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Essential Gene Identification and Drug Target 7 

Prioritization in Leishmania species† 8 

M.L. Stanly Paula, Amandeep Kaura, Ankit Geetea and M. Elizabeth Sobhiaa*,  9 

Leishmaniasis is one of the neglected tropical diseases (NTDs), mainly affecting impoverished 10 
communities and having varied ranges of pathogenicity according to the diverse spectrum of 11 
clinical manifestations. It is endemic in many countries and poses major challenges to healthcare 12 
systems in developing countries. Despite the fact that most of the current mono and combination 13 
therapies are found to be failures, clear perception of gene essentiality for parasite survival are 14 
now desideratum to identify potential biochemical targets through selection. Here we used 15 
metabolic network of L. major, we have performed a comprehensive set of in silico deletion 16 
mutants and systematically recognized a clearly defined set of essential proteins by combining 17 
several essentiality criteria. Here we summarize the efforts to prioritize potential drug targets up to 18 
a five-fold enrichment compared with a random selection. 19 

 20 

 21 
Introduction 22 

The genomic strategy on many microbial pathogens has 23 
been studied to identify effective novel drugs and their 24 
targets; however such exertions have not yet reached full 25 
fruition in the opportunistic pathogen like Leishmania that 26 
can attack immune-compromised patient.1 Leishmaniasis can 27 
be considered as endemic, sporadic or epidemic, with 28 
different clinical features according to genetic variability 29 
within the species.2 The study of Leishmania metabolism 30 
has gained importance due to the widespread emergence of 31 
drug resistance to the current chemotherapeutics and the lack 32 
of new anti leishmanials to substitute.3-5 To survive 33 
environmental hardship, Leishmania alter their metabolism 34 
to encompass the requirements of cellular proliferation.6 35 
This functional response facilitates the metabolic pathways 36 
to adapt to the changing genetic and environmental 37 
hardship.7 Diverse studies on Leishmania have exhibited 38 
resembling metabolic perturbations.8-10 The utility of 39 
systems approaches has become a key for other biological 40 
disciplines and predicting the naturally occurring genetic 41 
perturbations by growth conditions.10, 11 42 
 43 
In the present study, we used genome-scale reconstructed L. 44 
major metabolic pathway of Chavali et al (2008). It consists 45 
of gene-protein-reaction association (GPRs) constructed 46 
through extensive survey of literature and databases.  47 
a Department of Phamracoinformatics, National Institute of 48 

Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S 49 
Nagar, Mohali, India -160062. 50 
†Electronic supplementary information (ESI) available. See 51 
DOI: 10.1039/b000000x/. 52 
 53 

The L. major model contained 1112 reactions, 1101 54 
metabolites, and 560 genes.61 Church and co-workers 55 
illustrated that Minimization Of Metabolic Adjustment 56 
(MOMA) accurately identifies some lethal gene deletions, 57 
which are not identified by FBA.13, 51 We used MOMA 58 
approach to estimate metabolic phenotype by minimizing the 59 
Euclidean norm in flux space with respect to the wild type, 60 
calculated through quadratic programming (QP). This 61 
approach appears specifically appropriate for analyzing gene 62 
deletions and helps to understand metabolic networks for a 63 
wider range of perturbations.14 64 
Fundamental investigation to understand metabolic 65 
networks, leads to valuable insights into their function.15,16 66 
Hence, we performed lethality fraction analysis when all 67 
reactions corresponding to the metabolite are removed. This 68 
analysis based on network functions suggested that even the 69 
least connected nodes in genome scale metabolic networks 70 
are just as likely to be critical to the overall network 71 
functions as the most highly connected nodes.17,18 Additional 72 
outcome comprise the depiction of network robustness and 73 
potency of new drug targets in the vicinity of enzyme 74 
inhibitors.19 This strategy of systems analysis not only make 75 
a provision for semantic data integration, simulation, 76 
analysis, visualization and hypothesis generation but also it  77 
stimulates the research to discover novel drug targets in 78 
infectious neglected diseases.20 Here we have attempted to 79 
prioritize the drug targets by using several essentiality filters 80 
like druggability, assayablility, epistatic interactions, 81 
molecular weight, sequence and structural likeness with 82 
proteome and microbiome of human to arrange potential 83 
anti-leishmanial drug targets in the order of priority.  84 
We also carried out comparative analysis of binding pockets 85 
of highly prioritized targets of Leishmania with human 86 
highly similitude proteins in order to reckon their 87 
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characteristic feature for target binding.21 This may aid in  88 
the drug discovery process in analyzing the mutual dealings 89 
between distantly associated proteins. 90 
 91 
Results 92 

The L. major model (iAC560) containing 560 genes, 1112 93 
reactions, 1101 metabolites and 8 unique sub-cellular 94 
localizations were considered for the study. The present in 95 
silico gene knockdown studies included single and double 96 
gene knockouts, reaction deletions using MOMA. Each of 97 
the 560 genes in the core L. major amastigotes model was 98 
knocked out corresponding to 560 genes using MOMA, and 99 
the resulting relative growth rates were plotted in Fig. 1. 100 
Reaction deletion predictions in amastigotes obtained using 101 
MOMA are shown in the form of a bar plot in Fig. 2B. In 102 
order to quantify L. major prioritized drug targets, we 103 
encountered three primary challenges. The first involved the 104 
specific use of MOMA models. The second included the 105 
essentiality criteria and the third included the filtering targets 106 
through comparison with experimentally validated drug 107 
targets, sequence analysis, pocket volume and pocket depth 108 
analysis.  109 

