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Abstract 18 

Edible fungi of the Monascus species have been used as traditional Chinese 19 

medicine in eastern Asia for several centuries. Monascus-fermented products possess 20 

a number of functional secondary metabolites, including the anti-inflammatory 21 

pigments monascin and ankaflavin. Monascin has been shown to prevent or 22 

ameliorate several conditions, including hypercholesterolemia, hyperlipidemia, 23 

diabetes, and obesity. Recently, monascin has been shown to improve hyperglycemia, 24 

attenuate oxidative stress, inhibit insulin resistance, and suppress inflammatory 25 

cytokines production. In our recent study, we have found that monascin is a 26 

peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist. This 27 

PPARgamma agonist activity had been investigated and exerted benefits for inhibition 28 

of inflammation in methylglyoxal (MG)-treated rats, prevention of pancreas 29 

impairment caused advanced glycation endproducts (AGEs), promotion of insulin 30 

expression in vivo and in vitro, and attenuated carboxymethyllysine (CML)-induced 31 

hepatic stella cells (HSCs) activation in past several years. Moreover, our studies also 32 

demonstrated that monascin also activated nuclear factor-erythroid 2-related factor 2 33 

(Nrf2) in pancreatic RIN-m5F cell line thereby invading methylglyoxal-resulted in 34 

pancreas dysfunction. In this review, we focus on the chemo-preventive properties of 35 

monascin against metabolic syndrome through PPARgamma and Nrf2 pathways. 36 
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1. Introduction 47 

Monascus was classified and named in 1884 by the French scientist van 48 

Tieghem.
1
 The genus Monascus belongs to the family Monascaceae, order Eurotiales, 49 

class Ascomycetes, phylum Ascomycota, and kingdom Fungi. Thus far, 58 Monascus 50 

strains have been deposited in the American Type Culture Collection; however, most 51 

strains belong to only 3 species: Monascus pilosus, Monascus purpureus, and 52 

Monascus ruber.
2
 Monascus-fermented products, especially those produced by 53 

solid-state rice fermentation, have been used as food colorants and dietary material for 54 

more than 1,000 years. Monascus-fermented rice, also known as red mold rice, is a 55 

common foodstuff and traditional health remedy in Asian countries. Red mold rice, 56 

largely produced by M. purpureus contains various chemical components, some of 57 

which have been purified and identified, including monascolins,
3,4

 γ-aminobutyric 58 

acid,
5
 pigments such as monascin and ankaflavin,

6
 and antioxidant such as dimerumic 59 

acid.
7
 It was reported that monascin is the major constituent of the azaphilonoid 60 

compound. The structure of monascin is shown in Fig. 1a, and which has been 61 

recently reported to be a PPARgamma agonist in our study (Fig. 1b).
8
 It is suggests 62 

that monascin plays a role for PPARgamma activation. 63 

Hyperglycemia is associated with protein glycation; advanced glycation end 64 

products (AGEs) are generated by the nonenzymatic interaction between 65 
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carbohydrates and proteins. AGEs have properties to generate free radicals and 66 

undergo autoxidation to generate other reactive intermediates, thereby resulting in the 67 

development of diabetes.
9
 Methylglyoxal (MG) is a highly reactive dicarbonyl 68 

metabolite produced during glucose metabolism
10
 and is a major precursor of AGEs 69 

involved in the pathogenesis of diabetes and inflammation. Studies suggest that AGEs 70 

and MG can generate large amounts of proinflammatory cytokines through receptor 71 

for AGEs (RAGE) activation, and these results are related to the modulation of 72 

inflammatory molecules through oxidative stress.
10

 73 

PPARgamma ligands are reported to activate the phosphatidylinositol 74 

3-kinase/Akt pathway, which can elevate insulin sensitivity to downregulate blood 75 

glucose.
11

 Moreover, PPARgamma ligands have been reported to exert 76 

anti-inflammatory activity by inhibiting inflammatory gene expression while 77 

PPARgamma agonists bind to PPARs.
12

 Many phytochemicals, including auraptene, 78 

resveratrol, 6-shogaol, and isoprenoid, are considered to function as PPARgamma 79 

agonists and demonstrate anti-inflammatory activity by interfering with nuclear 80 

factor-kappa B (NFκB) signaling.
13

 Several flavonoids, such as rutin and quercetin, 81 

elevate PPARgamma mRNA expression, which attenuates inflammation and insulin 82 

resistance.
14,15

 The transcriptional activity of PPARgamma is modulated through 83 

phosphorylation by kinases such as c-Jun N-terminal kinases (JNK). PPARgamma 84 
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loses its transcriptional activity by JNK phosphorylation at serine 82, and is 85 

subsequently degraded by the ubiquitin pathway. Treating diabetes with PPARgamma 86 

