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A novel network pharmacology approach to analyse 
traditional herbal formula: Liu-wei-di-huang Pill as a 
case study 

Xujun Liang,a† HuiyingLi,a† Shao Lia* 

Understanding the mechanisms of the pharmacological effects of herbal formulae from 
traditional Chinese medicine (TCM) is important for their appropriate application. However, 
this understanding has been impeded by the complex nature of herbal formulae. An herbal 
formula is a mixture of hundreds of chemical ingredients with multiple potential targets. The 
effects produced by an entire herbal formula cannot be adequately explained by isolatedly 
considering each ingredient in it. This is a recognised problem that remains in need of methods 
to solve it. Here we introduce a holistic analysis method to decipher the molecular mechanisms 
of herbal formulae. This method combines chemical and pharmacokinetic properties with 
network pharmacology, using a novel approach to evaluate the importance of the targets and 
ingredients of herbal formulae. We used Liu-wei-di-huang (LWDH) pill, a classic herbal 
formula, as an example to illustrate our method and validated some results by a following 
experiment. We revealed the core molecular targets and bioprocess network of the 
pharmacological effects of LWDH and inferred its therapeutic indications. This method 
provides a strategy to understand the mechanisms of herbal formulae in a holistic way and 
implies new applications of classic herbal formulae. 
 

Introduction 

Traditional Chinese medicine (TCM) is a comprehensive medicinal 
system that has been used in clinical practice for thousands of year. 
It is still regarded as an important part of complementary and 
alternative medical systems and a rich source for drug discovery. For 
these reasons, it is important to understand the scientific basis and 
action mechanism of TCM. 
TCM treats diseases primarily with herbal formulae, which consist 
of several herbs and other natural products. Determining the 
pharmacological effects of herbal formulae is important to the study 
of TCM mechanism, but this study presents a substantial challenge 
for several reasons. First, herbal formulae are mixtures of hundreds 
of chemical compounds. Second, unlike the majority of current 
drugs, which are designed to selectively act on single target, most of 
the active chemical ingredients in herbs may weakly or moderately 
act on multiple cellular targets1. Third, herbal formulae are 
formulated according to special syndromes or patterns (“ZHENG” in 
Chinese) instead of targeting disease as modern medicine does. 
These facts make it difficult to systematically study the mechanisms 
of herbal formulae with routine methods. Previous studies of herbal 
formulae mainly focused on particular effects of herbal formulae 
produced in animal models of diseases or in clinical trials2, 3. With 
the advance of high throughput technology, studies have also utilised 
gene expression microarrays4, proteomics5, and metabolomics6 to 
explore the mechanisms of herbal formulae. However, these 
experiments still cannot fully overcome the limitations imposed by 

the complex nature of herbal formulae. To achieve a comprehensive 
and systematic understanding of the mechanisms of herbal formulae, 
new methods and strategies such as the computational ways are 
urgently needed. 
In our previous works, we proposed that network pharmacology is a 
promising way to understand multiple-component drugs such as 
herbal formulae7. We then presented a novel concept, the “network 
target”, which extended the concept of a drug target from its effect 
on a single component to its systematic effect on the biological 
network, to address multi-component therapeutics such as herbal 
formulae8. We also constructed an integrative platform for herbal 
formula network pharmacology and successfully applied it to 
analyse the anti-rheumatoid arthritis formula Qing-Luo-Yin9. 
Recently explaining the mechanism of herbal formulae with network 
pharmacology methods is well-accepted10, however, there remains a 
need for methods that holistically consider herbal formulae as a 
gestalt whose emergent properties cannot be explained by analysing 
each chemical ingredient separately. 
To obtain a better understanding of how herbal formulae affect 
different biological processes and treat different diseases, in this 
work we propose a new method for network pharmacology analysis 
of herbal formula. This method was used to analyse Liu-wei-di-
huang (LWDH), a classic herbal formula that has been used 
since the 11th Century in China. LWDH was formulated to 
tonify the “Yin deficiency pattern” in TCM. More recently, it 
has been applied in clinical settings to treat various complex 
diseases such as hypertension and oesophageal carcinoma11, 12. 
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In our previous work, we found a multilayer herb-biomolecule-
disease network by manually curating the genes and diseases 
related to LWDH13. We also revealed a metabolism-immune 
network imbalance underlying TCM Cold Syndrome and Hot 
Syndrome, a pair of typical Syndrome reflecting the Yin-Yang 
imbalance of human body14. Here, as shown in Fig.1, we used 
purely computational methods to predict the effects and 
mechanisms of LWDH. First, we analysed the chemical group 
composition of the ingredients in LWDH, explored their 
chemical characteristics and distribution in chemical space, and 
measured their drug-likeness properties. Second, the biological 
targets of LWDH ingredients were predicted. We hypothesised 
that if a biological molecule was an effective target of an herbal 
formula, there should be multiple ingredients in the herbal 
formula that target this molecule (Fig.1A). Under this 
hypothesis, we found the most represented target molecules of 
LWDH compared to the null model with Poisson binomial 
statistics and ranked the ingredients in LWDH by defining an 
efficacy score. The diseases potentially treated by LWDH were 
also predicted. Third, we constructed a network that integrated 
compound-target relationships and target-disease relationships 
and a network that reflected the common biological processes 
related to compounds and diseases. We found that the predicted 
targets of LWDH were highly connected in a protein-protein 
interaction (PPI) network, and LWDH treated diseases through 
both shared and separate biological molecules and processes via 
different groups of compounds. A following experiment was 
conducted and validated the effects of seven compounds 
belonging to different chemical groups. This work provides a 
method for explaining the action mechanisms by which herbal 
formulae such as LWDH can treat a variety of diseases. 

