7 

and Cu(gtsm) (0–0.1 µM) were examined on solid GC media. Pre-cultures were 8 

resuspended in phosphate buffered saline (PBS) to an OD600 of 0.4 (ca. 1 x 10
8
 CFU mL

-1
). 9 

Serial dilutions (1:10) were prepared in the same buffer and 5 µL of each dilution was 10 

spotted on fresh solid GC medium containing a Cu donor at the specified concentration. 11 

The final concentration of DMSO in cultures was < 0.05% (v/v). Each medium was 12 

prepared immediately before use. Surviving CFU were counted after 24 h of growth at 37 13 

o
C and 5% (v/v) CO2. The results were plotted as a function of Cu concentrations. 14 

Growth of bacteria for biochemical analyses. To measure the rates of aerobic 15 

respiration, gonococci were grown in aerated liquid cultures without any added Cu. To 16 

measure production of Cop III, bacteria were grown in aerated liquid cultures containing 17 

Cu(NO3)2 (10 µM), Cu(atsm) (80 nM) and Cu(gtsm) (30 nM). After 5 h (OD600 ~ 0.9–1.0), 18 

bacteria were collected by centrifugation and rinsed with 3 x 25 mL of ice-cold Wash 19 

Buffer (50 mM Na-Hepes, 10 mM MgCl2, pH 7.4).  20 

Cell fractionation. To obtain whole, intact gonococci, centrifuged pellet from a 21 

liquid culture were resuspended in Wash Buffer to an OD600 of ~ 100 and kept on ice until 22 

further use. To obtain cell-free extracts, centrifuged bacterial pellet was resuspended in 23 

ice-cold Wash Buffer (10 mL) and disrupted by passage through a French Press cell (3 x 24 

15000 psi). Unbroken cells and insoluble cell debris were removed by centrifugation 25 
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(5000g, 20 min) and the supernatant was kept on ice until further use. To obtain cell-free 1 

membrane vesicles, the cell-free supernatant was filtered through a 0.22 µm filtration unit 2 

(MilliPore) and centrifuged at high speed (150000g, 2 h, 4 
o
C). The membrane-rich pellet 3 

was homogenised in ice-cold Wash Buffer to a final protein concentration of ca. 200 mg 4 

mL
-1

 and stored on ice until further analyses. All analyses were performed on the same day 5 

of preparations. 6 

Measurement of intracellular Cop III levels. Tetrapyrroles were extracted from 7 

centrifuged bacterial pellet into in 500 µL of 80/20/1 (v/v) EtOH/DMSO/acetic acid. 8 

Insoluble debris was removed by centrifugation (15000g, 5 min) and the supernatant was 9 

analysed for Cop III fluorescence. All samples were prepared in a glass cuvette with a path 10 

length of 1 cm. Fluorescence emission spectra were recorded between 580 and 720 nm 11 

using an excitation wavelength of 405 nm, slit widths of 10 nm, and a scan speed of 500 12 

nm min
-1

. In our experimental conditions, the absorbance of Cu(btsc) was negligible 13 

(Abs405 << 0.001).  14 

Measurement of O2 consumption. Consumption of O2 by intact cells and cell-free 15 

membrane vesicles was measured at 30–35 
o
C in potassium phosphate (20 mM, 150 mM 16 

NaCl, pH 7.4) or Na-Hepes (50 mM, pH 7.4) buffer, respectively. Where required, 17 

myxothiazol was added to the reaction buffer to a final concentration of 10 µM. Whole 18 

cells (50 µL, or a final optical density of ~2.5) and membranes (~10 mg) were added at t = 19 

10 s. Where required, Cu(NO3)2, Cu(atsm), or Cu(gtsm) (0–100 µM each) were added at t 20 

