
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Molecular
 BioSystems

www.rsc.org/molecularbiosystems

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Molecular 
BioSystems 

Cite this: DOI: 10.1039/c0xx00000x 

www.rsc.org/molecularbiosystems 

Dynamic Article Links ► 

PAPER 

 

This journal is © The Royal Society of Chemistry [year] [journal], [year], [vol], 00–00  |  1 

Improving the performance of protein kinase identification from high 

dimensional protein-protein interaction and substrate structure data 

Xiaoyi Xu
a
, Ao Li

a,b
, Liang Zou

a
, Yi Shen

a
, Wenwen Fan

a
 and Minghui Wang

a, b, *
 

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 

DOI: 10.1039/b000000x 5 

As a crucial posttranslational modification, protein phosphorylation regulates almost all basic cellular 

processes. Recently, thousands of phosphorylation sites have been discovered by large-scale phospho-

proteomics studies, but only about 20% of them have information of catalytic kinases, which brings a 

great challenge to correct identification of the protein kinases responsible for experimentally verified 

phosphorylation sites. In most existing identification tools, only local sequence was selected to construct 10 

predictive models, and information of protein-protein interaction (PPI) was adopted for further filtering. 

However, the limited information utilized by these tools is not sufficient to identify protein kinases 

responsible for phosphorylated proteins. In this work, a novel computational approach that fully 

incorporates PPI and substrate structure information is proposed to improve the performance of human 

protein kinase identification. To handle the issue of high-dimensional PPI and structure data, a two-step 15 

feature selection algorithm that incorporates support vector machine (SVM), is designed to detect 

information useful in discriminating corresponding kinase of phosphorylation sites. Benchmark datasets 

for kinase identification are constructed with human protein phosphorylation data extracted from the 

latest Phospho.ELM database. With the selected PPI and structure features the performance of kinase 

identification is significantly enhanced as compared with that obtain by using only sequence information. 20 

To further verify our method, we compare it with the state-of-the-art tools: NetworKIN and IGPS at two 

stringency levels with medium (>90.0%) and high (>99.0%) specificity. The results show that our method 

outperforms existing tools in identifying protein kinases. Further evaluation demonstrates our method also 

performs superiorly on different hierarchical levels including kinase, subfamily, family and group. 

Introduction 25 

As an important and reversible type of post-translational 

modification, protein phosphorylation plays an essential role in 

the regulation of cellular processes such as metabolism, gene 

expression, cell signal pathways, growth, motility, differentiation, 

division and membrane transport1-5. Phosphorylation is catalyzed 30 

by protein kinases that regulate a myriad of cellular processes and 

about half of them are related to cancer and other diseases 6, 7. In 

this regard, identification of phosphorylation sites along with 

their site-specific kinase could provide more details for 

understanding the molecular mechanisms of various diseases and 35 

suggest potential drug targets 8. To this end, a lot of experimental 

efforts have been taken to identify kinase substrates and 

corresponding phosphorylation sites. Although beneficial in 

illustrating the mechanisms of phosphorylation, these approaches 

are limited by the availability and optimization of enzymatic 40 

reactions 9, 10.  

 With the advance of mass spectrometry-based techniques 11, 

experimentally determined phosphorylation sites were 

exponentially increased and several databases 12-18 of 

phosphorylation substrates were built subsequently. However, the 45 

mass spectrometry experiments cannot ascertain protein kinases 

that phosphorylate the identified substrates, resulting in very 

limited kinase information in existing phosphorylation databases. 

For example, as a database of experimentally verified 

phosphorylation sites in eukaryotic proteins, Phospho.ELM 16 50 

currently contains 37,145 human phosphorylation sites, but only 

10% of them (3,599sites) are associated with corresponding 

kinase information. With large-scale phospho-proteomics studies, 

the huge gap between protein kinases and phosphorylation sites 

will continue to increase, which largely hampers the studies 55 

aiming to elucidate catalytic mechanism of protein 

phosphorylation and kinase-related components of signaling 
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pathways.  

 To solve this problem, a few computational approaches have 

been proposed recently19-21. For example, Linding et al. 

introduced a novel tool called NetworKIN 19 that identify kinases 

based on sequence similarity with known sequence motif 5 

collected from Scansite 22 and NetPhosK 23. Song et al. developed 

IGPS 21 software that adopts the predictor in GPS 2.0 24 to 

discover potential PKs for the un-annotated phosphorylation sites. 