 

Fig 1. Network pharmacology analysis model. (A) An herbal formula is a 
multi-component complex system with effects on a variety of targets and 

with therapeutic potential for a variety of diseases, in contrast with most 
modern approved drugs, which are designed for one specific target and to 
treat one specific disease. (B) The steps for our analysis model construction. 

Methods 

Curation and clustering analysis of chemical ingredients in 
LWDH 

A total of 311 chemical constituents of LWDH were retrieved from 
HerBioMap, a database built constructed by our group, and from 
TCM Database @Taiwan15 as well as literatures16-18 (Table S1).The 
names of these chemicals were used to search PubChem19 to obtain 
chemical structures. Next, chemical structure clustering was 
conducted for the ingredients in each herb separately and for all 
ingredients in LWDH combined using the Chemical Structure 
Clustering Tool in PubChem. The clustering results were visualised 
by Multi-Dimensional Scaling (MDS) in the form of scatter plots. 

Chemical space and drug-likeness calculation 

The physicochemical properties of ingredients in LWDH were 
calculated using the Chemistry Development Kit20. The properties 
included molecular mass (MW), octanol–water partition coefficient 
(ALogP), the numbers of hydrogen bond donors (HBDs), the 
number of hydrogen bond acceptors (HBAs), molecular polar 
surface area (PSA), the number of rotatable bonds (ROTBs), and the 
number of aromatic rings (AROMs). 771 approved drugs were 
collected as described in previous study21 , and the same properties 
were calculated as for the herb ingredients. Principal component 
analysis (PCA) was conducted with the calculated properties, and the 
three largest principal components were chosen for the scatter plot.  
Next, the drug-likeness properties of the herb ingredients and 
approved drugs were calculated using the same method described in 
previous report21. In brief, seven properties above pulsing the 
number of structural alerts in each compound were used to calculate 
the weighted quantitative estimate of drug-likeness (QEDw). For this 
work, ingredients in LWDH with QEDw≥0.3 were included for 
further study. The threshold of 0.3 was chosen because it is the 
optimal operating point of the ROC curve21. Some ingredients, such 
as some tannins and glycosides are hydrolysable; the drug-likenesses 
of these ingredients were calculated after deglycosylation. In order to 
provide a negative control, 30 compound sets that had the same 
number of compounds as in LWDH were randomly selected from 
PubChem database and analyzed for the seven chemical properties. 
These compounds sets were also screened with the same drug-
likeness criteria for following analyses. 