= 20 s. Reduction of O2 was initiated by addition of electron donors at t = 3 min. The 21 

following electron donors were used: sodium L-lactate (50 mM), sodium pyruvate (50 22 

mM), D-(+)-glucose (0.5% (v/v)), sodium succinate (25 mM), β-NADH (1 mM), and 23 

TMPD/ascorbate (1 mM/5 mM). Rates of reactions were monitored for a further 3 min 24 
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using an S1/Mini Clark-type oxygen electrode (Hansatech Instruments) in conjunction 1 

with an Oxytherm control unit.  2 

Measurement of protein concentrations. Protein content was determined using 3 

QuantiPro BCA Assay Kit (Sigma).  4 

 5 
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SCHEMES AND FIGURES 1 

 2 

 3 

 4 

Scheme 1. Simplified model for the ability of Cu(btsc) to increase bio-available Cu
I
. Upon 5 

entry into the cytoplasm, Cu(gtsm) is reduced by thiols to release Cu
I
 ions while Cu(atsm) 6 

remains unaffected. -SH, protein thiols; GSH, glutathione; NR, no reaction. 7 

8 
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 1 

 2 

Scheme 2. Organisation of the respiratory electron transfer chain in N. gonorrhoeae. 3 

Arrows indicate the direction of electron transfer. Dotted arrows indicate involvement of 4 

multiple enzymes (not shown). Processes catalysed by membrane-bound enzymes are 5 

shaded in blue. The identified sites of inhibition by Cu(btsc) are shown in red. E-D, 6 

Entner-Doudoroff; LDH, L-lactate dehydrogenase; NDH, NADH dehydrogenases; PDH, 7 

pyruvate dehydrogenase; SDH, succinate dehydrogenase; TCA, tricarboxylic (citric) acid.   8 

 9 

10 
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 1 

 2 

 3 

Scheme 3. Possible mechanisms of Cu(btsc) toxicity. a) Dissociation of Cu(btsc) to 4 

release “free” Cu
II
 ions. b) Direct exchange of Cu

II
 ion between Cu(btsc) and protein sites. 5 

c) Reduction of Cu(btsc). d) Dissociation of [Cu
I
(btsc)]

-
 to release “free” Cu

I
 ions. e) 6 

Direct exchange of Cu
I
 ion between [Cu

I
(btsc)]

-
 and protein sites. f) Re-oxidation of 7 

[Cu
I
(btsc)]

-
 to Cu(btsc). L, btsc ligand; P, protein ligand. 8 

 9 

 10 

11 
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 1 

Figure 1. Antimicrobial activity of Cu(btsc) against N. gonorrhoeae. a) Bacterial 2 

killing. Survival of 1291wt (open circles ) and 1291copA (closed circles �) after 3 

exposure to increasing concentrations of Cu(NO3)2, Cu(atsm), or Cu(gtsm) for 20–24 h. b) 4 

Cop III production. Fluorescence emission spectra of porphyrin extracts of 1291copA 5 

cultures that were exposed to: (i) 10 µM Cu(NO3)2 (black trace), (ii) 30 nM Cu(gtsm) (red 6 

trace), (iii) 80 nM Cu(atsm) (blue trace). The emission spectrum of the untreated control is 7 

shown for comparison (dashed trace). c) Growth inhibition. Growth of 1291copA in the 8 

presence of 10 µM Cu(NO3)2 (closed circles �, black trace), 30 nM Cu(gtsm) (closed 9 

diamonds �, red trace), or 80 nM Cu(atsm) (open diamonds �, blue trace). Growth of the 10 

untreated control is shown for comparison (open circles , dashed trace). Cells were 11 

harvested for Cop III analysis at the time indicated by the downward arrow. a-c) Each data 12 

point was generated from three independent experiments. Error bars represent ± standard 13 

deviation from the mean. 14 
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 1 

 2 

Figure 2. Inhibition of aerobic respiration by Cu(gtsm). Consumption of O2 by intact 3 

1291wt cells as driven by lactate, pyruvate, or glucose as indicated. a) Effects of Cu(atsm) 4 

and Cu(gtsm). Rates of O2 consumption after pre-incubation with DMSO (black traces), or 5 

50 µM each of Cu(gtsm) (red traces) or Cu(atsm) (blue traces). b) Dose-dependent 6 

inhibition by Cu(gtsm). Rates of respiration after pre-incubation with 0 (black traces) or 7 

10–50 µM of Cu(gtsm) (red traces) as indicated. c) Immediate inhibition by Cu(gtsm). 8 
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Decrease in the rates of O2 consumption upon addition of 50 µM Cu(gtsm). a-c) Addition 1 

of cells (1), DMSO or Cu compounds (2), and electron donors (3) are indicated by 2 

downward arrows. Representative results of at least three independent replicates are 3 

shown. These experiments have been repeated using 1291copA to produce identical results. 4 