Despite the success achieved by these approaches, the predictive 

models used by most of existing methods are mainly based on 10 

local sequence of phosphorylation sites. However, protein 

phosphorylation is a complicated process with various biological 

mechanisms involved 25, thus the sequence information cannot 

fully determine the corresponding protein kinase. To overcome 

this issue, protein-protein interactions (PPI), which reflects the 15 

potential of interactions between kinase, substrate and other 

proteins involved in phosphorylation process, are further adopted 

to filter out potentially false positives 19, 21. However, such simple 

filtering strategy cannot fully utilize the PPI information and 

suffers from decreased prediction sensitivity, leaving large room 20 

for further improvement of protein kinase identification. 

Furthermore, the obstacle in incorporating PPI data lies in the fact 

that in an organism there are usually thousands of proteins with 

extremely complex interactions. For example, from STRING 

database 26 we can obtain 18,600 human proteins and 489,929 25 

corresponding interactions, and such high dimensionality of input 

data may lead to severe problems such as heavy burden on 

classifier, degradation of generalization abilities and significantly 

decreased performance 27.  

 To address the issue in adoption of PPI data for kinase 30 

identification, in this study a novel approach is proposed that 

takes full advantage of PPI information to identify protein kinases 

responsible for phosphorylated proteins. In addition,  structures of 

kinase substrates are also incorporated as they are reported to be 

helpful in phosphorylation prediction studies18, 28, 29. To build 35 

predictive models from high dimensional PPI and structure data, 

an efficient feature selection algorithm is developed to pick up 

important data for kinase identification. The experimental results 

show that the performance of kinase identification is significantly 

improved by incorporating selected PPI and structure data with 40 

sequence information. Further evaluation demonstrates the 

proposed approach remarkably outperforms existing kinase 

identification tools. 

Materials and Methods 

Data collection and pre-processing 45 

In this work, 37,145 experimentally verified human 

phosphorylated S, T, and Y sites (3,599 sites with corresponding 

kinase information) were derived from the latest version of 

Phopho.ELM (9.0) 16 as a benchmark dataset. After removing 

identical proteins associated with multiple PubMed IDs, 27,404 50 

phosphorylation sites (3,151 sites with kinase information) were 

obtained, which represent 2,398 unique phosphorylation sites in 

934 proteins with kinase information. To avoid overestimation 

caused by redundancy and homology bias, the protein sequences 

were clustered with a 70% threshold  identity by Blastclust 30, and 55 

then a representative of each cluster was retained. Finally 889 

proteins with 2,289 sites were extracted for further analysis, and 

the number of serine(S)/threonine(T) and tyrosine (Y) substrates 

were 1,823 and 466, respectively. For each kinase, the 

corresponding phosphorylation sites were regarded as positive 60 

data, while those catalyzed by other kinases were regarded as 

negative data. After removing kinases sets with less than 20 

positive samples, 21 protein kinases were obtained for further 

investigation. In addition, the kinases were hierarchically 

organized into major groups, families, subfamilies according to 65 

the classification scheme proposed by Manning et al. 6. Finally 21 

datasets in kinase level, 10 datasets in subfamily level, 17 

datasets in family level and 6 datasets in group level were 

constructed. The detailed information of positive and negative 

data in four hierarchical levels is summarized in Table S1.  70 

Feature Extraction and Encoding 

Protein-protein interaction and protein structures including 

solvent accessibility, secondary structure, disorder region, were 

extracted as the features in this work. The PPI data was 

downloaded from the STRING database (version 9.05) 26, which 75 

contains protein-protein interactions values in 18,600 human 

proteins. The PPI information is integrated into an adjacency 

matrix that contains interaction values between each pair of 

proteins. Higher values in the matrix indicate stronger 

interactions and „0‟ represents no interaction between two 80 

proteins. After deriving all 16,025 proteins that have interactions 

with the 889 non-redundancy phosphorylated proteins, finally an 

889*16,025 matrix was obtained with each column representing a 

PPI feature.  

