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ABSTRACT 

The pharmacology of drugs is often defined by more than one protein target.  This property can 

be exploited to use approved drugs to uncover new targets and signaling pathways in cancer.  

Towards enabling a rational approach to uncover new targets, we expand a structural protein-

ligand interactome (http://www.biodrugscreen.org) by scoring the interaction among 1,000 FDA-

approved drugs docked to 2,500 pockets on protein structures of the human genome.  This 

afforded a drug-target network whose properties compared favorably with previous networks 

constructed with experimental data.  Among drugs with highest degree and betweenness two 

are cancer drugs and one is currently used for treatment of lung cancer.  Comparison of 

predicted cancer and non-cancer targets reveals that the most cancer-specific compounds were 

also the most selective compounds. Analysis of compound flexibility, hydrophobicity, and size 

showed that the most selective compounds were low molecular weight fragment-like 

heterocycles.  We use a previously-developed screening approach using the cancer drug 

erlotinib as a template to screen other approved drugs that mimic its properties.  Among the top 

12 ranking candidates, four are cancer drugs, two of them kinase inhibitors (like erlotinib).  

Cellular studies using non-small cell lung cancer (NSCLC) cells revealed that several drugs 

inhibited lung cancer cell proliferation.  We mined patient records at the Regenstrief Medical 

Record System to explore possible association of exposure to three of these drugs with 

occurrence of lung cancer.  Preliminary in vivo studies using non-small cell lung cancer 

(NCLSC) xenograft model showed that losartan- and astemizole-treated mice had tumors that 

weighed 50 (p < 0.01) and 15 (p < 0.01) percent less than vehicle.  These results set the stage 

for further exploration of these drugs and to uncover new drugs for lung cancer.   

Page 2 of 36Molecular BioSystems

M
o

le
cu

la
r 

B
io

S
ys

te
m

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



INTRODUCTION 
 

Genomic and proteomic studies have established that cancer is a systems biology 

disease that involves a large number of genes spanning multiple signaling pathways as shown 

in lung,1 pancreatic,2 breast,3 brain4 and colorectal5 cancers.  In the case of lung cancer, 

hundreds of genetic alterations spanning 18 signaling pathways have been found.1, 6  The large 

number of mutations make it a significant challenge to identify effective treatments for this 

disease.  According to the American Cancer Society, the disease has taken 160,340 lives in the 

U.S in 2011 alone.  Non-small cell lung cancer (NSCLC) is the most prevalent form of the 

disease (85 percent of all cases).  It is characterized by poor prognosis and aggressive 

behavior.  First-line treatment options for the majority of patients include chemotherapeutics that 

cause significant side effects.  New treatments with lower toxicity and greater efficacy are 

urgently needed. 

Studies have shown that approved and experimental drugs as well as chemical probes 

bind and modulate the function of multiple proteins.7, 8  This property, also known as 

polypharmacology, offers an opportunity to uncover new targets.  Recently, we have explored 

the possibility of using structure-based docking to generate a protein-compound interactome 

that can be used as a hypothesis generation tool to uncover new targets for small molecules.  

We docked more than 1,200 compounds to more than 3,000 pockets from 1,000 proteins.  The 

resulting structural protein-ligand interactome (SPLINTER) is available at 

http://www.biodrugscreen.org 9.  The scoring of protein-compound interactions in this 

interactome enables the rank-ordering of compounds for individual targets for purposes of hit 

identification, but also makes it possible to rank-order proteins for a list of potential targets for a 

compound or drug of interest.  In a recent application, we used the interactome to search for 

compounds that mimicked the binding profile of an existing drug.10  We stipulated that such 

compounds may exhibit similar pharmacokinetic properties and efficacy to the drug and possibly 

serve as leads for the development of cancer therapeutics.  From this study, several 
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compounds were uncovered with potent anti-cancer properties and in vitro studies suggested 

suitable pharmacokinetic (PK) properties.10  

Here, we extend SPLINTER by docking more than 1,000 FDA-approved drugs to targets in 

the interactome.  The cancer drug erlotinib was used as a template to search for other approved 

drugs that may possess similar anti-cancer properties.  Erlotinib is used in the treatment of non-

small cell lung cancer (NSCLC) patients.  Twelve drugs are tested for their effect on cell growth 

in a panel of NSCLC cells.  We mined patient records to study the potential association between 

drug exposure and lung cancer occurrence in patients taking these drugs.11  In vivo preclinical 

studies using human NSCLC xenografts in NOD-SCID mice were carried out to probe these 

drugs for their effect in lung cancer. 
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RESULTS AND DISCUSSION  

Docking approved drugs to the human structural proteome.   The solvent-

accessible surface area (SASA) and volume were determined for each pocket to provide insight 

into their physico-chemical properties (Fig. 1).  The SASA and volume define the shape and 

size of the pocket.  The mean SASA for cancer and non-cancer targets is 367.6 and 353.5 Ǻ2 

respectively (Fig. 1A and 1G).  To put this number in perspective, a typical SASA for a protein-

protein interaction is at least 1000 Å2 while enzyme active site pockets are smaller.  More than 

90 percent of the pockets fall within 680 Å2.  These cavities are located either at protein-protein 

interaction interfaces, enzyme active sites, or allosteric sites.  The mean volume for the cavities 

is 1029.6 Ǻ3 for cancer targets and 1061.4 Ǻ3 for non-cancer targets (Fig. 1D and 1J).  90 

percent of the targets have cavities with volumes that are within 1995 Ǻ3. 