Target profile prediction and target selection 
The compound target profiles were predicted using our 
drugCIPHER-CS step22. To robustly predict compound-target 
relationships, both the PPIs and drug-target relationships were 
randomly shuffled 1000 times to calculate concordance scores while 
keeping the number of drugs interacting with each target fixed. For 
each ingredient, predicted targets with P-value≤0.001, as calculated 
from the random permutations, were considered to be high precision 
targets for the ingredients. Some target proteins may appear in the 
target profiles of many ingredients in an herbal formula. We infer 
that such target proteins may have a high probability of being key 
players in the pharmacological effects of the herbal formula and 
represent the combined effects of multiple ingredients in herbal 
formula. To assess the probability of target proteins being related to 
the herbal formula’s pharmacological effects, we compared the 
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number of occurrences of each target protein in the target profiles of 
all ingredients in LWDH to a pure random process represented by a 
Poisson binomial statistical mode: 

Pr(K = k) = � �𝑝𝑖 �(1 − 𝑝𝑗)
𝑗∈𝐴𝑐𝑖∈𝐴𝐴𝜖𝐹𝑘

 

Pr(K=k) is the probability that a target protein occurs in the target 
profiles of k ingredients, Fk is the set of all subsets of k ingredients, 
A is one particular subset of k ingredient, and Ac is the complement 
of A. pi and pj are the probabilities of a target protein being 
contained in the target profiles of an ingredient. By random chance, 
p is m/n, where m is the number of target proteins in the ingredient’s 
target profile and n is the total number of target proteins in the 
drugCIPHER library. The P-value, Pr (K>k), after being adjusted by 
the Bonferroni method, measures the probability of a target protein 
occurring in more than k ingredients’ target profiles by random 
chance. This P-value indicates the relative importance of target 
proteins for LWDH (they are significant when P-value < 0.01). A 
total of 128 target proteins were selected with this threshold as a 
target protein set. 

Computation of ingredient efficacy scores  
To measure the effectiveness of ingredients in LWDH, we define an 
efficacy score for ingredients as follows: 

𝑺𝒄𝒐𝒓𝒆𝒊𝒏𝒈𝒓𝒆𝒅𝒊𝒆𝒏𝒕 𝒊 =
𝟏
𝑵𝒊
�−

𝟏
𝒓𝒊𝒋

𝑳𝒐𝒈𝟏𝟎[𝑷(𝒌)𝒋]
𝑵𝒊

𝒋=𝟏

× 𝑰𝒋 

Where 𝑁𝑖 is the number of target proteins in the target profile of 
ingredient i, 𝑟𝑖𝑗  is the rank of target protein j in the target 
profile of ingredient i, Pr (𝑘)𝑗 is the target protein’s P-value 
calculated from the Poisson binominal model, k is the number 
of ingredients that have target j, and 𝐼𝑗is an indicator showing 
whether target protein j was in selected target: 
 

𝐼𝑗 = �
1,  𝐼𝑓 𝑡ℎ𝑒 𝑗 𝑡ℎ 𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑖𝑠

                            in the selected target protein set,
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 
This score considers both the ingredient specificity and its 
relationship with important target proteins. We ranked the 
ingredients according to their scores and found that the top 25% 
ingredients could cover 90% of the selected targets. So we 
chose these chemicals as representative ingredients in LWDH 
(Table S2) for network construction. 

Biological function and disease ontology enrichment 
analysis 

KEGG pathway profiling and GO biological processes (BP) were 
used for functional enrichment analysis of the sets of selected target 
protein and of disease related genes. The functional enrichment tool 
DAVID23 was used to calculate both the KEGG pathway and GO BP 
enrichment. Only GO terms with P-values<0.01 and KEGG 
pathways with P-values<0.05 were included (both were corrected 

 
Fig 2. Comparing chemical characteristics of ingredients in LWDH (A)-
(G) are distributions of seven chemical characteristics of ingredients in 
LWDH and approved drugs. MW: Molecular mass; ALogP: octanol–water 
partition coefficient; HBDs: number of hydrogen bond donors; HBA: number 
of hydrogen bond acceptors; PSA: molecular polar surface area; ROTB: 
number of rotatable bonds; AROM: number of aromatic rings. (H) PCA of 
ingredients in LWDH and approved drugs calculated from these seven 
chemical characteristics. 

using the Benjamini method). Disease ontology enrichment analysis 
was conducted according to previous method24. Diseases with P-
value<0.05 (adjusted by the Bonferroni method) were included. 