 Due to the limited number of proteins with experimentally 85 

determined structures, predicted structures of the full-length 

phosphoproteins were generated by SABLE 31 and VSL2 32 and 

the structures of the 21-mer amino acids fragment centered on the 

phosphorylation site were then extracted for further analyses. For 

each amino acid in the query sequence, secondary structures were 90 

classified into „coil‟, „helix‟ or „beta strand‟ by SABLE and were 

then encoded as „100‟, „010‟ and „001‟, respectively. The solvent 

accessibility of each amino acid was predicted as „buried‟ or 

„exposed‟ with confidence level from 0 to 9. For each amino acid 

the disorder score predicted by VSL2 varied from 0 to 1, with 95 

higher score indicating greater tendency to be located in disorder 

region. Together, the PPI and structure data finally renders 

16,130 features for further analysis.    

Feature selection and kinase identification 

We propose an efficient wrapper feature selection algorithm 100 

including a ranking process followed by a two-step forward 

feature selection. As shown in the pseudocode, an efficient 

filtering feature selection method mRMR is first employed to 

rank features based on the so called “minimal-redundancy-

maximal-relevance” criterion33, which takes both the minimal 105 

information redundancy among features (f) and maximum 

information relevance with the kinase (k) into account based on 

mutual information. The mutual information between variable x 

and y is defined as: 

 dxdy
ypxp

yxp
yxpyxI

)()(

),(
log),();(   (1)

 

110 

where p(x) and p(y) are the marginal probability distribution 
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functions of two variables and p(x,y) is the joint probability 

distribution function. Specifically, for the ith candidate feature    

in feature set S, the “minimal-redundancy” and “maximal-

relevance” criteria can be formulated as equation (2) and (3). 

Function R indicates the redundancy between two given features 5 

and function D indicates the relevance between feature and class 

label (here we use „1‟ to represent a phosphorylation site 

catalyzed by a specific kinase and „0‟ otherwise). If     satisfies 

both equations, it will then be selected by mRMR. 

  


Sf i
i

kfI
S
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1

),,(max  (2) 10 
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 Afterwards, a two-step forward feature selection is applied 

based on the ranked feature subsets. Features are added iteratively 

from higher to lower index according to the rank derived by 

mRMR to determine the optimal size of feature subset. First, the 15 

feature subset starts with all the sequence features and adds one 

structure feature each time to train a SVM model. After that, the 

corresponding AUC (Area under the curve, see Performance 

Evaluation) is calculated to evaluate the performance of the 

feature subsets. The procedure is repeated until the number of 20 

selected feature exceeds a threshold M (default value 1,000). Next, 

the subset with the maximal AUC is selected to be the next initial 

subset for PPI feature selection. Finally, an optimal subset 

including sequence, structure and PPI features with the best 

performance is returned by the procedure. The SVM models are 25 

implemented by the LIBSVM package (version 3.12) 34. The 

radial basis function is chosen as the kernel function and two 

parameters including cost (c) and gamma (g) are optimized with 

the grid search strategy. To correct the imbalance between vastly 

outnumbered positive data and negative data, the weight 30 

parameter (w) of negative data is set as the ratio of negative data 

to positive data. Finally 10-fold cross validation is adopted in this 

work for feature selection and performance evaluation.  

 

Input:  35 

Structure feature set (S) 

PPI feature set (F) 

Maximal number of selected structure/PPI features M 

Output: 

Optimal feature subset (O) 40 

Algorithm: 

Normalize S, F to [0, 1]  

Rank features in S, F with mRMR 

while the number of selected features < M 

Iteratively incorporate structure features in order 45 

and train a SVM 

Calculate the AUC of the SVM model  

end 

O’ ← features with max AUC value 

while the number of selected features < M 50 

Iteratively incorporate PPI features in order with O’ 

and train a SVM 

Calculate the AUC of the SVM model 

end 

O ← the subset with max AUC value 55 

Performance Evaluation 

The receiver operating characteristic (ROC) curve is the 

commonly used method to evaluate the overall performance of a 

classifier, which plots the value of (1-Sp, Sn) by using the 

decision values for all samples as thresholds, and the 60 

corresponding area under ROC curve (AUC) represents overall 

classification accuracy. In addition, accuracy (Acc), sensitivity 

(Sn), specificity (Sp), precision (Pre) and Matthews correlation 

coefficient (MCC) are utilized in this study to measure the 

identification performance at medium and high stringency levels, 65 

and the definitions are shown as below: 

  (4) 

  (5)

  (6) 

  (7) 70 

  (8) 

where the TN, TP, FN and FP represent the number of true 

negative, true positive, false negative and false positive, 

respectively.  