To get insight into the physico-chemical properties of binding cavities within the cancer 

and druggable targets, we defined pseudocenters in the binding pockets following the approach 

of Klebe and coworkers.12  These pseudocenters consisted of aromatic, aliphatic, hydrogen 

bond donors, and acceptors as shown in Fig. 1.  On average, there are 13.8 and 14.6 aromatic 

pseudocenters in the binding cavities of the proteome for cancer and non-cancer targets (Fig 1B 

and 1H).  We found on average 21.1 and 22.7 aliphatic pseudocenters for cancer and non-

cancer targets (Fig. 1E and 1K).  Hydrogen bond donor and acceptor reflect hydrogen bonding 

capacity of residues within the binding cavities.  The average number of acceptors was 19.7 and 

17.3 for cancer and non-cancer targets (Fig. 1C and 1I).  The mean number of donors was 17.3 

and 14.6 for cancer non-cancer targets (Fig. 1F and 1L).    

Physico-chemical properties and polypharmacology.  Flexibility and solubility are 

investigated for approved drugs, approved cancer drugs, and publicly-available NCI 

compounds.  Flexibility is represented by the number of rotatable bonds.  Using a threshold 
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value of 0.1 µM, the number of targets for all three classes versus the size of the small molecule 

is provided in Fig. 2A.  The most promiscuous compounds have about 5 rotatable bonds.  The 

most selective compounds had less than 3 rotatable bonds.  High promiscuity is predicted even 

for compounds with more than 10 rotatable bonds (Fig. 2B).  In fact, some drugs with 20 

rotatable bonds had more than 1,000 predicted targets at the 0.1 µM threshold.  Approved 

cancer drugs followed a similar pattern.  Rotatable bonds for NCI compounds, non-cancer drugs 

and cancer drugs showed different distributions (Fig. 2B).  A significantly greater fraction of NCI 

compounds had 3-5 rotatable bonds compared with drugs and non-cancer drugs.   Rotatable 

bonds were more uniformly distributed among approved drugs.  A significant fraction of drugs 

and approved drugs had more than 7 rotatable bonds in significant contrast to NCI compounds.  

Cancer drugs were even more likely to have more than 7 rotatable bond than non-cancer drugs.   

It has been suggested that hydrophobic compounds are more promiscuous.13  

Lipophilicity is quantified by the partition coefficient that corresponds to the ratio of the 

concentration of compound in water versus n-octanol.  Several algorithms have been developed 

to predict the logarithm of the partition coefficient (cLogP).14  A plot of the number of pockets 

versus cLogP for all three classes of compounds shows a gradual increase in promiscuity for 

compounds with increasing cLogP (Fig. 2C).  This is observed for approved non-cancer drugs, 

approved cancer drugs, and NCI compounds.  The mean cLogP was 2.3, 2.7 and 2.5 for the 

three classes of compounds, suggesting that cancer drugs had slightly more hydrophobic 

character than other drugs and compounds.  This is illustrated by the distribution in Fig. 2D as a 

greater proportion of cancer drugs had cLogP values greater than 5.  The distribution also 

shows that compounds from the NCI library were more likely to have a cLogP between 1 and 3.   

Drug pharmacology.  Compounds that bind selectively to cancer-associated targets are 

more desirable as they are likely to possess greater efficacy and lower toxicity.  To get insight 

into the selectivity of drugs, the Cancer Selectivity Index (CSI) is defined as the ratio of the 
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number of predicted cancer target proteins from the HCPIN database  to predicted non-cancer 

targets of approved drugs obtained from DrugBank.  A plot of CSI versus the total number of 

predicted targets (HCPIN + DrugBank) for each drug is shown in Fig. 2E.  A protein is 

considered a “target” when the predicted binding affinity from the ChemScore empirical scoring 

function exceeds a predefined threshold of 0.1 µM.  ChemScore has been extensively validated 

for scoring protein-compound complexes.15, 16  For the majority of drugs, the CSI ratio is in the 

0.7 to 1.2 range.  This is not completely unexpected since pockets located on cancer targets are 

similar to those located on non-cancer targets.  A close inspection of the data reveals that there 

were 500 drugs with CSI greater than 1.  A significant proportion among them, 64 are approved 

cancer drugs.  Twelve of these have a high degree of preference to cancer targets with CSI 

values greater than 2 (Table 1).  All twelve had a total of less than 18 targets (that exceeded the 

0.1 µM threshold).  Their chemical structure is provided in Supporting Information Fig. S1.  It 

was notable that the overwhelming majority of these drugs were fragment-like with molecular 

weights below 300 Da.  They consisted of a single heterocyclic or aromatic ring structure with 

various appendages.  This suggests that smaller compounds may be the most effective 

approach to achieve selective polypharmacology.   