Construction of the target network of herbal formula 
For the compound-target-disease network, first, the selected targets 
were mapped to PPI. Hyper-geometric tests were conducted for the 
genes directly linked to the selected targets in PPI25. The tests aimed 
to access if genes connected to the selected targets just by chance. 
The target protein network which included selected target and genes 
statistically significantly linked to them via PPI (P-value<0.01) was 
constructed. Second, compounds were connected to their targets. 
Third, an edge was added between a target protein and a disease if 
the target protein’s gene was in the related gene list for the disease. 
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Table 1 Enriched KEGG pathways of LWDH selected targets. 

Pathway class KEGGID Term P-value 

Endocrine system 
ko03320 PPAR signalling pathway 5.20E-05 
ko04914 Progesterone-mediated oocyte maturation 0.0285 
ko04920 Adipocytokine signalling pathway 0.0323 

Excretory system ko04960 Aldosterone-regulated sodium reabsorption 0.0347 

Immune system 
ko04062 Chemokine signalling pathway 0.0321 
ko04666 Fc gamma R-mediated phagocytosis 0.0334 
ko04662 B cell receptor signalling pathway 0.0485 

Nervous system ko04722 Neurotrophin signalling pathway 0.0136 
Signal transduction ko04370 VEGF signalling pathway 0.0158 

 

For the compound-bioprocess-disease network, the enriched GO BP 
terms were identified for disease gene lists and the selected target set. 
If a GO term was shared between diseases and the selected target set, 
then this term was retained. To give more specific information and to 
keep the final network concise, we chose GO terms at level 4~6 and 
discarded others. If a GO term was enriched for a disease’s gene list, 
the GO term and the disease were connected; if a compound’s 
targets were annotated by a GO term, the compound and the GO 
term were connected; and if two GO terms had similarity>0.7, which 
was calculated by the method previously described26,  these two GO 
terms were connected. Networks were visualised using Cytoscape27. 

Experimental validation 
To evaluate the predicted compound-target relationships, seven 
compounds of interest in were purchased commercially (Table S3). 
For Western blot experiments, HT29 cells were seeded and cultured 
at a density of 1.5×106 in a 6-wellplate with DMEM supplemented 
with 10% FBS, then incubated with the 10mMtestcompoundsat 37oC. 
After incubation for 24 h, cells were harvested and Western blotting 
was conducted. The following antibodies were used: anti-CCR2 
(ARP58409_P050, Rabbit, Aviva systems biology), anti-ER1 (sc-
542, Rabbit, ZSGB-BIO), anti-PPAR (ZS-72730, Mouse, ZSGB-
BIO), and anti-RARA (sc-15040, Goat, Santa Cruz). Beta-actin (TA-
09, Mouse, ZSGB-BIO) was used loading control. Experiments were 
repeated three times. 

Results and discussion 

Compound families, chemical space and drug-likeness 
properties of compounds in LWDH 
LWDH consists of 6 herbs, Radix Rehmanniae Preparata, Fructus 
Corn, Rhizoma Dioscoreae, Rhizoma Alismatis, Cortex Moutan and 
Poriacocos. To give an overview of the compound families in 
LWDH, chemical clustering was conducted (Fig. S1).The 
ingredients in LWDH could be roughly divided into three major 
groups: iridoid glycosides, phenylpropanoid-based aromatic 
compounds such as tannins, sterols and terpenes (Fig. S1G). The 
clustering results show that although there are numerous different 

ingredients in LWDH, many of them have similar chemical 
structures and belong to particular compound families.  
The physicochemical characteristics of a compound are important 
for its absorption, distribution, metabolism, excretion and toxicity 
(ADMET) properties28. Comparing the physicochemical 
characteristics of ingredients in LWDH with FDA-approved drugs 
will provide insight into the ADMET properties of these ingredients. 
Here, seven physicochemical characteristics of the ingredients in 
LWDH were compared with approved orally administered drugs 
(Fig. 2A-G). The overall shapes of the distributions of these 
characteristics are similar between the ingredients in LWDH and 
approved drugs, but the standard deviations for ingredients in 
LWDH are larger than for approved drugs (Table S4). The AlogP 
distribution of ingredients in LWDH is much wider than for 
approved drugs (Fig. 2B).This result indicates that the water 
solubility of ingredients in LWDH is more variable than in approved 
drugs.  Furthermore, as shown in Fig. 2F, the proportion of 
compounds with more than 10 rotatable bonds (ROTB) in LWDH is 
more than in approved drugs, which means the structures of 
ingredients in LWDH are more flexible. We also calculated the 
seven physicochemical characteristics for randomly selected 
chemical compound sets. It appears that both the approved drugs and 
herbal ingredients have different chemical property distributions 
from random compounds (Fig. S4). 
To comprehensively compare the properties of ingredients in LWDH 
with approved drugs, principal component analysis was conducted 
using all seven physicochemical characteristics. The combination of 
these characteristics spans a chemical space. As seen in Fig. 2H, the 
distribution of approved drugs in the chemical space is more 
compact, while the distribution of ingredients in LWDH is scattered 
more widely in chemical space. However, there is still considerable 
overlap between the ingredients in LWDH and approved drugs, 
which indicates that many ingredients in herbs have drug potential. 
To assess the probability for each ingredient in LWDH to be a drug, 
drug-likeness analysis was conducted. Drug likeness is a composite 
description that evaluates the bioavailability of a chemical 
compound29. Here we employed a method using a concept called 
weighted quantitative estimate of drug-likeness (QEDw) to measure 
drug-likeness21. The closer the QEDw value of a compound is to 1,  
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Table 2 Enriched disease of LWDH selected targets. 