 110 
Fig. 1 Gene knockout screen obtained using MOMA in double gene deletion 111 
analysis of amastigotes in Leishmania species. Color scale represents the 112 
biomass growth. 113 
 114 
Previous studies were also reported to demonstrate that the 115 
Leishmania model under diverse conditions by using FBA, 116 
predicted deletion mutant variability with high accuracy.25 117 
However, in the present study, Genes in iAC560 Leishmania 118 
model were ‘knocked-out’ simultaneously through double 119 
gene knockout predictions using MOMA (Fig. 1) to explain 120 
the dynamics of the metabolic network of Leishmania (Fig. 121 
2B).  122 
Consequently, those having harmful effects on the 123 
organism’s survival identified and divided as lethal, trivial 124 
lethal and non-lethal genes (Fig. 2C). The reaction deletion 125 
analysis helps in searching a metabolic network for reactions 126 
that are critical to the production of biomass. Each reaction 127 
can be classified as essential by substantially reducing flux 128 
through the biomass function. This was performed by 129 
removing each reaction in the network and measuring the 130 
predicted flux through the biomass function in case of single 131 
reaction deletion (Fig. 2B). The proteins are classified as 132 
lethal, trivial lethal (Fig. 2D) or non-lethal by observing the 133 
levels of biomass (Fig. 2C).  134 