A measure of the predicted polypharmacology of compounds was defined using the ratio 

of targets defined by the number of proteins that exceeded the 0.1 µM threshold to the number 

of proteins below this threshold.  The distribution of this ratio is shown in Fig. 2F.  The majority 

of NCI compounds and drugs exhibit a ratio below 0.2, with compounds showing greater 

selectivity than drugs.  Cancer drugs exhibit less selectivity than NCI compounds and non-

cancer drugs (Fig. 2F). 

A survey of the literature reveals that at least four of these drugs bind to targets that 

have previously been implicated in cancer. For example, isoetharine and salbutamol are 

adrenergic β1, β2 agonists and are used for the treatment of bronchospasm, asthma, and 
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chronic obstructive pulmonary disease.  They bind and activate the β1 and β2 adrenergic 

receptors, which are involved in multiple metabolism pathways including calcium signaling, gap 

junction, salivary secretion, and endocytosis.17 Recent studies suggest these receptors are 

critical for the development of colorectal cancer.18   The third drug is methyprylon, a sedative of 

the piperidinedione derivative family and a treatment for insomnia.  Up-regulation of microRNA 

miR-155 inhibits γ-aminobutyric acid A receptor 1 (GABRA1, target of methyprylon) and 

promotes tumor growth.19  The targets of the fourth  drug (bromfenac) are cox1 and cox2, which 

are well-known to be involved in inflammation, which in turn has been implicated in cancer.20  

Drug-target network.  The interaction between small molecules and their targets can be 

understood within the context of a drug-target network.8, 21  The availability of complete protein-

drug or protein-compound interactome affords the construction of a complete drug-target 

network (Fig. 3).  In this network, a node represents a molecule and two nodes are linked if they 

share a cancer target.  A protein is considered a target to a small molecule if its ChemScore 

predicted affinity is higher than 0.01 µM.  We constructed a drug network for cancer and non-

cancer FDA-approved drugs (Fig. 3A). 

A comparison of the two networks reveals a total of 120,314 and 54,632 edges, with 559 

and 402 nodes for the NCI compounds and FDA-approved drugs, respectively.  To gain insight 

into the level of interconnections of the nodes, we computed the mean degree for each network 

(the degree of a node corresponds to the number of edges connected to the node).   The NCI 

compound network exhibited a mean degree of 430, while the FDA-approved drug network 

showed a mean degree of 272.  The number of non-redundant shortest pathways going through 

each node (betweenness) was also computed for each network.  The mean betweenness for 

the NCI network was 128 while that of the FDA-approved drug network was 131.  A plot of the 

degree versus betweenness is shown in Fig. 3B.  The top 10 drugs with highest betweenness 

and degree are provided in Table 2.  It is worth noting that two of the ten compounds are cancer 
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drugs, and one, namely bexarotene, is used in the treatment of lung cancer (Table 2).22  Finally, 

the mean clustering coefficient was determined to gain insight into the topology of the networks.  

Clustering coefficient of the NCI compound network is 0.913 while that of the FDA-approved 

drug network is 0.898. It was found that the NCI compound network was slightly less loosely 

connected than the FDA-approved drug network.  These values are in excellent agreement with 

a previous study that computed them from a drug-network based on experimental data.23         

A search for new cancer drugs using compound polypharmacology.  Previously, 

we had used predicted off-targets of erlotinib to identify compounds that mimicked the 

pharmacokinetic and anti-cancer properties of the cancer drug.  Here, we extend this concept to 

identify FDA-approved drugs that could be potentially used in the treatment of lung cancer.  

Following the same approach a fingerprint is defined based on erlotinib’s predicted off-targets.10  

We selected the top 12 drugs with highest similarity to the binding profile of erlotinib as 

measured by a Tanimoto coefficient that was determined by comparing fingerprints (Table 3).  It 

was notable that among these 12 drugs, 4 are either currently used for the treatment of cancer, 

or have been considered in clinical trials as candidates for the treatment of cancer; these 

include lapatinib, dasatinib, bexarotene, and podofilox.  Lapatinib is approved for advanced or 

metastatic breast cancer. Dasatinib is approved BCR-ABL positive chronic myelogenous 

leukemia. Bexarotene is approved for treatment of T-cell lymphoma and is being studied in a 