Results 75 

Analysis of structure and PPI information 

Structure Information of Substrates. As protein kinases exhibit 

distinct recognition specificities in various structural 

surroundings, local structure information of the substrates, e.g. 

secondary structure, solvent accessibility and protein disorder 80 

region, could be helpful in recognizing corresponding kinases. In 

this regard, to assess the difference among secondary structures 

of substrates catalyzed by different kinases, the occurrence of coil, 

helix and beta strand in 21 positions around phosphorylation sites 

is calculated. For example, the substrates for two protein kinases: 85 

PKCa and PDK1, exhibit significant discrepancy in secondary 

structures with a p-value of 2.5485e-5 using Kolmogorov-

Smirnov test, and the results are shown in in Fig. 1A. Compared 

with the substrates of PKCa, PDK1 substrates are enriched in coil 

but reduced in beta strand structures for the most positions. 90 

Especially, beta strands are completely missing in position -8~-3 

and 6~7 but greatly enriched in position 0~1 of substrates 

catalyzed by PDK1, suggesting beta strands in these positions are 

helpful for discriminating between the substrates of PDK1 and 

PKCa. Moreover, the average disorder values of the 21-mer 95 

residues surrounding phosphorylation sites are also calculated. 

Fig.1B shows that these values range from 0.641 to 0.719 for 

PKCa and 0.350~0.493 for PDK1, and the p-value of their 

difference is 1.9664e-10. The results imply that substrates 

catalyzed by PKCa are more likely to be located in disordered 100 

regions and such information can be used for identification of 

PKCa substrates.  
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Fig. 1. Difference of structure features between kinase PKCa and PDK1. (A) Occurrence of coil, helix and beta strand in all 21 positions around 

phosphorylation sites. For each pair of bars, left one represent kinase PKCa and right one represent kinase PDK1 (B) Average disorder values of the 21-
mer residues surrounding phosphorylation sites. (C) Average solvent accessibility values of the 21-mer residues surrounding phosphorylation sites. P-

value is calculated by Kolmogorov-Smirnov test. 5 

 
Fig. 2. Histogram of the top-ranked 1000 PPI values between different kinases. The horizontal axis represents the averaged PPI values for the substrates 

of a protein kinase and the vertical axis represents the percentage of average values in certain range. 

Finally, our results also suggest the solvent accessibility between 

the substrates of PKCa and PDK1 is significantly different 10 

(Fig.1C). Therefore, all structure information is used as features 

for further study. 