 135 

 136 
 137 
 138 
Fig. 2 Workflow to define the localization of essential proteins in amastigote 139 
stage of Leishmania species. (A) Metabolic network of L. major consisting of 140 
560 genes and their corresponding 1112 reactions and 1101 metabolites. (B) 141 
Reaction deletion obtained using MOMA. (C) Through MOMA analysis 10% 142 
of the reactions are found to be lethal, 34% as trivial lethal (represented in (D)) 143 
and 56% as non lethal. Lethal gene deletions can be divided into lethal, trivial 144 
lethal or non-trivial lethal. Trivial lethal means that at least one of the genes 145 
involved in a single deletion is lethal. In non-trivial, both genes involved in the 146 
double deletions are not lethal individually as single gene deletions but are 147 
lethal in combination. (E) Distribution of the target proteins in different cellular 148 
compartments. The maximum number of proteins are localized in the cytosol i.e 149 
50.9%. 150 
 151 
Epistatic interactions in Leishmania species 152 
Leishmania can adapt to dynamically changing needs. These 153 
systems  can adapt to their environment, thereby creating an 154 
emergent behavior at different stages of Leishmania life 155 
cycle.  156 
 157 
The effects of single and double gene deletions are 158 
quantified on two phenotypic traits. A comparative analysis 159 
demonstrates that the maximum phenotypic growth rate 160 
averaged over amastigotes and promastigotes of Leishmania 161 
lacking deletions for double mutants are highly effective 162 
than that of single mutants. This indicates the positive 163 
epistatic effect. This characteristic likelihood contributed by 164 
genes is appropriate to a diversity of functional classes for 165 
comparing MOMA and FBA epistasis predictions to 166 
experimental flux data for Leishmania.  For this purpose, we 167 
used a standard MOMA model, which uses quantitative 168 
genetic theory for analyzing high order epistatic interactions 169 
for wild type and stage specific amastigotes of L. major. 170 
This model allowed us to verify the epistasis along with its 171 
different genetic components in L. major. Epistatic analysis 172 
also contributed meaningful support to the reaction deletion 173 
results. Our results suggest that the data on the rate of 174 
growth can be used as a substitution for the rate of total 175 
metabolism when we want to study the robust individual 176 
interactions or estimate the mean epistatic effect. It is 177 
essential to analyze both flux and growth in order to sense 178 
individual effects of epistasis.26Also, to figure out epistasis 179 
we used novel metric that is useful to give a clue how the 180 
two-mutation combine affects the growth rate. The results 181 
obtained where number of interactions, can be beneficial for 182 
the prediction of phenotype and for targeting interventions. 183 
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 185 
Table 1.  Prioritized essential targets of Leishmania Species. Gene deletion analysis provided essential targets for Leishmania Species. 186 
 187 
 188 
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LmjF05.0350 Trypanothione metabolism g X Χ Χ Χ  Χ Χ Χ Χ  Χ  
LmjF12.0530 Glycolysis/Gluconeogenesis g Χ Χ Χ Χ Χ X Χ Χ Χ Χ Χ  
LmjF36.1960 Fructose and mannose metabolism c X  Χ Χ Χ X Χ Χ Χ  Χ  
LmjF35.1190 Citrate Cycle (TCA) m Χ  Χ Χ   Χ Χ   Χ  
LmjF01.0500 Fatty acyl CoA synthetase 2 c Χ Χ Χ Χ Χ  Χ Χ Χ  Χ Χ 
LmjF32.1580 Fructose and mannose metabolism c Χ Χ Χ Χ Χ  Χ Χ Χ  Χ Χ 
LmjF01.0470 Fatty acyl CoA syntetase 1 c Χ Χ Χ Χ Χ  Χ Χ Χ  Χ Χ 
LmjF01.0490 Fatty Acid Degradation c Χ Χ Χ Χ Χ  Χ Χ Χ  Χ Χ 
LmjF12.0280 Urea Cycle c Χ Χ Χ Χ Χ  Χ Χ Χ  Χ Χ 
LmjF34.0110 Purine Metabolism c Χ  Χ Χ Χ  Χ Χ Χ Χ Χ  
LmjF31.2460 Glycerophospholipid metabolism c Χ  Χ    Χ Χ Χ  Χ  
LmjF28.1970 Pentose Phosphate Pathway c Χ  Χ    Χ Χ Χ  Χ  
LmjF35.4410 Amino acid permease e Χ Χ Χ Χ   Χ    Χ  
LmjF29.1960 Citrate Cycle (TCA) g Χ  Χ    Χ Χ Χ  Χ  
LmjF09.1040 Glycerophospholipid metabolism c Χ  Χ    Χ Χ Χ  Χ  
LmjF15.1140 Tryptophan Metabolism c Χ Χ Χ    Χ Χ   Χ  
LmjF15.1040 Tryparedoxin peroxidase g Χ Χ Χ    Χ Χ   Χ  
LmjF19.0710 Citrate Cycle (TCA) g Χ Χ Χ Χ Χ  Χ Χ Χ  Χ  
LmjF32.2950 Purine Metabolism n Χ  Χ Χ Χ  Χ Χ Χ  Χ  
LmjF34.0080 Pentose Phosphate Pathway c Χ  Χ Χ Χ  Χ Χ Χ  Χ  
LmjF24.0320 Citrate Cycle (TCA) m Χ  Χ    Χ   Χ Χ  
LmjF30.3120 Methionine Metabolism c Χ  Χ    Χ  Χ Χ Χ  
LmjF35.3870 Purine Metabolism n Χ Χ Χ  Χ  Χ Χ Χ  Χ Χ 
LmjF35.3340 Streptomycin Biosynthesis c Χ  Χ Χ Χ  Χ    Χ Χ 
LmjF32.1960 Glycerophospholipid metabolism m Χ Χ Χ Χ Χ  Χ    Χ Χ 
LmjF17.0360 Pyrimidine Metabolism c Χ  Χ Χ Χ  Χ    Χ Χ 
LmjF13.1620 Steroid Biosynthesis r Χ  Χ Χ Χ  Χ    Χ Χ 
LmjF36.2260 Purine Metabolism c Χ  Χ Χ Χ  Χ   Χ Χ  
LmjF31.2470 Pyrimidine Metabolism c Χ  Χ  Χ  Χ   Χ Χ Χ 
LmjF34.1090 Glycerophospholipid metabolism g Χ Χ Χ Χ Χ  Χ  Χ   Χ 
LmjF06.0460 Nicotinate and Nicotinamide Metabolism c Χ  Χ  Χ  Χ Χ    Χ 
LmjF07.0090 Methionine Metabolism c Χ  Χ Χ Χ  Χ   Χ   
LmjF30.3080 Glycine, serine and threonine metabolism c Χ  Χ    Χ    Χ  
LmjF36.0060 Pentose and Glucuronate Interconversions g Χ  Χ    Χ    Χ  
LmjF28.1970 Pentose Phosphate Pathway c Χ  Χ    Χ  Χ  Χ  
LmjF34.2110 Glycerophospholipid metabolism m Χ Χ Χ    Χ    Χ  
LmjF34.3780 Fructose and mannose metabolism g Χ  Χ    Χ    Χ  
LmjF26.2480 Glycerophospholipid metabolism c Χ  Χ    Χ    Χ  
LmjF07.0200 Glycerophospholipid metabolism m Χ Χ Χ    Χ    Χ  
LmjF14.1360 Streptomycin Biosynthesis c Χ Χ Χ Χ Χ  Χ    Χ  
LmjF35.1480 Arginine and Proline Metabolism g Χ    Χ  Χ Χ Χ  Χ  
LmjF33.2720 Fatty Acid Biosynthesis m Χ  Χ Χ Χ  Χ  Χ  Χ  
LmjF28.0890 Purine Metabolism n Χ  Χ Χ Χ  Χ  Χ  Χ  
LmjF04.0580 Methionine Metabolism c Χ Χ Χ Χ Χ  Χ  Χ  Χ  
LmjF26.2700 Pentose Phosphate Pathway c X Χ Χ  Χ Χ Χ    Χ Χ 
LmjF26.1620 Glycerophospholipid metabolism c Χ  Χ  Χ  Χ    Χ Χ 
LmjF30.3600 Oxidative phosphorylation m Χ  Χ  Χ  Χ  Χ  Χ Χ 
LmjF21.1770 Oxidative phosphorylation m Χ  Χ  Χ  Χ  Χ  Χ Χ 
LmjF14.1200 Glycerophospholipid metabolism c Χ Χ Χ  Χ  Χ    Χ Χ 
LmjF21.1340 Oxidative phosphorylation a Χ  Χ  Χ  Χ    Χ Χ 
LmjF36.3010 Glutathione Metabolism c Χ  Χ  Χ  Χ  Χ  Χ Χ 
LmjF31.2970 Fatty Acid Synthesis m Χ Χ Χ Χ Χ  Χ      
LmjF32.2870 Glycerophospholipid metabolism c Χ   Χ Χ  Χ    Χ Χ 
LmjF35.1180 Citrate Cycle (TCA) g Χ      Χ Χ     
LmjF23.0110 Fructose and mannose metabolism c Χ Χ Χ  Χ  Χ  Χ  Χ  
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It was found that epistasis relative to metabolic fluxes can be 189 
robustly detected independent of the metric used. Here we 190 
used multiplicative model and the conclusions drawn were 191 
tried out to be relative to various metrics.27 These diverse 192 
classes of epistasis denote various ways in which the 193 
collective effect of two gene deletions may assume 194 
expectations and can indicate various types of fundamental 195 
issues that underlie functional relationships between 196 
genes.24,28 The analysis of growth and flux phenotypes 197 
makes the classification of interactions more complex due to 198 
the fact that genetic perturbation can cause an increase or 199 
decrease in fluxes, while the growth rate only decreases.29 200 
This demonstrates that interactions related to metabolic flux 201 
phenotypes can lead to deep intuitive understanding of 202 
various features of the functional aspects between genes. 203 
Metabolic systems approaches have provided various target 204 
genes and the proteins encoded by them. Some of these have 205 
been validated as potential targets against amastigotes of 206 
Leishmania as given in the literature, however, our study 207 
presumably provides a prioritized list of target genes and 208 
proteins for developing anti-leishmanial drugs (Table. 1).  209 
The genes, enzymes, reactions related to this study have 210 
been provided in the (Supplementary information 1).  These 211 
targets are subjected to prioritization by using various 212 
essentiality criteria’s, which is helpful for the researchers in 213 
drug discovery process of neglected tropical diseases (Table. 214 
1). 215 
 216 
Criteria to prioritize L. major -specific drug targets 217 
The drug targets obtained from the study were prioritized 218 
using the following essentiality criteria. These include (1) 219 
the targets should represent growth-essential genes and (2) 220 
they must possess experimental crystal structure information 221 
(3) the sequence of the targets should not be homologous to 222 
human proteins (4) there should be information on biological 223 
assays.  224 
 225 
Druggability, Assayablility, Essentiality, Molecular 226 
weight 227 
In addition to the above filters, we also considered the 228 
other features such as druggability range, assayablility, 229 
essentiality and molecular weight of the targets and the 230 
features were given different weights. The scores for 231 
parameters such as druggability and assayablility were set 232 
to an optimal value of +35. The criterion of essentiality 233 
was regarded significant in the study and therefore it was 234 
given a score of +50. The criterion of molecular weight 235 
bears the score of +20 depending on the weight of the 236 
polypeptide of the target gene. 237 
 238 
Presence of crystal structure 239 
The crystal structures assist in rational drug design by 240 
providing essential practical assets in high throughput 241 
screening for lead generation and optimization studies. Both, 242 
Protein Data Bank (PDB) (http://www.rcsb.org) and 243 
ModBase database (http://modbase.compbio.ucsf.edu) were 244 
manually searched for the presence of protein crystal 245 
structures of Leishmania as obtained from the above study. 246 
The scores for the availability of crystal structure were kept 247 
as high as +50 because it confers mainly pragmatic 248 
advantages, while identifying a new drug target.  249 
 250 
 251 