Phase II lung cancer clinical trial. All of these drugs were tested in clinical trials for treatment of 

lung cancer. Podophyillotoxin (podofilox) is approved to treat external genital warts; due to its 

tubulin modulation property and antimitotic function, podophyillotoxin and its derivatives may 

have anticancer properties.24  Another significant outcome of the ranking by fingerprint using 

erlotinib is the fact that two of the anti-cancer drugs, namely lapatinib and dasatinib, are kinase 

inhibitors just like erlotinib.  The most significant aspect of this observation is that the fingerprint 

approach can be used to identify other drugs that target the same protein as the template drug 
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without the use of chemical structure.  It is interesting to note that none of the drugs shared any 

structural similarity with erlotinib.  Hence, our fingerprint approach obviates the need to use 

chemical structure to identify pairs of small molecules that share similar targets. 

In an effort to assess the effect of each drug on cancer cell growth, we performed an 

MTT study for each drug in three NSCLC cancer cell lines, namely H1299, A459, H460, and 

one non-cancer WI38 fibroblast cell line.  All 32 MTT curves are provided in the Supporting 

Information Fig. S1 to S4.  EC50 that were obtained from these curves are provided in Table 4.  

The most cytotoxic drug was podophyillotoxin with EC50 in the nanomolar concentrations (Table 

4).  This was not a surprising finding since this drug is a derivative of etoposide a well-known 

chemotherapeutic.  The second most potent drug was dasatinib.  In A549 and WI38, the 

compound inhibited proliferation at sub-micromolar EC50.  Astemizole was the next most 

cytotoxic drug, EC50 of 12, 9, 10, and 8 µM for H1299, H460, A549 and WI38 cells, respectively.  

Lapatinib, another kinase inhibitor, showed significantly less inhibition of cell proliferation in all 

three cell lines with EC50 values between 30 to 40 µM.  Bexarotene, which was previously tested 

in lung cancer clinical trials revealed weaker anti-proliferative effect (EC50 = ~50 µM), showed 

weaker effect on WI38 proliferation.  Ergotamine, an analog of dihydroergotamine, had higher 

potency with an EC50 ~ 25 µM in H1299 and H460, and even greater potency in A549 cells (13 

µM).  What sets this compound apart from the others is that it had significantly less effect on 

WI38, providing a potential therapeutic window.  Losartan, a drug used mainly to treat high 

blood pressure, showed very little cytotoxicity even at concentrations up to 100 µM. 

Mining and statistical analysis of clinical drug exposure and disease occurrence.  

Patient cohorts were defined based on different drugs.  For losartan, patient cohort was 

constructed as co-occurrence of hypertension prior to lung cancer plus mono-occurrence of 

hypertension without any kind of cancer. For ergotamine, patient cohort was constructed as co-

occurrence of migraine pain prior to 12 major types of cancer (Supporting Information Table S1) 
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plus mono-occurrence of migraine pain without any kind of cancer. All cohorts contained 

patients who had first diagnosis of hypertension or migraine pain at 30 years of age or older. We 

extracted 67,109 patients in the losartan/hypertension cohort, among which 65,411 patients had 

not been exposed to losartan and 1,698 patients had been exposed to losartan before first 

diagnosis of lung cancer or last visit date; and among which 1,574 patients were diagnosed with 

lung cancer sometime after first hypertension diagnosis and 65,535 patients were not diagnosed 

with any cancer before last visit date (Table 5). For ergotamine/migraine pain cohort, we 

extracted 44,721 patients in the ergotamine/migraine pain cohort, among which 44,509 patients 

had not been to ergotamine and 212 patients had been treated with ergotamine before first 

diagnosis of any of major cancer types; and among which 1,171 patients were diagnosed with 

any of 12 major cancers after first migraine pain diagnosis and 43,550 patients were not 

diagnosed with any cancer before last visit date (Table 6).  

Survival statistical analysis was conducted for the association of drug exposure and risk 

of cancer (Fig. 4). Time to occurrence of cancer by drug exposure status was analyzed using 

the Kaplan-Meier method and log-rank test. Survival time (time to occurrence of cancer) was 

defined as the time from the date of first diagnosis of hypertension (for losartan) or migraine 

pain (for ergotamine) until date of first diagnosis of lung cancer (for losartan) or any of the 12 

major cancer types (for ergotamine). Drug exposure status was considered positive if the patient 

was prescribed the drug before first diagnosis of cancer or last visit date. Patients who did not 

have cancer were censored until last visit date. The y-axis corresponds to the fraction of 

patients who had not been diagnosed with cancer.  The x-axis corresponds to survival time in 

days from first diagnosis of hypertension until first diagnosis of lung cancer (for losartan group) 