5 
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 1 

 2 

Figure 3. Cu(btsc) does not affect activities of cytochrome cbb3 and L-LDH. Rates of 3 

electron transfer via cytochrome cbb3 (a) and L-LDH (b). Consumption of O2 after pre-4 

incubation with DMSO (black traces), or 50 µM each of Cu(gtsm) (red traces) or Cu(atsm) 5 

(blue traces). Addition of membrane vesicles (1), DMSO or Cu compounds (2), and 6 

electron donors (3) are indicated by downward arrows. Representative results of at least 7 

three independent replicates are shown.  8 

 9 

10 
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 1 

Figure 4. Inhibition of electron transfer via succinate dehydrogenase. 2 

Succinate-dependent consumption of O2 by cell-free membrane vesicles after pre-3 

incubation with 0–50 µM each of Cu(gtsm) (red traces) or Cu(atsm) (blue traces). Addition 4 

of membrane vesicles (1), DMSO or Cu compounds (2), and succinate (3) are indicated by 5 

downward arrows. Representative results of at least three independent replicates are 6 

shown.  7 

 8 

9 
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 1 

Figure 5. Inhibition of NADH dehydrogenases by Cu(atsm) and NADH-dependent 2 

redox cycling of Cu(gtsm). NADH-dependent consumption of O2 by cell-free membrane 3 

vesicles. a) Effects of Cu(btsc) on the rates of NADH respiration. Rates of O2 consumption 4 

after pre-incubation with 0 (black traces) or 10–100 µM each of Cu(atsm) (blue traces) or 5 

Cu(gtsm) (red traces). Measurements were performed in the absence of myxothiazol 6 

(-myx). b) NADH-dependent redox cycling of Cu(btsc). Rates of O2 consumption after 7 

pre-incubation with 0 (grey traces), or 10–100 µM each of Cu(atsm) (blue traces) or 8 
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Cu(gtsm) (red traces). Measurements were performed in presence of 10 µM myxothiazol 1 

(+myx). a-b) Addition of membrane vesicles (1), DMSO or Cu compounds (2), and 2 

NADH (3) are indicated by downward arrows. Representative results of at least three 3 

independent replicates are shown.  c) Schematic represantation of the results in panels a) 4 

and b). The effect of Cu(atsm) is shown in blue. Redox cycling of Cu(gtsm) was shown in 5 

red. The site of myxothiazol inhibition is shown in grey. myx, myxothiazol; NDH, NADH 6 

dehydrogenases.  7 

 8 

9 
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 1 

Figure 6. The copper centre and btsc ligand were jointly required for inactivation of 2 

NDH and SDH. Effects of: a) a non-btsc source of copper and b) copper-free H2(btsc) 3 

ligands. a-b) Rates of electron transfer via NDH and SDH after pre-incubation with 4 

DMSO (black traces), Cu(EGTA) (orange traces), H2G (red traces), or H2A (blue traces) 5 

(50 µM each). Addition of membranes vesicles (1), DMSO, Cu(EGTA) or H2(btsc) (2), 6 

and (3) electron donors are indicated by downward arrows. Representative results of at 7 

least three independent experiments are shown.  8 

  9 

10 

Page 32 of 39Metallomics

M
et

al
lo

m
ic

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



 33 

 1 

 2 

Page 33 of 39 Metallomics

M
et

al
lo

m
ic

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



 1 

SUPPORTING INFORMATION 1 

 2 

 3 

Supporting Figure 1. Copper-free H2btsc was less toxic than Cu(btsc). Survival of 4 