Disease class Disease Name P-value Supporting Literatures 

 

Cardiovascular Diseases 

 

Atherosclerosis 7.41E-16 30 

Heart failure 5.50E-08 31 

Hypertension 5.58E-10 32 

Digestive System Diseases 
Cholelithiasis 1.79E-08 NA 

Esophagitis 0.0452 33 

Eye Diseases Glaucoma 1.91E-07 34 

 

Neoplasms 

 

Esophagus cancer 3.82E-05 12 

Endometrium cancer 0.00238 NA 

Colon cancer 0.0356 NA 

Nutritional and Metabolic Diseases 
Obesity 1.01E-09 35 

Hyperlipidemia 0.00891 36 

Mental Disorders 

Bipolar disorder 2.26E-05 NA 

Panic disorder 0.00461 NA 

Depression 0.000139 37 

Musculoskeletal Diseases 
Osteoporosis 2.09E-05 38,39 

Arthritis 2.09E-05 40,41 

Urogenital Diseases 
Endometriosis 1.77E-10 42 

Infertility 2.15E-06 43 

Stomatognathic Diseases Dental plaque 0.000194 44 

NA: not available. 

the more favourable drug-likeness properties it has. The median of 
the QEDw values of ingredients in LWDH is 0.38, and the 
interquartile range is 0.272. The ingredients in LWDH were 
screened based on QEDw values as described in method. Only the 
ingredients passed the screening left for further study. To reveal the 

pharmacological effects of LWDH, the targets of its ingredients were 
predicted and selected as described in the Methods. These targets 
were used to represent the bio-molecular basis for the 
pharmacological effects of LWDH. 
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Fig 3. Compound-target-disease network (A) The whole network of selected ingredients (green), selected targets (blue) and diseases (red). Ingredients were 
roughly clustered as three groups based on different targets that these ingredients linked to. (B) A sub-network from (A) that contains the targets related to 
colon cancer, esophagitis and esophageal cancer, and ingredients linked to these targets. Targets were grouped according to their function. The nodes with 
colored edges are targets directly related to these three diseases. 
 

 
 
Fig 4. Compound-bioprocess-disease network (A) the network of selected ingredients (green), common enriched biological process GO terms of selected 
targets and diseases genes (blue) and diseases (red). Three groups of ingredients were circled by grey dashed ellipses based on the different bioprocesses that 
these ingredients linked to. The members in these three groups here are mostly the same as in Fig 3. (B) A sub-network from (A) that contains the bioprocesses 
related to atherosclerosis, arthritis and osteoporosis and ingredients related to these bioprocesses. The colored edges of the nodes indicate the relationships 
between these bioprocesses and these three diseases. 
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Inference of the pathways and diseases affected by LWDH 