Probable binding site analysis for the 10 prioritized 252 
targets 253 
Binding sites and active sites are often associated with 254 
structural features of receptors/proteins. The study of 255 
proteins binding pocked volume and its electrochemical 256 
properties may aid in the rational design of novel 257 
compounds. In this study, we analyzed the size of the 258 
binding pockets of the all prioritized targets of Leishmania 259 
and human homologs. This provides a preliminary 260 
explanation for the large divergences in the size of binding 261 
pockets (Fig. 3). Some of these prioritized targets are present 262 
only in Leishmania. For example, Trypanothione reductase 263 
(TR) is found exclusively in Leishmania and can be targeted 264 
for obtaining anti-leishmanial (Table 1) agents. 265 
 266 

 267 
Fig. 3 Comparative representation of probable binding pocket volume analysis 268 
for the ten targets.  269 
 270 
Structural information on the prioritized targets 271 
 272 
Applying all the essentiality criteria yielded four crystal 273 
structures out of the top ten prioritized proteins. The four 274 
crystal structures were obtained from Protein Data Bank 275 
(PDB) and were subjected to further analysis of probable 276 
binding pocket volume analysis. The four targets are 277 
Trypanothione reductase (TR), Nucleoside diphosphate 278 
kinase B (NDKb), Glucose-6-phosphate isomerase (G6PI) 279 
and Phosphomannomutase (PMM).  280 
 281 
Further, the corresponding human proteins were obtained 282 
from the PDB and the targets from the both Leishmania and 283 
human were analyzed using comparative Molecular 284 
Electrostatic Potential (MEP) calculation and cavity-depth 285 
(CD) analysis. 286 
 287 
Trypanothione reductase(TR) 288 
 289 
Trypanothione reductase (TR), an NADPH-dependent 290 
disulfide oxidoreductase (Fig. 4) is identified as a unique 291 
viable chemotherapeutic drug target for Leishmania. 292 
Trypanothione reductase (TR) is acting as a main 293 
detoxificant of toxic radicals released during 294 
dexoyribonucleotide and hydroperoxide synthesis.52-54 295 
Various computational approaches were implemented to 296 
identify prospective ligands and High-throughput screening 297 
lead the identification of novel inhibitors for Trypanothione 298 
reductase.55, 56 299 
 300 
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 301 
 302 

Fig. 4 Trypanothione and glutathione redox system  303 
 304 
 Until now six crystal structures (PDB ID: 4APN, 4ADW, 305 
2YAU, 2X50, 2JK6, 2W0H) are published for Leishmania 306 
infantum trypanothione reductase.  307 
 308 
BioLip61 indicated that residues viz., SER14, LEU17, GLU18, 309 
TRP21, VAL53, VAL58, SER109, TRY110, MET113, 310 
SER394, SER395, PHE396, THR397, LEU399, HIS461 and 311 
GLU467 are presumably present in the active site.   312 

 313 
Fig. 5 Active site at dimeric interface. The ligand (JVO)is shown in the dimeric 314 
interface. 315 
 316 
Paola B et al also reported the binding of the ligand in the 317 
dimeric interface and showed that CYS52 and CYS57 are 318 
essential residues for the overall catalysis. Numerous gold 319 
containing compounds were also evaluated by Colotti G et 320 
al. Repurposing of anti-arthritic drug aurinofin, a gold 321 
containing ligand was clinically established for thiol and 322 
selenol groups of proteins like trypanothione reductase.57-60 323 
A comparative analysis of trypanothione reductase TR was 324 
also carried out with glutathione reductase, a well known 325 
target which is present in human which is also a NADPH-326 
dependent disulfide oxidoreductase but they are mutually 327 
exclusive in terms of its substrates glutathione and its analog 328 
trypanothione. Comparative representation of probable 329 
binding pocket volume analysis of trypanothione reductase 330 
and glutathione reductase showed huge difference between 331 
pocket volumes showing its rationality to define as a drug 332 
target (Fig. 3). The blast results also show there is 35% 333 

sequence identity with glutathione reductase, indicating that 334 
trypanothione reductase (TR) acts is specific target for 335 
Leishmania.  336 
 337 
Nucleoside diphosphate kinase B (NDKb) 338 
 339 
Nucleoside diphosphate kinase B (NDKb) was also used for 340 
detailed comparative study of the probable binding site as its 341 
crystal structure for both human and Leishmania are 342 
available. Nucleoside triphosphate is a precursor for DNA 343 
and RNA synthesis. NDKb enzyme is responsible for 344 
nucleoside triphosphates synthesis, which is used, in various 345 
cellular processes by Leishmania species. NDKb is mainly 346 
involved in transfer of γ phosphate from nucleoside 347 
triphosphates to nucleoside diphosphates. The whole 348 
reaction is depicted as follows: 349 
 350 