PPI Information. To evaluate PPI information, for each of the 

top1,000 PPI feature ranked by mRMR, the averaged PPI values 

for the substrates of a protein kinase are calculated. The 15 

histograms in Figure 2 show that there is significant difference 

between protein kinases, suggesting the PPI values vary greatly 

for different protein kinases. Further investigation shows there is 

generally little overlap between the top-ranked proteins of each 

two kinases, and the detailed information is shown in Table S2. 20 

There results indicate the substrates of different kinases tend to 

interact with divergent proteins that may be implicated in the 

kinase-specific phosphorylation process. We also intend to 

ascertain whether these top-ranking proteins of different kinases 

participate in disparate biological processes, and perform  25 

enrichment analysis of biological process by using the DAVID 

Page 4 of 10Molecular BioSystems

M
o

le
cu

la
r 

B
io

S
ys

te
m

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  5 

program 35. The results show that the top-ranked proteins of 

kinases own different but overlapping functions. For example, the 

top-ranked proteins for CDC2 and PKCa kinase are both 

functionally enriched in phosphoprotein. On the other hand, the 

proteins for CDC2 are enriched in mitotic cell cycle and cell 5 

cycle phase while proteins for PKCa are enriched in plasma 

membrane part and transmembrane protein. As the substrates of 

different kinases tend to interact with proteins involved in 

divergent biological processes, PPI information is useful to assign 

protein kinases. 10 

Assessment of Feature selection 

During the forward feature selection process, the corresponding 

AUC value in each loop is calculated and the results are shown in 

Figure 3. For comparison, a baseline SVM model is adopted 

which is trained with only sequence information (21-mer 15 

sequence fragment with 10 up- and down-stream peptides). For 

most of protein kinases, adding structure features to the baseline 

SVM leads to increased AUC, and the optimal prediction 

performance is usually obtained by using a subset of top-ranking 

structure features selected by the algorithm. Afterwards, with the 20 

 
Fig. 3. AUC values obtained by feature selection process. (A) Feature selection process of structure features (B) Feature selection process of PPI features. 

The horizontal axis represents the number of added feature number. 

 

 25 

Fig. 4. ROC curves of 10-fold cross-validation performance using structure/PPI features. Seq.: local sequence features only; All stru.: primary sequence 
features and all structure features; Selected stru.: primary sequence features and selected structure features; All PPI: primary sequence features, 

selected structure features and all PPI features; Selected PPI: primary sequence features, selected structure features and selected PPI features 

Page 5 of 10 Molecular BioSystems

M
o

le
cu

la
r 

B
io

S
ys

te
m

s 
A

cc
ep

te
d

 M
an

u
sc

ri
p

t



 

6  Molecular BioSystems, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

 

selected PPI features in the second step, prediction performance 

is further improved for all protein kinases (Fig.3). For example, 

with the aid of 55 selected structure features, the AUC of kinase 

FYN increases from 66.72% to 74.98%, and then boosts to 87.63% 5 

when 10 top-ranking PPI features are added. Finally, the optimal 

AUC reaches 95.15% when using 55 structure and 185 PPI 

features.  

 To further evaluate the proposed feature selection algorithm, 

we plot the ROC curves obtained by using selected structure/PPI 10 

features, as shown in Fig.4. In accordance with previous findings, 

identification performance for many protein kinases, such as 

FYN and PKCa, is increased by incorporating all structure 

features to the baseline SVM and can be further improved by 

feature selection. As the same time, for other kinases such as 15 

GSK3B and CDC2, it can be found that structure information is 

less helpful in identifying their substrates, and the reason may lie 

in: 1) predicted structure information for their substrates is 

inaccurate; 2) phosphorylation mediated by these kinases is not 

strongly affected by local structures of substrates. In either case, 20 

adoption of feature selection contributes little to performance. On 

the other hand, further incorporation of PPI features generally 

leads to obvious improvement in performance for all protein 

kinases, suggesting the importance of PPI information in 

determining kinases responsible for phosphorylation sites. 25 

However, it is unlikely that a great amount of proteins 

simultaneously participate in the phosphorylation process 

mediated by one kinase, and the high dimensions of PPI features 

may also bring trouble to classification and lead to decreased 

performance occasionally. Taking CDC2 kinase for instance, 30 

although adoption of all PPI features is generally beneficial for 

identification in other kinases, it renders even worse results at 

high sensitivity level than those of the baseline approach using 

only sequence information. Adoption of only a subset of PPI 

features determined by the feature selection algorithm can 35 

efficiently remedy this issue and provides remarkably enhanced 

performance for all protein kinases. 

Performance Evaluation 

In machine learning methods of protein phosphorylation, it is 

usually critical to minimize false positives, especially for 40 

proteomic-wide screening and systematic examination, and 

therefore stringent thresholds are commonly adopted to ensure 

high prediction specificity. In this regard, the influence of 

selected structure and PPI features on the performance of protein 

kinase identification is investigated at high specificity. For each 45 

kinase, two stringency levels are adopted with medium (>90.0%) 

and high (>99.0%) specificity, and commonly used performance 

measurements are calculated for comprehensive evaluation. As 

illustrated in Fig.5, incorporation of structure and PPI information 

optimized by feature selection algorithm significantly improves 50 

the performance at both stringency levels. For example, using the 

baseline SVM classifier with only sequence features, the 

performance of kinase FYN is rather low at medium stringency 

level (Sp 95.0%). Adding structure and PPI features yields 

consistent increase of all performance measurements and the final 55 

optimal values of Acc, Sn, Pre and MCC are 94.6%, 84.0%, 50.0% 

and 62.33%, respectively. Meanwhile, at high stringency level 

(Sp 99.09%) the SVM classifier cannot recognize any FYN  

 
Fig.5. Identification performance of different feature sets at two 60 

stringency levels. (A-D) Measurements at specificity of 0.95. (E-H) 
Measurements at specificity of 0.99. The horizontal axis represents 
accuracy, sensitivity, precision and Matthew correlation coefficient, 

respectively. Seq.: local sequence features only; Selected stru.: primary 
sequence features and selected structure features; Selected PPI: primary 65 

sequence features, selected structure features and selected PPI features. 