(Fig. 4A), and days from first diagnosis of migraine pain until first diagnosis of any of 12 major 

cancers in the case of ergotamine (Fig. 4B). For losartan (Fig. 4A green curve), survival time 

was longer than without losartan (Fig. 4A red curve) at any cancer percentage in range. While 

with ergotamine (Fig. 4B green curve), survival time was shorter than without ergotamine (Fig. 
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4B red curve) at most cancer percentage in range.  These conditions suggested further 

statistical confirmation on association of exposure of losartan and astemizole with reduced and 

enhanced cancer risk respectively.25   

In vivo studies in mouse xenograft models.  Astemizole, losartan, and ergotamine 

were evaluated for their effect in vivo on tumor growth using an H460 NSCLC human xenograft 

model.  Two studies were carried out.   The first study was done by orally dosing mice with 

ergotamine at 50 mg/kg orally (n = 7) (Fig. 5A).  Vehicle mice (n = 8) were dosed with the 

methylcellulose.  The study was terminated at day 21. While differences in tumor volume in 

vehicle versus compound-treated mice were not statistically significant, there were some trends 

worth noting in this early exploratory study.  At day 15, tumor volume ranged from 249 to 944 

mm3 for ergotamine-treated mice, and 274 to 743 mm3 for vehicle.  

Another study was carried out with losartan and astemizole.  These drugs were 

administered i.p. at a dose of 50 and 10 mg/kg daily, respectively (n = 10 for losartan and 

vehicle; n = 9 for astemizole).  Another difference is that mice were dosed with drug for a period 

of 7 days before tumors were implanted.  At day 24, tumor size was measured (Fig. 5B). Tumor 

volume ranged from 1,770 to 4,600 mm3 for vehicle mice.  For treated mice, tumor size ranged 

from 1271 to 3,773 for losartan, and 1,470 to 3,969 mm3 for astemizole, respectively.  The 

median tumor volume was 2,800, 2,463, and 2,810 for vehicle, losartan, and astemizole, 

respectively.  Tumor weights, which measured on the last day of the study were 50 percent 

smaller for losartan-treated mice (p<0.01), and 15 percent for mice treated with astemizole 

(p<0.01) (Fig. 5C).  Four of the losartan-treated mice developed tumors that weight less than 

2.5 g, compared with none of the vehicle (smallest tumors for vehicle was 3.2 g).  Three 

astemizole treated mice developed tumors that weighed less than 3.2 g. During this study, the 

animal’s body weight was monitored (Supporting Information Fig S5) and no significant 

alteration was found. 
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Histopathology studies were performed on the resected lung tumors to evaluate the cell 

cycle arrest of NSCLC cells.  The mitotic index (MI) was measured, which is defined as the ratio 

of mitotic cell to non-mitotic cells for tumor tissues treated with vehicle, losartan, and astemizole. 

The results were 7, 18, and 8 respectively. These data seem to suggest that losartan has a 

significant propensity to cause G2M arrest in the cell cycle, which may lead to apoptosis, similar 

to mechanism of Paclitaxel, a microtubule stabilizer and a well-known cancer drug.26, 27  

 
CONCLUSION 

 

We extend our protein-compound interactome SPLINTER by docking FDA-approved drugs to a 

large set of proteins within the dataset.  The scoring of these protein-compound structures using 

ChemScore led to a predicted binding affinity for each protein-compound pair.  The resulting 

matrix of predicted binding affinities can be used to rank proteins for each drug to identify the 

most likely targets for that drug, or to rank drugs for individual proteins to identify potential hit 

compounds.  A protein is defined as a target for a drug if its predicted binding affinity exceeds a 

pre-defined threshold value.  This matrix was instrumental to enable us to get deeper insight 

into the pharmacology of these drugs particularly in cancer.  Since our interactome consists of 

cancer and non-cancer proteins, it was possible to identify drugs that exhibited greater 

selectivity to cancer targets.  The data revealed that selectivity for cancer targets can only be 

achieved only for compounds with fewer predicted targets overall.  In addition, it was possible to 

study the predicted polypharmacology of compounds and drugs.  In general compounds from 

chemical libraries had greater promiscuity than drugs, but cancer drugs exhibited more 

promiscuity than non-cancer drugs.  In addition, physico-chemical properties of compounds and 

drugs led to significant differences predicted polypharmacology.  The data also revealed that 

smaller fragment-like compounds exhibited greater selectivity.  Finally, protein-compound 

scores enabled a network analysis and led to the discovery of highly interconnected hubs that 

may yield new cancer therapeutics among existing FDA-approved drugs.  Interestingly, the 
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parameters of these networks based on predicted binding affinity were in good agreement with 

previous network constructed on experimentally-determined interactions. 