TP2N + NDK  

DP2N +P-NDK  DP1N + P-NDK  TP1N + NDK

↔

↔↔

 

351 

 352 
Its role in purine-salvage pathway makes this target more 353 
attractive for drug discovery because protozoa unable to 354 
synthesize purines by de novo mechanism and depend upon 355 
host for survival.  356 

 357 
 358 
Fig. 6 Nucleoside diphosphate kinase B (NDKb) binding site (A) Human 359 
Nucleoside diphosphate kinase B binding site. This figure indicates the 360 
probable binding site of NDKB with the important residues (B) Leishmania 361 
Nucleoside diphosphate kinase B binding site. Green and yellow pocket 362 
together form a binding pocket, which are accordance with experimental 363 
results. 364 
 365 
Probable binding site analysis of NDKb reveals that the active 366 
site of human (with volume 18Å3) is smaller than that of site 367 
of Leishmania with volume 30Å3) (Fig. 6).30 SiteID reported 368 
the presence of 8 residues (Tyr52, Leu64, Tyr67, Arg68, 369 
Arg105, Lys12, His118 and Gly119) in human NDKb (PDB 370 
ID: 1NUE) active site, in which the presence of His118 is in 371 
accordance with the experimental results of Morera et 372 
al..31LeishmaniaNDKb (PDB ID: 3NGS) active site showed 373 
the presence of Asp13, Leu63, Lys11, Tyr66, Gly112, 374 
Asn114, Arg87, Thr93, and Arg104 in this presence of Lys11, 375 
Arg87, Thr93, Arg104, Leu63, Tyr66, Gly112 and Asn114 In 376 
the binding.32 377 
Further MEP and cavity-depth analysis were performed on 378 
human and Leishmania NDKb to differentiate the active site. 379 
Superimposing both Leishmania NDKb and human NDKb 380 
provided RMSD deviation of 0.94 A.  Cavity depth analysis 381 
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indicates that Leishmania NDKb binding site cavity is slightly 382 
deep and wider than the human NDKb showing the 15.90 Å  383 

 384 
 385 
Fig. 7 Nucleoside diphosphate kinase (NDKb) cavity depth (Fig. A and  B) and 386 
MEP analysis (Fig. C and D) (A) Human Nucleoside diphosphate kinase cavity 387 
depth. Cavity is narrow and long than the Leishmania NDKb (B) Leishmania 388 
Nucleoside diphosphate kinase B cavity depth. Cavity is wider than human 389 
NDKb (C) Human Nucleoside diphosphate kinase B MEP analysis. Colour 390 
coding indicates that this has low electronegative potential than Leishmania 391 
NDKb (D) Leishmania Nucleoside diphosphate kinase MEP analysis. Deep 392 
purple colour indicates more electronegative potential of the Leishmania NDKb 393 
and difference from human NDKb cavity. 394 
 395 
distance between LYS52 –GLY118 residues in Leishmania 396 
NDKb (Fig. 7A) and 14.00Å in between ILE52 - GLY118 in 397 
case of human NDKb as and (Fig. 7B). The MEP analysis 398 
report is shown corresponding (Fig. 7C and 7D).  399 
 400 
These results show that human active site has less 401 
electronegative potential than that of Leishmania, and there 402 
are significant differences in these two structures proven as a 403 
valuable step toward the understanding of specific ligand 404 
design.  405 
 406 
Glucose-6-phosphate isomerase (G6PI) and 407 
Phosphomannomutase (PMM) active site analysis details are 408 
given in (Supplementary information 2). 409 
 410 
Relation to a close homolog 411 
Targets are sorted out and ranked or prioritized on the basis 412 
of high-level sequence homology to its host or any other 413 
homolog. Eventually, intended pathogen specific drug target 414 
may be sought out which is having a remedial influence and 415 
without undesirable secondary effect on host. 416 
One of our goals was to prioritize L. major-specific targets. 417 
Thus, positive high score of +25 was imputed to targets, 418 
which are absent in the human host and highly conserved 419 
across the Leishmania species in order to subside 420 
interactions in the host. Homologs to humans were penalized 421 
by because they may involve in undesirable interactions with 422 
proteins of which may be toxic in human.  423 
 424 
Discussion 425 