ligands (agonists), such as pioglitazone, can prevent PPARgamma phosphorylation by 87 

altering its structure.
16

 88 

PPARgamma is expressed in islet beta cells
17

 and is important for a variety of 89 

pancreatic functions, including beta cell survival,
18

 pancreatic and duodenal 90 

homeobox-1 (PDX-1) and glucokinase (GCK) regulation,
19

 and glucose-stimulated 91 

insulin secretion.
20

 In addition, PPARgamma is known to affect pancreatic beta cell 92 

function and insulin production.
21

 Studies have reported that PPARgamma binds to 93 

the PDX-1 promoter to upregulate PDX-1 expression and insulin production.
19

 A 94 

recent acute study suggested that AGE injection can initiate beta cell dysfunction and 95 

demonstrated that dietary restriction of AGEs significantly improves insulin 96 

sensitivity.
22

 AGEs also decrease insulin synthesis in pancreatic beta cells by 97 

repressing PDX-1 protein expression and inhibiting glucose-stimulated insulin 98 

secretion.
23

 PDX-1 plays a significant role in both pancreatic development and 99 

maintenance of beta cell function, but the inhibition of beta cell function caused by 100 

AGEs was improved by pioglitazone (PPARgamma agonist) activating 101 

PPARgamma.
24

 Several lines of evidence indicate that PDX-1 binds to insulin and 102 

GCK and that GCK catalyzes the first step of glycolysis to regulate glucose 103 
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responsiveness for insulin release.
25

  104 

These findings indicated that PPARgamma plays an important role for diabetes 105 

improvement. However, we had found that monascin is a PPARgamma agonist to 106 

up-regulate insulin sensitivity and inhibited hyperglycemia in AGEs- or MG-treated 107 

animals in our recent studies. 108 

 109 

2. Anti-inflammation and antioxidation of monascin 110 

High carbohydrate diets result in hyperglycemia and insulin resistance. In 111 

diabetic patients, there is a positive correlation between high methylglyoxal (MG) 112 

concentration in the blood and hyperglycemia. Recent studies have shown that MG 113 

administration results in inflammation.
26
 114 

Several literatures have reported the modulation of inflammatory cytokines 115 

through oxidative stress.
27,28

 Oxidative stress is increased during diabetes and 116 

hyperinsulinemia; reactive oxygen species have been reported to be generated as a 117 

result of hyperglycemia, which causes many of the secondary complications of 118 

diabetes.
28

  119 

We have indicated that monascin can suppress the production of inflammatory 120 

factors (tumor necrosis factor-alpha and interleukin-6) from monocytes induced by 121 

MG depending on PPARgamma regulation and these effects are abolished by 122 
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PPARgamma inhibitor GW9662.
29

 In addition, the anti-inflammatory capacity of 123 

monascin is mediated by the inhibition of JNK, extracellular signal-regulated kinase 124 

(ERK), and p38 kinases (Fig. 2).
30

  125 

Inflammation is an independent risk factor of cardiovascular diseases and is 126 

associated with endothelial dysfunction. Monascus-fermented metabolites, including 127 

monascin, ankaflavin, and monacolin K, have been found to reduce TNF-α-stimulated 128 

endothelial adhesiveness as well as downregulating intracellular ROS formation, 129 

NF-κB activation, and VCAM-1/E-selectin expression in human aortic endothelial 130 

cells, supporting the notion that the various metabolites from Monascus-fermented 131 

products might have potential implications in clinical atherosclerosis disease.
31 

132 

Recently, our study also reports that monascin can extend the life span under 133 

high-glucose conditions and attenuate oxidative stress in Caenorhabditis elegans. Our 134 

results indicate that monascin enhanced expression of small heat shock protein 135 

(sHSP-16), superoxide dismutase (SOD), and glutathione S-transferase (GST). 136 

Monascin not only regulates stress response/antioxidant genes to improve oxidative 137 

stress resistance but also promotes antioxidation and avoid oxidative damage via 138 

regulation of the FOXO/DAF-16-dependent insulin signaling pathway.
32

  139 

Moreover, Nrf2 has been found to attenuate oxidative damage by expressions of 140 

heme oxygenase-1 (HO-1), and glutathione-cysteine ligase (GCL).
33

 Our study has 141 
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carried out the Nrf2 regulation by monascin in vivo and in vitro. Results indicated that 142 

monascin inhibited inflammatory cytokine production in S100b (the receptor for 143 