  Beyond a deeper understanding of compound pharmacology, the protein-compound score 

matrix provided an opportunity to extend on previous work that revealed that binding profiles 

can be used effectively to identify compounds that share similar pharmacology.28  The binding 

profile of compounds was encapsulated into a fingerprint.  We defined these fingerprints as bits 

of 0 and 1 that correspond to whether the compounds exceeded a pre-defined threshold.  In our 

previous application we used a drug to search commercial libraries for compounds that mimic 

the properties of that drug.28  Here, we extend this approach to FDA-approved drugs that we 

have docked to all proteins within our interactome.  As we have done previously, we use the 

lung cancer drug erlotinib as a template and use its fingerprint to search for other approved 

drugs that share a similar fingerprint with the expectation that these drugs will possess similar 

pharmacology to erlotinib.  The fingerprints are compared using a Tanimoto coefficient as we 

have done previously.28  From this analysis, the top 12 drugs that possessed the most similar 

fingerprints as erlotinib were further analyzed.   It was interesting that three of these drugs are 

already in use for treatment of lung and other cancers.  Among the remaining nine drugs, 

cellular studies revealed that except for one case, these drugs were micromolar inhibitors of 

NSCLC proliferation in a panel of NSCLC that include A549, H1299 and H460.   

     We selected two drugs (losartan and ergotamine) that are commonly prescribed in the clinic 

and for which there is extensive clinical data at the Regenstrief Institute database.  We were 

interested in evaluating whether patients that take these drugs are less likely to develop cancer 

than those that do not.  Mining patient records at the Regenstrief Institute, our preliminary 

results indicate that ergotamine may hasten the onset of cancer; while losartan had the opposite 

effect.  Further statistical analyses and controls are needed in future studies to make a definite 

link between these drugs and lung cancer in patients.  Three drugs were tested in a sub-

cutaneous model of NSCLC in NOD-SCID mice.  Mice treated with losartan and astemizole had 
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tumors that weighed 50% and 15% less than vehicle, respectively.  In histopathological analysis 

of resected lung tumors, losartan induced more significant G2M arrest in the cell cycle.                     

 

MATERIALS AND METHODS 
 

Docking approved drugs structures.   Previously, we had docked 1592 compounds 

from the NCI diversity set to 1918 binding pockets that were found at the surface of protein 

structures that have been previously implicated in cancer.9, 10  In this work, an additional 1084 

FDA-approved small molecule drugs obtained from DrugBank 29 were docked to 2546 cavities 

on 1738 proteins following the same process that we described previously.9  The strength of the 

interaction between drug and target was determined using the ChemScore empirical scoring 

function.   

Calculation of physico-chemical properties.  The protein targets were collected from 

two sources: HCPIN30 and DrugBank29, 31 databases. The first HCPIN release contained 

structures up to February of 2006. We created a local updated version of the database. We 

obtained sequence information for all HCPIN targets at the UniProt Web site 

(http://www.uniprot.org) using the SwissProt name provided by the HCPIN Web site. Proteins 

without a SwissProt name were not included.  DrugBank provided sequence information for all 

targets of existing approved drugs obtained directly from the DrugBank Web site. In total, we 

collected 3,155 human sequences, 1,147 and 2,241 corresponded to DrugBank and HCPIN 

proteins, respectively.  Among them, 233 were overlapped between the two databases. A BLAST 

search was carried against RCSB Protein Data Bank (PDB) proteins to map sequence to 

structures. The crystal structures were obtained from the PDB. 572 and 1065 PDB structures 

were identified for DrugBank and HCPIN sequences respectively. Solvents, ligands and binding 

partners were removed from the crystal structures. The REDUCE program 32 was used to add 

hydrogen atoms to proteins and optimize some of the residue orientations. The MGLTOOLS 

(v1.5.2) 33 was used to assign Gasteiger charges to the protein and generate a structural file for 
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docking. The structural files were then processed with RELIBASE+ 34, 35 to detect binding pockets 

and compute pocket physico-chemical properties, including volume, aromatic pseudocenters, 

aliphatic pseudocenters, hydrogen bond donor, hydrogen bond acceptor and donor/acceptor. A 

probe radius of 1.4 Å was used to compute the pocket solvent accessible surface area (SASA). 

The physico-chemical properties for drugs and compounds, including cLogP and number of 

rotatable bonds, were computed with the QIKPROP program in the Schrödinger package. The 

mol2-formatted coordinate files of drugs and NCI diversity compounds were downloaded from 

DrugBank29 and ZINC.36 

Erlotinib binding profile calculation.  We used the crystal complex of elotinib bound to 

EGFR as the reference structure and identified 11 potential targets1 including EGFR from 

HCPIN by docking elotinib to HCPIN target crystal structures if available. The targets were 

selected using a consensus scoring function consisting of ChemScore37 and GoldScore38 

implemented in SYBYL program. Complex scored more favorable than the reference structures 

was considered as a potential target and set an ON bit in the binding profile fingerprint. Hence 

there are 11 ON bits in case of elotinib, which constitutes the fingerprint of binding. The binding 

profile of any other FDA-approved small molecules was compared to the elotinib. The similarity 

was measured by Tanimoto coefficient.39 

Cell culture. Human NSCLC cell lines H1299 and H460 cells were cultured in RPMI-

1640 medium (Cellgro, Manassas, VA). Human epithelial cell line A549 was cultured in 

Dulbecco’s Modified Eagle Medium (Cellgro, Manassas, VA). Each medium was supplemented 

with 10% FBS and 1% penicillin/streptomycin in a 5% CO2 atmosphere at 37 °C. 