The biggest factor resulting in the diversity of species and 426 
their genomes is natural selection, parasites that are better 427 
suited to their changing environment would have different 428 

characteristics and will favorably adapt to that change and as 429 
a result. Such changes are favored by the environment and 430 
will become more frequent due to the increased chances of 431 
the organisms survival. Out of the various unicellular 432 
eukaryotes known, L. major is unique in its evolutionary 433 
development and success rate of survival may be driven by a 434 
genetic abnormality.12 435 
The laboratory conditions and experiments have induced 436 
various resistance mechanisms, which are increasingly being 437 
understood by DNA microarrays and proteomics studies.33 438 
The current challenge is to get a prioritized drug targets by 439 
systematically deleting genes and reactions involved with 440 
relative to the biomass (i.e. observable phenotypes) in a 441 
stage specific genome-scale metabolic model of L. major 442 
and this information can be useful in the endeavour for 443 
tracking resistance. The metabolic reactions distinctively 444 
expressed in stage specific amastigote of L. major are 445 
catalyzed by enolase, alcohol dehydrogenase, ATP synthase 446 
and hexokinase. We altered the boundary states of these 447 
reactions to alter the genome scale metabolic model in to 448 
amastigotes stage. Based on the computational algorithms 449 
such as MOMA and FBA, we obtained genes that affected 450 
the growth rate to the maximum extent in case of both single 451 
and double gene deletions. These genes are considered to be 452 
essential for the survival of the organism as observed by the 453 
knock out studies and thus these can be potential targets 454 
against the infection. By performing FBA, we identified  455 
10% of reaction knockouts in the network as lethal and 12% 456 
as trivial lethal, and proposed 78% as non lethal reactions. In 457 
case of MOMA the results were slightly different such as 458 
10% were found as lethal, 34% as trivial lethal and 56% as 459 
non-lethal. In case of amastigotes the results were nearly 460 
similar to that obtained for wild type, with 10% genes as 461 
lethal and 12% as trivial lethal, and proposed 79% as non-462 
lethal using FBA. Whereas, MOMA provided 10% as lethal, 463 
34% as trivial lethal and 56% as non lethal in amastigotes 464 
showing that the metabolic pathway has undergone some 465 
adjustment by taking another path for completion and thus 466 
providing other essential targets. These essential targets are 467 
further subjected to different protein essentiality criteria with 468 
scoring. The study of subcellular localization of proteins is 469 
crucial for genome annotation, protein function prediction 470 
and drug discovery.  471 
The knowledge of protein localization helps in 472 
characterizing the cellular function of hypothetical and 473 
newly discovered proteins. Subcellular localization 474 
determines the environments in which proteins operate and 475 
influences protein function by regulating access to and 476 
availability of all types of molecular interaction partners. We 477 
observed that the proteins were present in different 478 
organelles of the parasite. Some were present integral to 479 
membrane or in mitochondria, cytosol, glycosome, nucleus, 480 
flagellum, or other complexes. The (Fig. 2E) shows the 481 
percentage wise distribution of various proteins in different 482 
cellular compartments with maximum number of proteins 483 
present in the cytosol. 484 
These highly prioritized targets are subjected to BLAST 485 
against the entire human proteome of NCBI to get homology 486 
information and to filter out the proteins with high similarity 487 
(Fig.8D). 488 
 489 
We performed active site analysis on top 10 prioritized 490 
targets. This reveals the similarity between the Leishmania 491 
and human proteins. This study reveals that there are small 492 
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differences between the homologues but if we consider 493 
cavity depth and electrostatic potential of active site it can 494 
give clues for better design drugs. 495 

 496 
Fig. 8 Work flow to get prioritized drug target from genome scale metabolic 497 
network. (A) Metabolic network of L.major consisting of 560 genes and their 498 
corresponding 1112 reactions and 1101 metabolites. (B) Analyzing gene 499 
deletions and their corresponding reactions through MOMA and FBA (C) 500 
Filtering through several essentiality criteria (D) Sequence and structure level 501 
analysis (E) Prioritized drug targets for L.major. 502 
 503 
All these promising drug targets are compared with an 504 
experimentally testable hypothesis. The metabolic network 505 
was validated with experimental knockout data from related 506 
Leishmania and Trypanosoma species. The findings have 507 
enabled us to discover more about the organism’s natural 508 
variation and genetic structure, which is vital for developing 509 
effective treatments. These findings have important 510 
implications and help in understanding the parasitic 511 
variations and the genetic basis of disease. Dispensable 512 
genes upon various analysis might be important, but under 513 
conditions not yet examined in the laboratory. 514 
 515 
Materials and Methods 516 
We used a metabolic model of L. major12 in order to get 517 
essential drug targets. Quadratic programming was applied 518 
to first find a feasible flux distribution. For all predictions, 519 
Minimization Of Metabolic Adjustment (MOMA) was 520 
employed to simulate the behavior of gene knockouts and 521 
their corresponding reactions that are essential for the 522 
production of biomass in the proliferating cells. During the 523 
knockdown process few genes reduced the maximal biomass 524 
production rate in >1 and those genes were considered to be 525 
growth supporting. The majority of the knockouts (95%) 526 
results in either no reduction of growth on its deletion were 527 
identified in the obtained outcome. The commercial CPLEX 528 
solver through the TOMLAB® optimization environment 529 
was utilized for resolving linear programming (LP), 530 
quadratic programming (QP), and other problems on an Intel 531 
Pentium 4 processor operating on Windows 7. 532 
 533 
FBA It maximizes an objective function under different 534 
constraints using LP. In this study, we seek for a steady state 535 
flux distribution (v) that gives rise to the optimization of the 536 
phenotype under mass balance, flux capacity and 537 
thermodynamic constraints. 34-37 The LP problem is 538 
exemplified as follows: 539 

maxmin

,0.