AGEs activator)-treated THP-1 monocytes via up-regulation of Nrf2 and alleviated 144 

p47phox translocation to the membrane; and these effect were abolished by Nrf2 145 

inhibitor treatment depending on retinoic acid receptor-alpha.
29

 We also found that 146 

monascin markedly activated Nrf2 and attenuated insulin resistance in vitro and in 147 

vivo pointing out as Fig. 3.
26,29 

These findings had pointed out that monascin 148 

suppressed oxidative stress and inflammation by showing antioxidation. 149 

 150 

3. Anti-diabetic effect of monascin 151 

Diabetes mellitus, which is characterised by hyperglycemia, is an endocrine 152 

disorder resulting from insulin deficiency that leads to high blood glucose 153 

concentration.
34
 Type 2 diabetes and obesity are chronic diseases that promote the 154 

development of insulin resistance, inflammation, and atherosclerosis.
35

 Type 2 155 

diabetes is a chronic disease caused by deficient insulin secretion or ineffective 156 

insulin activity, thereby negatively affecting carbohydrate metabolism.
36

 High 157 

triacylglycerol levels in the blood tend to coexist with low levels of high-density 158 

lipoprotein cholesterol (HDL-C), contributing to a condition called diabetic 159 

dyslipidemia or hypertriglyceridemia.
37

 The total cholesterol (TC) and total 160 
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triacylglycerol (TG) cause an increased risk of heart disease, which should be 161 

controlled as tightly as possible in diabetes mellitus.
38

 Insulin resistance in type 2 162 

diabetic patients is thought to be associated with the induction of inflammatory 163 

cytokines such as TNF-alpha and IL-6.
39

 The TNF-alpha impairs insulin-dependent 164 

signal transduction through a mechanism involving downregulation of the insulin 165 

receptor (IR) and IR substrate-1 protein (IRS-1), inhibition of IR and IRS-1 tyrosine 166 

phosphorylation, increased protein tyrosine phosphatase 1B (PTP1B) activity, and 167 

inhibition of the insulin-stimulated glucose transporter (GLUT), thereby resulting in 168 

hyperglycemia.
38

 Results of our recent study have shown that monascin can attenuate 169 

JNK phosphorylation and suppress PPARgamma phosphorylation in C2C12 170 

myotubes treated with TNF-alpha and thereby improve insulin sensitivity.
40

 In 171 

addition, monascin also inhibits protein tyrosine (Tyr) phosphatase 1B (PTP1B) 172 

expression to attenuate insulin resistance, resulting in GLUT translocation to plasma 173 

membrane and subsequently promoting glucose uptake as shown in Fig. 4.
40

  174 

In vitro studies suggest that MG impairs insulin mediated glucose uptake in 175 

adipocytes
41

 and reduces insulin sensitivity for 30 min in L6 muscle cells treated with 176 

2.5 mM MG.
42

 Moreover, 1 mM MG suppresses insulin secretion and production in 177 

INS-1E pancreatic islet β-cells.
43

 In vivo studies demonstrate that MG impairs insulin 178 

transcription factor pancreatic and duodenal homeobox-1 (PDX-1) to result in 179 
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diabetes.
44,45

 180 

Recently, monascin has been reported to act as PPARgamma agonist,
8
 and the in 181 

vitro (MG-treated RIN-m5F cells) and in vivo (MG-treated Balb/c mice) results 182 

indicated that MG leads to marked PPARgamma phosphorylation (serine 82); this 183 

effect led to reduction in PDX-1, GCK, and insulin expression. Monascin and 184 

rosiglitazone protected impairment of insulin expression in MG-treated animals 185 

confirmed by immunohistochemical stain for pancreatic insulin (Fig. 5).
26

 Moreover, 186 

monascin also prevented hyperglycemia and significantly downregulated blood 187 

glucose during oral glucose tolerance test (OGTT) in fructose-rich diet-induced 188 

C57BL/6 mice, and the potential mechanism was shown as Fig. 6.
46

 189 

Hepatic stellate cells (HSCs) express the receptor for AGEs (RAGE)
47

 and also 190 

express many components of the NADPH oxidase complex, such as p47phox. 191 

Importantly, one study has implicated p47phox-derived reactive oxygen species (ROS) 192 

in HSCs activation, suggesting that hepatic fibrosis is always involved in diabetes.
48

 193 

To gain better insights into the role of AGEs in HSCs, we investigated the effect of 194 

AGEs on ROS production by HSCs. Carboxymethyllysine (CML) is a key AGE with 195 

highly reactive dicarbonyl metabolites (e.g., methylglyoxal) and promotes lipid 196 

peroxidation to generate malondialdehyde (MDA).
49

 We had investigated the 197 

inhibitory effect of Monascus-fermented metabolite monascin on CML-induced 198 
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RAGE signaling in HSCs and its resulting antihepatic fibrosis activity. We found that 199 

monascin upregulated PPARgamma to attenuate alpha-smooth muscle actin 200 

(alpha-SMA) and ROS generation in CML-treated HSCs in a RAGE 201 

activation-independent pathway. Therefore, monascin may regulate PPARgamma to 202 

