
Faraday
 Discussions

www.rsc.org/faraday_d

This manuscript will be presented and discussed at a forthcoming Faraday Discussion meeting.
All delegates can contribute to the discussion which will be included in the final volume.

Register now to attend! Full details of all upcoming meetings: http://rsc.li/fd-upcoming-meetings

This is an Accepted Manuscript, which has been through the
Royal Society of Chemistry peer review process and has been
accepted for publication.

Accepted Manuscripts are published online shortly after
acceptance, before technical editing, formatting and proof reading.
Using this free service, authors can make their results available
to the community, in citable form, before we publish the edited
article. We will replace this Accepted Manuscript with the edited
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the
Information for Authors.

Please note that technical editing may introduce minor changes
to the text and/or graphics, which may alter content. The journal’s
standard Terms & Conditions and the Ethical guidelines still
apply. In no event shall the Royal Society of Chemistry be held
responsible for any errors or omissions in this Accepted Manuscript
or any consequences arising from the use of any information it
contains.

Accepted Manuscript

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/

Journal Name RSCPublishing

ARTICLE

This journal is © The Royal Society of Chemistry 2013 J. Name., 2013, 00, 1-3 | 1

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012,

Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Exploring Genomes with a Game Engine

Jeremiah J. Shepherd
a
, Lingxi Zhou

a
, William Arndt

b
, Yan Zhang

a
, W. Jim

Zheng
c,*
 and Jijun Tang

a,d,*

More and more evidence indicates that the 3D conformation of eukaryotic genome is a critical

part of genome function. However, due to the lack of accurate and reliable 3D genome

structural data, this information is largely ignored and most of these studies have to use

information systems that view the DNA in a linear structure. Visualizing genomes in real time

3D can give researchers more insight, but this is fraught with hardware limitations since each

element contains vast amounts of information that cannot be processed on the fly. Using a

game engine and sophisticated video game visualization techniques enables us to construct a

multi-platform real-time 3D genome viewer. The game engine based viewer achieves much

better rendering speed and can handle much larger amount of data compared to our previous

implementation using OpenGL. Combining this viewer with 3D genome models from

experimental data could provide unprecedented opportunities to gain insight into the

conformation-function relationships of a genome.

Introduction

A significant fraction of important questions in biology

research today require analysis of genomic data sources.

Regulatory functions of the cell operate in three dimensions

such that currently available software, which displays genetic

data as linear sequences, offers insufficient insight into some

problems. New experimental techniques are revealing

information that impacts the 3D structure of genetic molecules

such as nucleosome position distribution [1], histone

methylation [2], and transcription factory complexes [3]. As

displayed by current software, the 3D context of these

information sources is not shown, which potentially obscures

important spatial relationships. To address this problem, we

have developed a system to visualize genomes in a way that

incorporates sources of 3D information while preserving

responsive viewing and interaction.

A primary benefit to software that can display genomic data in

three dimensions is it facilitates advances in the creation of 3D

models. The chromosome conformation capture family of

experiments generates data directly relevant to the 3D structure

of chromatin. This data can be used to create and display small

models of a few hundred thousand base pairs arranged in 3D

space such as for the interesting alpha-globin gene domain on

human chromosome 16 [4], all the way up to possible full

human genome models using information derived from Hi-C

experiments [5]. Even though data generated from current

techniques are sparse and not yet sufficient to create accurate

high-resolution 3D models of eukaryotic genome, it is expected

that more believable and detailed models may be derived in the

future. A software platform that can visualize such high-

resolution model would prepare us for the future needs of

studying 3D genome model when available.

A system that successfully displays genetic molecules in three

dimensions must have the following abilities: it must display

full size mammalian chromosomes on the order of billions of

base pairs, display the details of important segments at the scale

of individual atoms, and allow real time manipulation of the

view at focus of detail. Our software behavior mimics that of

the popular Google Earth service. When using Google Earth, a

user can zoom out to view the entire planet as a whole but with

little detail, or seamlessly zoom in to show a progressively

smaller section of the surface but with greater detail. In our case

the broadest view would display all chromosomes contained in

a nucleus while zooming in would reveal the progression of

more detailed features such as chromatin fiber arrangement,

histone positions, base pair locations, and individual atoms.

Creating such a system is not a trivial task. The volume of data

needed to specify an arbitrary mammalian genome in 3D space

well exceeds the limit of available memory necessitating

careful loading and pruning. Google Earth only has one model

to display and thus can take advantage of advanced indexing

and caching optimizations, while in contrast, our software must

display a wide variety of possible genomes and structures; this

removes our ability to construct data structures in advance.