To elucidate the biological pathways that LWDH might impact, the 
significantly overrepresented KEGG pathways were identified 
(Table 1). The result contains endocrine related pathways such as 
the PPAR signalling pathway (P-value=5.20e-5),which controls lipid 
metabolism, cell proliferation and blood glucose uptake45; excretory 
system pathways such as Aldosterone-regulated sodium reabsorption 
(P-value=0.0347), which is important for regulation of blood 
pressure46; and immune system pathway such as the Chemokine 
signalling pathway (P-value=0.0321). We also found that both the 
selected targets and the pathway enrichment results overlapped with 
the results in our previous work13. Furthermore, the targets of 
random compound sets were predicted and selected under the same 
procedure. We compared the KEGG enrichment P-value 
distributions of the targets of LWDH and the targets of random 
compound sets, and found that the P-value distribution of LWDH 
targets was different from the random background (Fig. S5). 
To uncover the therapeutic potential of the selected targets, disease 
ontology enrichment was conducted. The result of disease 
enrichment is shown in Table 2. For most of the enriched diseases 
(73.7%), there have been clinical reports or experimental evidence 
that LWDH can be taken as a therapy or an adjuvant therapy. Some 
other diseases traditionally or clinically targeted by LWDH, such as 
diabetes mellitus and kidney failure, were not significantly enriched, 
but they had related genes overlapped with the selected targets of 
LWDH. The pathway enrichment and disease ontology enrichment 
results imply that our method does indeed capture the underlying 
molecular basis and therapeutic effects of LWDH. 

The target network reveals the effects of LWDH on different 
diseases 
To understand how a multicomponent treatment system such as 
LWDH exerts pleiotropic effects on different diseases, a compound-
target-disease network was constructed to uncover the relationships 
among herb ingredients, target proteins and diseases. First, we 
mapped the selected target proteins to PPI and found that the 
selected targets were highly connected. The size of the largest 
component of the sub-network formed by the selected targets in PPI 
is significant bigger than the largest component generated by 
randomly selected gene sets of the same gene number (P-
value<0.001, 5000 iterations).This result implies that the selected 
targets reflect the core molecular basis of LWDH effects. Second, to 
measure the effectiveness of ingredients in LWDH, an efficacy score 
was defined and used to select representative ingredients. We found 
that the selected ingredients included many compounds with known 
pharmacological effects. For example, Paeonolide from Cortex 
Moutan is a maker compounds of LWDH that has broad 
pharmacological effects, and sweroside from Fructus Corni is 
another marker compound  of LWDH47. Subsequently, the selected 
ingredients were connected to their predicted targets. Finally, the 
diseases from the enrichment result were added to the network. It is 
noteworthy that the ingredients with similar connections to their 
targets in the network cluster together to form 3 groups (Fig.3A and 
detailed in Fig. S2).The ingredients in each cluster have similarities 
in chemical structure, and some of the ingredients belong to same 
chemical family. These clusters were assigned to group A, most of 
which were heterocyclic and aromatic compound; group B, most of 
which were tannins; or group C, which were triterpenes and steroids. 
Target proteins that relate to hormone signalling, such as ESR1, 

NCOA1 and AR are not only the hubs of the PPI network, but also 
have high connection numbers to ingredients of LWDH (Table S5). 
ESR1 and AR are also highly connected to disease. This result 
implies that the regulation of hormone homeostasis is one of the key 
factors of LWDH pharmacological effects. 
To comprehensively reveal the biological processes underlying 
the therapeutic effects of LWDH, a compound-bioprocess-
disease network was constructed (Fig. 4A and detailed in Fig. 
S3). This network connects ingredients and diseases by the 
biological processes that are common to both. From this 
network, we can make following observations: 1) Most of the 
ingredients form three clusters, as in the compound-target-
disease network above. 2) The biological progresses in the 
centres of the networks are impacted by most of ingredients of 
all three clusters. These biological progresses include response 
to hormones such as estrogen and retinoic acid, lipid and 
cholesterol metabolism, inflammation and immunity. 
Interestingly, LWDH is traditionally used for Yin deficiency 
pattern. Yin deficiency pattern is a holistic description of a 
special group of symptoms in TCM and could be a common 
character underlying different diseases in modern medicine. 
Our results suggest that LWDH can regulate the imbalance of 
hormone, metabolism and immunity, which agree with the 
reports that Yin deficiency pattern is related to dysfunction of 
sterol metabolism, energy consumption, endocrinal and 
immune functions48, 49. 3) One disease might relate to many 
biological processes that are targeted by different groups of 
ingredients. For example, osteoporosis is related to bone 
resorption, the estrogen receptor pathway and NF-κB activity 
(Fig. 4B). Bone resorption is targeted by ingredients of group A 
and group B, the estrogen receptor pathway is targeted by 
ingredients from all groups ,and NF-κB activity is targeted 
mainly by group C.4) One biological process may be related to 
different diseases. Our disease enrichment results and previous 
reports showed that LWDH could target a wide range of 
diseases (Table 2).These diseases may share the same 
phenotypic characters belonging to Yin deficiency pattern. And 
as observed in Fig. 4B and Fig. 3B, some of these diseases 
share similar molecular mechanisms and targeted by same 
ingredients. For example, the NF-κB signalling pathway is 
related to osteoporosis, arthritis and atherosclerosis (Fig. 4B). 
In our network, triterpenes(group C) target the NF-κB pathway, 
and previous studies show that some triterpenes treat 
osteoporosis50, arthritis51 and atherosclerosis52 by controlling 
NF-κB pathway activity. 