 

substrates from 25 positive samples when using only sequence 

and structure information (Sn 0). After further incorporation of 

PPI information, most of the known FYN substrates can be 70 

identified with dramatically improved Sn of 72.0%.  

 Comparison with other existing tools. To further evaluate 

our identification method, the performance of SVM classifiers 

using selected structure and PPI features is compared with two 

existing state-of-the-art kinase identification tools: NetworKIN 19 75 

and IGPS21. Since these tools do not provide options for cross-

validation, all human phosphorylated proteins in Phospho.ELM 

database are submitted to these tools for identification. 

Furthermore, for our method 10-fold cross-validation was 

adopted for performance evaluation.  80 

 As shown in Figure 6 and Table S3, for most of the protein 

kinases our method shows significantly better performance than 

NetworKIN and IGPS. For example, for GSK3B kinase our  
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Fig.6. Performance comparison with existing tools: IGPS and NetworKIN. Two stringency level (medium: sp>90.0% and high: sp>99.0%) of the proposed 

method are used for comparison.  

 5 

Fig.7. Analysis of selected features. For each kinase, pie graph illustrates the composition of all selected features and bar graph shows the proportion of 
selected features in different feature categories such as PPI, SEQ, DIS, SS and SA. (PPI: protein-protein interaction feature, SEQ: sequence feature, DIS: 

disorder region, SS: secondary structure feature, SA: solvent accessibility feature) 

method achieves a sensitivity and specificity of 81.82% and 

95.98% at medium stringency level, which outperforms 10 

NetworKIN (Sn 29.55% & Sp 95.53%) with about 52% higher 

sensitivity and similar specificity. Likewise, it also outperforms 

IGPS by an improvement of 27.28% in sensitivity at a high 

specificity of 99.03%. For only three protein kinases: ATM, 

PLK1 and SYK, IGPS shows better sensitivity with comparable 15 

or slightly lower specificity (Table S3). It is noteworthy that the 

results of IGPS are biased because the phosphorylation data in the 

Phospho.ELM database are also used by IGPS to generate 

prediction models (Song, et al., 2012), which inevitably leads to 

over-estimations of performance. On the contrary, the 20 

performance of our method is examined by 10-fold cross-

validation, which can accurately reflect the true performance. In 

addition, we also evaluate the performance on different 

hierarchical levels of protein kinases, and Table S4 shows our 

method yields better overall performance in identifying kinase 25 

subfamilies, families and groups. 

Interpretation of selected features 

The distributions of selected features for different protein kinases 

are investigated for further interpretation, and the results are 
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shown in Fig.7. Intriguingly, although structure and PPI features 

are picked up by the feature selection algorithm, distinct patterns 

of feature composition for various kinases are found in the 

selected feature. For example, for protein kinase P38a, the 

majority of selected features are extracted from structure and PPI 5 

information. On the contrary, for some other kinases such as 

GSK3B, only a small proportion of structure and PPI features are 

selected. Given their prominent contribution to the performance 

of kinase identification (especially the selected PPI features), the 

results indicate that these features may represent key factors that 10 

are involved in the phosphorylation process. Further analysis of 

the selected features shows that beta strand structure and solvent 

accessibility of the phosphorylation site and its flanking position 

(-1) play an important role in determining the substrates of 

GSK3B kinase.  15 

 To better understand the biological significance of selected PPI 

features, functional enrichment analysis of the proteins associated 

with PPI features selected for GSK3B kinase is performed. 