Proliferation assay. The procedure consisted of culturing cells in 10% FBS-DMEM or 

RPMI-1640 medium containing various amounts of compounds. 20 mM drug stock in 100% 

DMSO was serially diluted and added into each well of a 96-well plate. Cells were treated and 
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incubated for 3 days. Viable cells were quantified by MTT assay at absorbance of 570 and 630 

nm.   

Mining and statistical analysis of clinical drug exposure and disease occurrence 

data.    Retrospective, observational clinical studies were performed with patient data in the 

Indiana Network of Patient Care (INPC) database formatted to Common Data Model (CDM) of 

the Observational Medicine Outcomes Partnership (OMOP), which is an NIH-funded public-

private partnership for drug safety surveillance.40, 41 INPC is a local health information 

infrastructure, which is maintained at the Regenstrief Institute. It includes most of the 

Regenstrief Medical Record System (RMRS) clinical data (660 million separate results) from 

five major hospital systems (fifteen separate hospitals) of central Indiana, county and state 

public health departments, Indiana Medicaid, and RxHub.42  After INPC was formatted to the 

CDM format of OMOP, the database contained records of 2002480 distinct persons spanning 

from January 1, 2003 to December 31, 2009.  The data structure of OMOP CDM 43 allowed us 

to retrieve patient data such as demographic data, starting/ending date of multiple episodes of 

drug exposure, starting date of disease diagnosis, and last visit date with database query 

language SQL. The extraction of diseases including hypertension, migraine pain and cancers 

was based on codes in Ninth Revision of International Classification of Disease (ICD-9) adopted 

by WHO in 1975 (Supporting Information Table S1). We focused on 12 major types of cancer 

which are among top ten deadly cancers in the U.S. either in male, female, or both for the year 

of 2008. Statistical analysis and graphing were performed with SAS (9.2), IBM SPSS Statistics 

19 and SigmaPlot (11.0). 

In vivo xenograft studies.  NOD/SCID mice were obtained from the on-site breeding 

colony maintained by the In Vivo Therapeutics Core at the Indiana University Simon Cancer 

Center (IUSM, Indianapolis, IN).   H460 cells (2 x 106) were injected subcutaneously into the 

right flank of 8-10 week old NOD-SCID mice.  These cells were obtained directly from ATCC 

Page 17 of 36 Molecular BioSystems

M
o

le
cu

la
r 

B
io

S
ys

te
m

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



(Manassas, VA) and used at low passage (<10).  Mice were randomized to treatment group 

based on average tumor volume (mm3).  Two different studies were conducted.  The first 

consisted of PO dosing of mice with ergotamine (n =7) at a dose of 50 mg/kg or a PBS solvent 

control (n = 8).  Mice were dosed once a day for 14 days.  The second study involved three 

groups:  Astemizole, losartan, and PBS control.  For this study, prior to tumor implant, the 

animals were pre-treated with drugs daily for a period of 7 days.  Following subcutaneous tumor 

implantation animals were treated with astemizole and losartan that were administered 

intraperitoneally at 10 mg/kg, once a day for 28 days, respectively.  Tumor growth was 

measured over time via electronic caliper and volume calculated as Length * Width2/2 in 

millimeters.  After four weeks mice were euthanized, the lungs were resected, fixed in formalin 

solution, sectioned, and stained with hematoxylin and eosin (H&E) for analysis. 
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FIGURE LEGENDS 

 

Figure 1. Physico-chemical properties of binding pockets on cancer targets and non-

cancer targets. (A, G) Solvent-accessible surface area (SASA).  (D, J) Volume of 

the cavities identified in targets.  (B, H) Distribution of aromatic; (E, K) aliphatic; 

(C, I) hydrogen-bond acceptors; and (F, L) hydrogen bond donors within binding 

pockets.    

 

Figure 2. Physico-chemical properties of the cancer drugs, non-cancer drugs and non-drug 

compounds using 0.1 µM binding threshold.  (A) Compound rotatable bonds 

versus number of targets. (B) Distribution of rotatable bonds among NCI 

compounds, non-cancer and cancer drugs.  (C) Logarithm of the partition 

coefficient (cLogP) vs. number of cavities. (D) Distribution of cLogP among NCI 

compounds, non-cancer and cancer drugs.  (E) Ratio of cancer to non-cancer 

targets of cancer drugs and non-cancer drugs.  (F) Distribution of ratio of targets 

over non-targets among for NCI compounds, non-cancer drugs, and cancer 

drugs. 