Experimental validation of prediction results 
In order to confirm our predictions of the molecular mechanism of 
LWDH experimentally, four proteins were chosen for test. PPARG, 
RARA and CCR2 were selected as they denote different functions, 
targeted by different groups of ingredients (Fig. 3B) and related to 
esophageal cancer, peptic esophagitis and colon cancer (Fig. 3B and 
Fig. 5A). These diseases are potential and particular therapeutic 
indications of LWDH and deserve our concern. ESR1 as a hub of the 
network was also chosen (Fig. 3B and Table S5). It is interesting to 
examine if ESR1 could be affected by different groups of 
ingredients. Seven compounds that were related to these proteins 
were chosen. We chose these compounds based on their ingredients 
scores, the groups they belong to (Fig.3B) as well as their herb 
sources to see how ingredients from different herbs affect the same 
proteins. The effects of these compounds on the expression levels of 
their related proteins were analysed by Western blot. 
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Fig 5. Compound-targets relationship validation by Western blot (A) The links between two groups of compounds and four targets. (B) The influence of 
these compounds on the expression levels of the four genes was assayed by Western blot. Amyrin has two isoforms, alpha and beta, both of which were tested. 
Genes with changed expression were labelled with *.

LWDH has been reported to prevent the development of esophageal 
cancer from esophagitis12. Retinoids play an important role in 
glandular differentiation of the esophagus53. On the other hand, 
retinoids could inhibit the growth of tumour cells54. As Fig.5B 
shows, coumarin decreased the expression of RARA while caffeic 
acid increased the expression of RARA. Activation of PPARG could 
inhibit growth of colon cancer cell55, and caffeic acid increased the 
expression of PPARG. CCR2may promote cancer and may be a 
therapeutic target in cancer56. Betulin, α-amyrin, β-amyrin and 
fucosterol all down regulated the expression of CCR2. Betulin, 
fucosterol and caffeic acid also down regulated the expression of 
ESR1. These results imply that our method could accurately predict 
the relationships of ingredients to the proteins and could give hints 
of the therapeutic mechanisms of LWDH. The results also indicate 
that there are complex interactions between the effects of the 
different ingredients in herbal formulae. 

Conclusions 
In this work, we proposed a novel analysis method for identification 
of the molecular mechanisms of herbal formulae based on 
integration of multi-component effects. Using this method, we 
analysed LWDH, a classic herbal formula containing hundreds of 
ingredients, and derived the target network affected by the 
ingredients of LWDH. From this network, we inferred the links 
between herb ingredients and diseases through molecular targets and 
the biological processes. Some of these links have been reported in 
previous studies. Our method also could help to discern the core 
mechanism of the whole herbal formula. For LWDH, the target 
network and bioprocess network imply that the key pharmacological 
effects and therapeutic indications of LWDH may lie in maintaining 
homeostasis in the endocrine system, the immune system and 
metabolism. 
There are some limitations in the present method. First, the omission 
of ingredients in herbal formulae may produce bias and incomplete 
results. Fortunately, our method could easily integrate newly found 
ingredients and then give a more comprehensive understanding of 
the given herbal formula. Second, our method could not discriminate 
whether ingredient could directly bind a target or just affect the 
target indirectly. Meanwhile, there still need to be more tests for the 
effects of ingredients on different diseases in the future work. 
In summary, this work focuses on the multi-ingredient and multi-
target property nature of herbal formulae. Based on a network 

pharmacology approach, we revealed the possible therapeutic 
mechanisms of LWDH, which traditionally treats Yin deficiency 
pattern in TCM, for diseases defined by modern medicine. 
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