Interestingly, it can be found that these proteins are enriched in 

glycogen metabolic process, glycogen biosynthesis, and glucan 20 

metabolic process (Table S5), which are in accordance with the 

well known regulatory function of GSK3B kinase in glycogen 

synthase. We further explore the literature and find one selected 

protein named Frat2 was reported to significantly increase 

GSK3B mediated phosphorylation of protein Tau by binding to 25 

kinase GSK3B 36. Since the high PPI value for Frat2 and Tau 

(528) also indicates Frat2 can specifically interact with Tau, it is 

hypothesized that Frat2 can act as a bridge between substrate 

(Tau) and protein kinase (GSK3B) and then promote the 

phosphorylation progress through spatial location approximation 30 

(Fig. S1), by which the selected protein bring together the kinase 

and substrate to increase the rate of reaction 36. Therefore, the PPI 

feature that shows selective binding of substrate protein to Frat2 

is helpful in determining whether the corresponding kinase is 

GSK3B. 35 

Discussions and Conclusions  

With the increasing amount of phosphorylation sites discovered 

by high-throughput technologies, identification of corresponding 

protein kinase is attracting significant attentions. Although a few 

computational approaches have been proposed to this end, most 40 

of them are mainly focused on local sequence information, which 

are inadequate for accurate protein kinase identification. As 

various biological mechanisms are involved in protein 

phosphorylation process, the contributions of these factors may 

be very important and cannot be neglected. In addition, these 45 

approaches simply use PPI in post-processing filtering could lead 

to decreased prediction sensitivity, and leave a large room for 

fully utilizing the PPI information to improve the performance of 

protein kinase identification. In this work, a novel kinase 

identification approach is proposed, which incorporates an 50 

efficient two-step feature selection algorithm to handle 

tremendous protein-protein interaction and substrate structure 

information. The comprehensive analysis suggests that selected 

PPI and structure information are useful in discriminating 

corresponding kinase of phosphorylation sites at all hierarchical 55 

levels and the feature selection process is indispensable for 

decreasing high dimensionality of the input data.  

 Instead of using a binary coding scheme indicating the 

existence of interaction between two proteins, the PPI values 

from STRING database are adopted in this study that indicate the 60 

confidence score. We find that the feature selection algorithm 

tends to choose proteins that have strong interactions with both 

protein kinase and substrate, which may provide insights into the 

underlying mechanism of protein phosphorylation. For example, 

the PPI values for the interactions of Frat2 to GSK3B and Tau are 65 

996 and 528, which are significantly larger than the average PPI 

values for these proteins. This indicates that the proteins 

associated with the selected PPI features may act as bridges 

between substrates and protein kinases to promote the 

phosphorylation progress. It is noteworthy that although there 70 

might be noise in the PPI data extracted from STRING database 

from predicted interactions, the results of performance evaluation 

suggest that the feature selection algorithm and the SVM models 

have good robustness.  

 The results of this study further confirms the conclusion in 75 

previous studies that protein structure information promotes the 

prediction performance of phosphorylation site, even though 

substrate structure information is not as helpful as PPI 

information in general. Besides the reason of inaccuracy in 

predicted structure information, it is also speculated that the weak 80 

effect of structure information in our study may be due to the 

distinction between prediction of phosphorylation site and 

identification of protein kinases. In other words, structural 

surroundings of substrates for different kinases are similar while 

the structural surroundings of phosphorylation sites and non-85 

phosphorylation sites are various.  

 Although the approach proposed in this study demonstrates 

strong ability of kinase identification, the performance of a few 

kinases is still unsatisfied and therefore further improvement is 

needed. As a complex biological process, protein phosphorylation 90 

is affected by diverse biological mechanisms. Thus incorporating 

more biological information such as subcellular localization and 

evolutionary information may enhance the performance of 

protein kinase identification and help to reveal the intrinsic 

mechanism among protein substrate and kinases. Besides, more 95 

databases of experimental verified phosphorylation sites 

deposited in other bioinformatic resources such as 

PhosphoSitePlus could also be incorporated to construct better 

prediction models as more training data usually leads to improved 

classification performance. Furthermore, our study only focuses 100 

on identifying protein kinase of phosphorylation in human, but 

the proposed method that depends on PPI and structure 

information is generally applicable to other organisms and other 

kinds of post-translational modifications.   
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PPI and structure features extracted by a two-step feature selection algorithm can significantly 

enhanced the performance of kinase identification  
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