 

Figure 3. Drug-target networks for cancer drugs and non-cancer drugs. (A) Overview of 

drug-target networks. Each node represents a drug and two nodes are linked if 

they share a target. (B) Degree and betweenness of the drugs. Degree of a node 

is defined as the number of edges connected to the node. Betweenness of a 

node is defined as the number of non-redundant shortest pathways going 

through each node. 
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Figure 4. Kaplan-Meier time to cancer occurrence curves of patients with (green curve) or 

without (red curve) losartan (A) and ergotamine (B). Time to cancer occurrence 

was measured from occurrence of 1st hypertension diagnosis to 1st diagnosis of 

lung cancer (A) and from occurrence of 1st migraine pain diagnosis to 1st 

diagnosis of any of the major cancer types (B). 

 

Figure 5. Effects of losartan and astemizole on tumor growth in an H460 NSCLC xenograft 

mouse model.  
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Table 1   Drugs that Exhibit High Selectivity and Preference to Oncology Targets 

Drug Name 
Total 

Cancer 
targets 

Total 
Approved 

Drugs   
targets 

CSI Targets 

Isoetharine 4 1 4  β
1
 adrenergic receptor 

Salbutamol 3 1 3 β
1, 2 

adrenergic receptor 
Guanadrel 
sulfate 2 1 2 Sodium-dependent noradrenaline 

transporter 
Diatrizoate 4 2 2 N/A 
Rimantadine 2 1 2 Influenza A virus matrix protein 2 
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Starvudine 2 1 2 HIV1 reverse transcriptase 
Phensuximide 2 1 2 N/A 
Diethylpropion 8 4 2 Sodium-dependent noradrenaline and 

dopamine transporters 
Bromfenac 12 6 2 COX1, 2 
Methyprylon 2 1 2  γ-aminobutyric acid receptor subunit alpha-

1 
Iophendylate 2 1 2 N/A 

Methsuximide 10 5 2 Voltage-dependent T-type calcium channel 
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Table 2.  Top FDA-Approved Drugs with the Highest Betweenness and Degree Obtained from a 
Network Analysis of the Data  
 

Name Betweenness Degree Indication 

Tacrine 
2027 348 Alzheimer’s 

Sulfisoxazole 
1896 310 Antibacterial 

Adapalene 
905 376 Acne 

Flurbiprofen 786 293 Inflammation and Pain  

Naftifine 651 367 Antifungal 

Conjugated Estrogens 622 360 - 

Nilotinib 593 355 leukemia 

Proflavine 
590 359 bacteriostatic 

Bexarotene 
571 374 Cancer including lung 

Tolcapone 
531 349 Parkinson 
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Table 3.  Top FDA-Approved Drugs Identified using Erlotinib Binding Profile   
 

Name Indication (DrugBank) 

Ergotamine Migraine headaches 

Treprostinil Pulmonary Arterial Hypertension 

Bexarotene Cutaneous T-cell lymphoma 

Astemizole Seasonal allergic rhinitis 

Podofilox External genital warts (Condyloma acuminatum) 

Forasartan Hypertension 

Acenocoumarol Thromboembolic diseases 

Desoxycorticoserone 

Pivalate 
Adrenocortical insufficiency 

Dihydroergotamine Migraine headaches 

Latanoprost Glaucoma or occular hypertension 

Lapatinib Advanced or metastatic breast cancer 

Dasatinib 
Chronic, accelerated, or myeloid or lymphoid blast phase chronic 

myeloid leukemia 
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Table 4. EC
50

 Values for 8 Drugs on Lung Cancer Cells 
 

Drug Name EC
50

 (µM) 
H1299 H460 A549 WI38 

Dihydroergotamine 70±9 67±1 43±2 80±24 
Astemizole 12±1 9±1 10±1 8±1 
Podophyllotoxin 0.003±0.032 0.0002±0.0007 0.024±0.002 - 
Ergotamine 252±3 26±1 14±1 57±4 
Losartan - - 63±7 9±3 
Lapatinib 41±2 32±1 67±11 32±1 
Dasatinib - - 0.1±0.04 0.7±0.4 
Bexarotene 44+2 52±2 58±4 76±10 
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Table 5.   Patient Records Data to Assess Effect of Losartan in Cancer   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Page 27 of 36 Molecular BioSystems

M
o

le
cu

la
r 

B
io

S
ys

te
m

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



Table 6   Patient Records Data to Assess Effect of Ergotamine in Cancer 
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Figure 1 
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Figure 2 
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Page 31 of 36 Molecular BioSystems

M
o

le
cu

la
r 

B
io

S
ys

te
m

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Page 32 of 36Molecular BioSystems

M
o

le
cu

la
r 

B
io

S
ys

te
m

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



Figure 5 
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