Most modern video games must visualize vast amounts of

information at once while being interactive in real time. Most

video game developers save resources by using game engines,

which are of the shelf systems that implement common display

and interaction features. These same engines have been shown

Page 1 of 6 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t
Fa

ra
da

y
D

is
cu

ss
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t

ARTICLE Journal Name

2 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

to be useful for other applications such as simulation research

[6]. Biology is no stranger to using game concepts to assist in

new discoveries. Games like Fold It have been developed to

help solve difficult questions about protein folding [7]. Our

software is the first attempt to use game engine technology for

the purpose of displaying chromatin in three dimensions. We

show that these techniques developed for the video game

industry can be successfully used to make useful and

responsive displays of genomes in 3D.

Researchers use a variety of tools to place their experimental

data in the context of reference genomes, but among these tools

the ability to view spatial relationships in three dimensions is

missing. Genome browsing tools have been developed by

variety of institutions, such as UCSC, Ensemble, and NCBI.

These genome browsers not only integrate vast amount of

genome information from varied sources, but also allows users

to develop custom tracks which easily integrate their own data

with existing genome information [8]. Such feature-rich

genome browsers have become very popular and played

essential roles in several important, large-scale genome

projects, including Encyclopedia of DNA Elements (ENCODE)

[9] and 1000 Genome Project [10]. Existing viewers display

genomes and annotations along a single dimension, the

sequence coordinates, making them unsuitable for displaying

some kinds of epigenetic and structural information generated

by recent technologies such as chromosome conformation

capture style experiments.

Genome3D was the first model-view framework developed to

work with current genome browsers to address these

challenges, and to facilitate multi-scale integration and

visualization of large genomic and epigenomic datasets in three

dimensions [11]. This model-view framework enabled

researchers to infer new knowledge about structure/function of

genomes that would have been difficult to accomplish by

primary sequence-based browsers. For example, phosphate

groups of different base pairs in DNA strand can be either

exposed to the outside or confined between the histone proteins

and DNA backbone. This information has important functional

implications, as exposed phosphate groups can be easily

accessible by DNA binding proteins [12]. While new

sequencing technologies allow researchers to map individual

nucleosomes across the whole genome [13], it is a significant

challenge for current genome browsers to display this

epigenetic information in an intuitive manner. Visualizing such

information using a 3D genome model can facilitate new

inferences about potential regulatory behavior such as

functional versus non-functional SNP’s in non-coding regions.

Unfortunately, in the years since its release a number of

limitations with the Genome3D software package were

revealed, warranting the development of a new version.

Genome3D had no internal throttle to manage the loading or

view of very large data sets. A careless user could easily load

more chromosomes than are able be displayed in real time

which would slow responsiveness to unusable levels. The

former software was developed in C++ using libraries that have

since become obsolete. These dependencies severely restricted

the portability and maintainability of the code base.

Using game engine technologies and some sophisticated

visualization techniques we intend to solve the two critical

flaws of Genome3D. Game engines are designed to aid in the

development of games by providing interaction and complex

rendering techniques as standard features. This frees attention

for the development of logic and content. Also, because game

development is are a large consumer industry whose products

need to be highly marketable, most modern engines have multi-

platform support built in, which allows the programs developed

with one to easily be ported to a number of other devices.

Furthermore, game engines have previously been used for large

simulation research where they are proven to work well in

several different disciplines [14]. For these reasons, we found it

most appropriate to use a game engine to display genomes in

three dimensions.

The System

The greatest dilemma facing this system was how to both

manage the large amount of information while still maintaining

real time responsiveness. Since modern games engines provide

open world management as a standard feature, this was chosen

as a good starting point. We have used the Unity game engine,

which has become highly popular and widely used by

independent game developers and researchers. While the

interaction features are standard to most game engines, our

need to visualize data on the order of billions of base pairs is

unique enough to still be challenging. The largest portion of our

attention has been directed towards efficiently rendering the

scene. One of aspect of our approach is the level of detail

(LOD) system, which is traditionally used to cut down the

amount of processing power needed to generate the elements in

the scene. Different parts of the scene are presented at different

LODs based on criteria such as the distance between the camera

and that object. An object in the far distance can be rendered

with a lower LOD in a way that conserves computational

resources but is indistinguishable to the viewer. An object very

close to the observer will be displayed with a higher LOD and

use more resources, but geometry limits the number of objects

which can occupy this space and any further objects that have

been occluded need not be drawn at all. To best solve the

problem of determining placement and distances of the genome

we used a data structure commonly used in games, and then

further processed multiple data sources in different LODs.

The system runs on multiple platforms with consistent interface

as shown in Figure 1:

Fig. 1. System interface with a chromosome loaded at the

histone level.