,max

vvv

vS

v
T

f

≤≤

=  540 

 541 
Where S is an n × m sparce matrix which could incorporate 542 
experimental data including number of metabolites denoted 543 
by “n”, and number of reactions denoted by “m”, f is an 544 
objective function maximization of biomass in the metabolic 545 
networking which is indicated by a reaction that deplete 546 
biomass constituents. Thermodynamic constraints (T) that 547 
restrain the flow of direction and capacity constraints are 548 
obligated by setting vmin and vmax. Whereas vmin is denoted as 549 
lower bound and vmax is denoted as lower bound and vmax as 550 
upper bound on flux distribution. 551 
 552 
MOMA It uses quadratic programming to minimize the sum 553 
of squares difference between wild type and mutant flux 554 
distribution. It solves by minimizing Euclidean distance 555 
metric from the wild type flux distribution commonly not 556 
obtained by FBA. 13 MOMA tests the hypothesis that a gene 557 
deletion causes minimal flux redistribution with respect to 558 
the wild type metabolism. 559 
MOMA problem is exemplified as follows 560 
 561 
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 563 
Whereas w denoted as wild type flux distribution, and set of 564 
reactions related with the knock out genes are denoted as A. 565 
MOMA searches for a point in the null space of a mutant 566 
metabolic network with the shortest distance from the initial 567 
flux vector of a wild type metabolic network. This objective 568 
function can be formalized as a standard quadratic 569 
programming (QP) problem under a set of linear constraints. 570 
If the null space of a mutant network is not empty, a solution 571 
that minimizes the distance will always exist. MOMA can be 572 
used for effectively calculating the significant phenotypic 573 
behavior of several metabolic networks after a gene 574 
deletion13, 38 providing an alternative perspective for 575 
understanding metabolic systems under various 576 
perturbations.   577 
 578 
Gene deletion analysis 579 
We have performed gene deletion mutants for all 580 
dispensable genes of the L. major (iAC560) and analysis 581 
was carried out using COBRA Toolbox 2.0.4. The gene was 582 
assumed to be essential, if the corresponding gene has 583 
highest effect (>90% effect on biomass) on the growth. The 584 
results obtained from the in silico experiments were 585 
compared with previously published experimental results. 586 
Single and Double gene deletions were helpful in the 587 
identification of genes that are essential for growth of L. 588 
major. Knockdown experiment was performed for individual 589 
genes in the metabolic model and by filtering the obtained 590 
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outcome the genes were classified into lethal or essential 591 
with respect to amastigotes of Leishmania.  592 
We used MOMA to observe single gene and double gene 593 
deletion on the basis of biomass components; and the results 594 
were compared. Transport and exchange reactions reported 595 
in the literature or in databases were included in the model.39 596 
The biomass calculation provides a range of metabolites that 597 
are essential to support growth of the metabolic 598 
system.36,40,41 599 
 600 
Epistasis 601 
Epistasis happens when the growth rate is being affected due 602 
to mutation at one point of a locus determined by the 603 
occurrence of mutations in other loci of the metabolic 604 
network.42Since, epistasis illustrates genome wide genetic 605 
interactions using gene knockouts.43 It provides additional 606 
insights into the significant portion of antibiotic resistant 607 
mutations that are research hotspots. Epistasis in the usual 608 
sense defines the concept of statistical interaction.13, 609 
44Precisely; the quantitative genetic concept of epistasis may 610 
be epitomized for two loci by the linear model. 611 
 612 

2121212122221111 zzixxixxixxixdxazdxay dddaadaa ++++++++= µ613 

 614 
Where xi and zi are dummy variables and y is a quantitative 615 
phenotype related to the underlying stage specific genotype 616 
at locus i. The coefficients µ, a1, d1, a2 and d2 denote genetic 617 
parameters that may be estimated corresponding to the mean 618 
effect and additive and dominance effects at the two loci; iaa, 619 
ida, ida and iddcorrespond to epistatic interaction effects. Lack 620 
of epistasis in this model implies that all interaction 621 
coefficients are zero.  622 
 623 
Drug Target Identification 624 
Weight selection for metabolic and L.major-specific 625 
target lists 626 
Essentiality data 627 
In this study, simulations were carried out using COBRA 628 
Toolbox 2.0.4. The genes were assumed to be essential, if 629 
the corresponding gene has highest effect (>90% effect on 630 
biomass) on the growth. The results obtained from the in 631 
silico experiments were compared with previously published 632 
experimental results. We used MOMA to observe gene 633 
knockout on the basis of biomass components.39 The 634 
biomass calculation provides a range of metabolites that are 635 
essential to support growth of the metabolic system.36, 40, 41 636 
Genome wide gene knockout or knockdown studies can be 637 
used to predict genes that are essential for growth. This 638 
criterion has been considered as vital in our studies and 639 
weighed heavily (+50 if essential).  640 
 641 
Druggability 642 
In this work for estimating druggability we used DoGSite45, 643 
a structure-based technique to predict druggability and 644 
protein active sites based on a Difference of Gaussian (DoG) 645 
approach which originates from image processing.  For each 646 
query a druggability score between zero and one is returned. 647 
The higher the score the more druggable the pocket is 648 
estimated to be. Proteins that scored >0.8 was considered as 649 
significant. This criterion allows users to search for pathogen 650 
genes that may be considered as drug targets. A heavy 651 
weight, +35, was chosen for the “druggablity” feature in the 652 
metabolic list. This weight was chosen because the chances 653 
of finding a known “druggable” domain to be much higher 654 