1291wt (circles  and �) and 1291copA (diamonds � and �) after exposure to 5 

increasing concentrations of: a) Cu(atsm) (closed symbols � and �) and H2atsm (open 6 

symbols  and �), or b) Cu(gtsm) (closed symbols � and �) and H2gtsm (open symbols 7 

 and �) for 20–24 h. Each data point was generated from three independent 8 

experiments. Error bars represent ± standard deviation from the mean. It is important to 9 

note that H2atsm and H2gtsm ligand are metallated by basal amounts of Cu from the 10 

growth media to generate the toxic species Cu(atsm) and Cu(gtsm). We have routinely 11 

detected between 1 and 10 nM of basal Cu in our media preparations. These concentrations 12 

are within the toxic range for Cu(atsm) and Cu(gtsm). Thus, the requirement for Cu is most 13 

apparent in panel a). The 1291wt strain was killed only by ~ 1 µM Cu(atsm). In this case, 14 

the H2atsm ligand had no observable effect up to 10 µM.  15 

 16 

17 
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Supporting Figure 2. Excess Cu arrests the heme biosynthesis pathway in N. 3 

gonorrhoeae. Excess Cu blocks the step catalysed by HemN as indicated in red. As a 4 

result, there is a decrease in heme levels (red downwards arrow �) and a concomitant 5 

increase of Cop III levels (red upwards arrow �). ALA, aminolevulinic acid; PBG, 6 

porphobilinogen; HMB, hydroxymethylbilane; Uro’gen III, uroporphyrinogen III; 7 

Cop’gen, coproporphyrinogen III; Cop III, coproporphyrin III; Pro’gen IX, 8 

protoporphyrinogen IX; Proto IX, protoporphyrin IX.  9 

 10 

 11 
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Supporting Figure 3. Treatment with Cu(btsc) did not lead to a detectable increase in 3 

intracellular Cu levels. Total amounts of intracellular copper as detected by ICP MS. N. 4 

gonorrhoeae strains 1291wt and 1291copA were treated with DMSO, Cu(NO3)2 (Cu), 5 

Cu(atsm) (CuA), or Cu(gtsm) (CuG) following the conditions shown on Figure 1c. At least 6 

two independent replicates were shown for each measurement. 7 

 8 

 9 

 10 

 11 

Supporting Figure 4. Association of Cu(btsc) with N. gonorrhoeae cell membranes. 12 

Cu(gtsm) (Cu
II
G) and Cu(atsm) (Cu

II
A) (50 µM each) was added to a suspension of 13 

1291wt in PBS to reflect the conditions used for the measurement of respiration in intact 14 

cells (see Materials and Methods). Cells were sedimented after 1 min and the supernatant 15 

was removed. Photos of centrifuged bacterial pellets were taken under ambient light 16 

conditions. The untreated control (N/A) was shown for comparison.  17 
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Supporting Figure 5. Prolonged incubation with Cu(atsm) did not lead to an 3 

enhanced inhibition of aerobic respiration. Pyruvate-driven consumption of O2 by intact 4 

cells after pre-incubation without (black traces) or with 50 µM Cu(atsm) (blue traces) for 5 

0, 45, and 60 min as indicated. Addition of cells (1) and pyruvate (2) are indicated by 6 

downward arrows. There was an overall decrease in the rates of pyruvate oxidation 7 

regardless of Cu(atsm) treatment, presumably due autolysis of N. gonorrhoeae. 8 

9 
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Supporting Figure 6. Inhibition of Nuo and Nqr by Cu(atsm) and NADH-dependent 2 

redox cycling of Cu(gtsm). NADH-dependent consumption of O2 by cell-free membrane 3 

vesicles of mutant strains containing only one active NADH dehydrogenase. Nqr activity 4 

was obtained from 1291nuoF mutant, while Nuo activity was measured using 1291nqrF 5 

mutant. a) Effects of Cu(btsc) on the rates of NADH respiration. Rates of O2 consumption 6 

after pre-incubation with 0 (black traces) or 100 µM each of Cu(atsm) (blue traces) or 7 

Cu(gtsm) (red traces). Measurements were performed in the absence of myxothiazol 8 

(-myx). b) NADH-dependent redox cycling of Cu(btsc). Rates of O2 consumption after 9 

pre-incubation with 100 µM each of Cu(atsm) (blue traces) or Cu(gtsm) (red traces). 10 

Measurements were performed in presence of 10 µM myxothiazol (+myx). a-b) Addition 11 

of membrane vesicles (1), DMSO or Cu compounds (2), and NADH (3) are indicated by 12 

downward arrows. 13 

 14 
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