delay or inhibit the progression of liver fibrosis and may prove to be a major 203 

antifibrotic mechanism to prevent liver disease (Fig. 7).
50 

204 

 205 

4. Conclusions 206 

These health-promoting functions of monascin may be used to augment the 207 

anti-metabolic syndrome, antihypertensive and anti-atherogenic effects of current 208 

pharmacotherapeutics. The bioactivity of monascin is responsible for the previously 209 

described health benefits and for the prevention of numerous inflammation-related 210 

diseases. Together, these findings suggest that monascin can act as an antidiabetic and 211 

antioxidative stress agent, and thus, monascin may have therapeutic potential in the 212 

treatment or prevention of diabetes and diabetes-associated oxidative stress 213 

complications. 214 

215 
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Figure legends 397 

Figure 1. (a) Chemical tructure of monascin. (b) Monascin is a PPARgamma 398 

agonist.
8
 The PPARgamma agonist activity of monascin was carried out by 399 

LanthaScreen™ TR-FRET PPARγ coactivator assay kit (Invitrogen, Carlsbad, CA, 400 

USA). PPARgamma: peroxisome proliferator-activated receptor-gamma. 401 

 402 

Figure 2. The proposed mechanism of monascin on inflammation in THP-1 cell. 403 

Ovalbumin-induced inflammation was alleviated by monascin via inhibition of JNK 404 

phosphorylation and regulation of PPARgamma.
30

 MS: monascin. JNK: c-Jun 405 

N-terminal kinases. ERK: extracellular signal-regulated kinase. 406 

 407 

Figure 3. The potential mechanism of monascin attenuated inflammation caused by 408 

RAGE activation. Monascin promotes Nrf2 activation to elevate antioxidant status, 409 

thereby attenuating oxidative stress and inflammation caused by RAGE signal.
29

 MS: 410 

monascin. AGEs: advanced glycation endproducts. RAGE: receptor for AGEs. TNF-α: 411 

tumor necrosis factor-alpha. IL-1β: interleukin-1beta. PKC: protein kinase C. Nrf2: 412 

nuclear factor-erythroid 2-related factor 2. HO-1: heme oxygenase-1. GCL: 413 

glutathione-cysteine ligase. 414 

 415 
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Figure 4. The inhibition of insulin resistance in C2C12 myotubes treated by 416 

monascin.
40

 IR: insulin receptor. IRS: insulin receptor substrate. GLUT: glucose 417 

transporter. TNF-α: tumor necrosis factor-alpha. PPARgamma: peroxisome 418 

proliferator-activated receptor-gamma. 419 

 420 

 421 

Figure 5. Effects of monascin, rosiglitazone, AITC, or NAC treatment on pancreatic 422 

insulin level of methylglyoxal-injected Balb/C mice stained by immunohistochemical 423 

stain.
26

 Monascin promoted insulin expression and may protect impairment of 424 

pancreatic funtion in methylglyoxal-treated animals. MG: methylglyoxal. MS: 425 

monascin. Rosi: rosiglitazone. AITC: allyl isothiocyanate. NAC: N-acetylcysteine. 426 

 427 

Figure 6. The potential anti-diabetic mechanism of monascin in mice fed high 428 

fructose diet.
46

 Monascin improved fructose-rich diet-induced glucose intolerance, 429 

hyperlipidemia, hyperinsulinemia, and hepatic fatty acid accumulation, presumably by 430 

inhibiting lipogenesis and ameliorating insulin resistance and inflammation in the 431 

liver through PPARgamma activation. PPARgamma: peroxisome 432 

proliferator-activated receptor-gamma. ChREBP: carbohydrate responsive element 433 

binding protein. SREBP-1c: sterol regulatory element-binding protein-1c. ACC: 434 
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acetyl-coA carboxylase. FAS: fatty acid synthase. PGC: peroxisome 435 

proliferator-activated receptor-gamma coactivator. 436 

 437 

Figure 7. Potential mechanism of monascin on antifibrosis in HSCs. Monascin and 438 

rosiglitazone upregulated PPARgamma to attenuate fibrotic biomarker expression and 439 

ROS generation in CML-treated HSCs.
50

 CML: carboxymethyllysine. ROS: reactive 440 

oxygen species. RAGE: receptor for advanced glycation endproducts. α-SMA: 441 

α-smooth muscle actin. TIMP: tissue inhibitor of metalloproteinase. MMP-13: matrix 442 

metalloproteinase-13. 443 

444 
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 445 

Fig. 1 446 

447 
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 448 

Fig. 2 449 

450 
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 451 

Fig. 3 452 

453 
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 454 

 455 

Fig. 4 456 

457 
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 458 

Fig. 5 459 

460 
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 461 

Fig. 6 462 

463 
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 464 

Fig. 7 465 
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