in proteins was expected, which could be mapped to known 655 
metabolic pathways. In the L. major specific list, quiet a 656 
large number of the prioritized targets were in the 657 
anticipated druggability limits.  658 
 659 
Assayability 660 
To select targets that are most amenable to high throughput 661 
screeningfor a suitable lead compound, biochemical and/or 662 
cellular assays for growth inhibition or lethality, binding and 663 
function are required. Target is considered assayable if an 664 
enzyme is included in Sigma-Aldrich's collection of assays, 665 
or if it has been assayed according to the BRENDA 666 
database. Establishing a meaningful assay depends on target 667 
class and the information on the target and it should be 668 
more heavily weighted relative to the other measures. 669 
 Here we present +35 for new target tracking. 670 
 671 
Epistasis 672 
The percentage of modulated genes and their interactions 673 
should be considered significant to understand the regulation 674 
of gene expression in Leishmania occuring at different 675 
levels, which could contribute to disease tropism.46 676 
Comparative stage specific epistatic analysis in L. major is 677 
the first to date and may lead to understand genome-wide 678 
studies of genetic interactions using gene 679 
knockouts.  Through this network approach we may uncover 680 
hidden variation in genome-wide association and thus 681 
helping to understand the disease mechanisms. Additionally, 682 
the proposed metabolic approach holds a promise for 683 
characterizing the gene-gene interaction landscape broadly 684 
in epistatic studies. We provided +25 for epistatic 685 
interactions. 686 
 687 
Structure  688 
Crystal structures mainly considered of practical 689 
applications that would not be the primary consideration to 690 
determine a new drug target. The weights for these features 691 
were kept low at +7 for have a crystal structure from PDB 692 
(http://www.rcsb.org)) and +5 for having PBD structure 693 
from ModBase database (http://modbase.compbio.ucsf.edu). 694 
 695 
Molecular weight 696 
Often in a drug discovery program, low molecular weight 697 
protein targets are considered as emerging targets for the 698 
design of novel therapeutic agents in drug discovery and this 699 
molecular weight parameter may in part explain oral 700 
bioavailability. It is generally regarded as too difficult to be 701 
targeted. We provided +20 for the molecular weight of <100 702 
kilo Dalton.  703 
 704 
Sequence homology with human proteome and human gut 705 
microbiota 706 
The complete human proteome from NCBI and BLAST 707 
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to filter out 708 
the proteins, which hold homology of Hits accompanied 709 
with the identity of ≥35%, e-value of ≤0.0001 with ≥75% 710 
sequence coverage. Here we have chosen a heavy weight, 711 
+25 for the filtered out proteins. Microbes in human gut and 712 
oral flora are deeming to be influencing the immunological 713 
and physicochemical properties of the host and have a 714 
significant role in its development. To compare the predicted 715 
proteins, a word size of 3 with CD-HIT similarity of 60% 716 
was used against the complete human gut microbiota. 717 
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Binding site similarity analysis 718 

Out of the filtered 54 proteins, 33 proteins possess 719 
considerable extent of structural similarity at the binding site 720 
level with human proteome, while on the contrary 21 721 
proteins are not having identical binding site with human 722 
proteome. Analysis of binding site identity with human 723 
proteome, given us interesting points to note that several 724 
targets that we listed are already experimentally validated 725 
drug targets. 726 

Binding site analysis 727 

Identification of the pocket characteristics like occluded 728 
cavities and surface pockets is helpful in comparative 729 
analyses of protein binding sites thereby use in target 730 
assessment and validation. Normally, 1-2 mouth openings 731 
are observed at binding sites. These pockets differ broadly in 732 
size, the majority within the range of 102-103 Å. Most 733 
commonly, the biggest pocket/cavity in the protein is the 734 
active site; however there are a numerous edifying 735 
exceptions.47 For this study, structures of highly scored from 736 
previous studies were collected from Protein Data Bank 737 
(PDB) and/or modbase.48,49 To identify the difference 738 
between the active site of highly prioritized drug targets in 739 
human and Leishmania, we performed probable binding 740 
sites, Molecular Electrostatic Potential (MEP) and Cavity-741 
Depth (CD) analysis using SiteID and MOLCAD module of 742 
SYBYL7.150 on a Silicon Graphics tezro workstation. SiteID 743 
module is used to determine the size and location of the 744 
probable binding pockets in proteins. It identifies the pockets 745 
using two methods: Grid Method and Solvation Method. 746 
Grid method uses flood-fill algorithm, which generates 747 
numerous water spheres to form clusters that can be the 748 
probable active site inside the protein. This method was used 749 
to determine the probable binding sites of proteins that are 750 
present in Leishmania and human. Cavity depth analysis 751 
indicates the depth of the cavity from the surface. Molecular 752 
surface of all protein structures were generated by 753 
MOLCAD module of SYBYL7.1 and cavity depth analysis 754 
was performed on highly scored proteins.48 755 
Molecular electrostatic potential of protein surface can guide 756 
to identify the interaction site of receptor with ligand. 757 
Gasteiger-Hückel charges were applied to the proteins. The 758 
targets that are well scored from previous studies proteins 759 
were subjected to Molecular Electrostatic Potential (MEP) 760 
analysis and cavity depth analysis to get highly prioritized 761 
drug targets for Leishmania species48 (Supplementary 762 
information 2). 763 
 764 
Literature dependent target validation 765 

The list or predicted drug targets are substantiated based on 766 
underlying functional evidence obtained from the review of 767 
literature.  By using manual curation technique and data 768 
mining made us to identify the literature based validated 769 
drug targets in L. major. Furthermore with literature survey 770 
we validated the proteins are accounted to be essential or 771 
non-essential in terms of Leishmania growth and survival. 772 

Conclusions 773 

The clinical manifestations of leishmaniasis can be caused 774 
by several species of parasites belonging to the genus 775 
Leishmania. Worldwide, there are 12 million people 776 

currently infected and 350 million people at risk of 777 
leishmaniasis, but the existing treatment options mostly rely 778 
on ancient pentavalentantimonials, which have many 779 
limitations including systemic toxicity in humans and drug 780 
resistance in parasites. Usually during the infectious life 781 
cycle, Leishmania interchange among the insect 782 
promastigote stage and the vertebrate aflagellateamastigote 783 
stage that proliferates within infected host macrophages 784 
provoking the pathology of the disease. Our research focuses 785 
on discovering new stage specific drug targets, which is 786 
significant for contemporary drug discovery of neglected 787 
tropical diseases, like leishmaniasis. We applied several 788 
essentiality criteria to prioritize the drug target lists for L. 789 
major, the causative agent of leishmaniasis. With our results, 790 
researchers are be able to use the lists of highly prioritized 791 
drug targets, those can be further carry out experimentally. 792 
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