Page 2 of 6Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t
Fa

ra
da

y
D

is
cu

ss
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t

Journal Name ARTICLE

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 3

The Octree

Many modern games have vast open worlds, which need to be

carefully processed in order to keep the action fluid. To reduce

the amount of data processed at a given time, most of these

applications use a data structure called an octree. This structure

subdivides 3D space into eight sections that are represented by

nodes in the tree as seen in Figure 2. These subsections can be

recursively subdivided making more nodes in the tree with a

finer level of detail. When a node is very far away from the

camera it is displayed directly with a lower LOD and any

children it has are ignored. When the camera is moved closer to

a node, then it is examined more carefully such that each of and

each of its children are fully processed and displayed.

Fig. 2. Octree example. This shows how it will calculate the

ranges from each cube to the camera.

Most commercial implementations use static octrees with a set

number of subdivisions that is optimized for a single given

model. However, our system is distinct because our 3D models

must be generated on the fly, and can only be partially built at

any one time given the large amounts of data that needs to be

processed and stored. This has led us to choose a dynamic

octree implementation [15]. The dynamic variation of the data

structure automatically subdivides into eight parts when the

data contained in a node exceeds a given tolerance. In this way,

we avoided having an unnecessarily big tree(s) in memory.

Also since we are dealing with a large object it makes sense

to stay away from loose octrees [16].

Given the difference between the input, formatted as a spline

representing the chromosome fiber, and the internal storage as

an octree, faithfully preserving the structure of the data was a

key priority. In traditional implementations the mesh for the

objects in the scene are provided, and each polygon in the mesh

is placed in a node in the tree corresponding to its spatial

location. However, in our case, the mesh is generated given a

series of files that contain an ordered set of control points on

the curve. Instead of dividing the problem by polygons we do

so using the spline control points. Wherever the curve intersects

an octree node boundary, a new control point is placed at the

point of intersection and inserted into both octree nodes. While

this increases memory usage slightly, it preserves information

content perfectly.

Further Levels of Detail

In addition to the octree, a level of detail system has been

implemented to manage display complexity given the context

of the camera and model. Information is grouped into three

different levels: fiber, nucleosome, and atomic. The fiber level

represents the lowest level of detail where each chromosome’s

30nm fiber is displayed as seen in Figure 3 and Figure 4. At this

level the data is formatted as a series of files, each in XML

format specifying an individual chromosome and the control

points of the spline which positions it. The system scans the

directory provided by the user, and then loads and displays each

chromosome. Files are first loaded into memory and then

placed into an octree. As the data proceeds, additional octrees

are constructed for each chromosome to guarantee they remain

segregated from one another.

Fig. 3. Fiber Level Far with 22 Chromosomes Loaded

Fig. 4. Fiber level with close up view of chromosome 1.

Proceeding deeper, the next level of detail is the nucleosome

stage. At this level, nucleosome base-pair positions plus the

DNA that wraps around and links to them are displayed as seen

in Figure 5. Instead of loading all the chromosomes like the

previous level, this view only displays one at a time. The files

for this level of detail are significantly different from the

previous section as they are much more detailed. Once again,

XML file formats are used to hold the structure information for

each chromosome. These files not only include the base pair

number and positional information but also the orientation of

each histone. Linker DNA can either be automatically

generated for display or specified in the corresponding data

files. An additional feature of this view, because most

researchers are not interested in specific interesting regions and

not an entire chromosome, we implemented an option to reduce

the viewing size to a user specified range as seen in Figure 6.

Finally, the highest level of detail is at the atomic scale. Similar

to the nucleosome stage, the user chooses a range from a start

base pair to an ending base pair, and the system displays that

atomic structure as seen in Figure 7. This level faces an

additional challenge, as two sets of information must be merged

into one display. Information provided at the nucleosome level

determines positional information, which is then combined with

a fasta file containing the DNA sequence. The user specified

position is matched to both the fasta file and the nucleosome

positions, which are read in tandem and used to place the

appropriate base pair atoms at their correct positions.

Page 3 of 6 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t
Fa

ra
da

y
D

is
cu

ss
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t

ARTICLE Journal Name

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

Fig. 5. Histone level of chromosome 1 in mid range. This

shows 100,000 histones rendered in real time with procedurally

generated linker data which is highlighted in pink.

Fig 6. Histone level of chromosome 1 at a reduced scale close

up (linkers are not highlighted).

Other Benefits

In addition to the robust interactivity and the superior display

management provided by a game engine, there are other

benefits to using it for this application. A game with a larger

marketplace is more likely to succeed, making portability to

multiple platforms a desirable quality. The system we created

has been deployed to Windows, Mac, and some mobile devices,

including tablets as seen in Figure 8. Each version required

some minor changes but overall the system still works the same

with minimal added development time. For example, in order to

function on mobile devices we must limit the rendering

capabilities and read the files from an external server instead of

from the device itself. The simplicity of multi-platform support

will greatly increasing our potential audience.

Fig. 7. Atomic level of chromosome 1 from base pair 10400

to 10900

Fig. 8. iPad Example. This is an example demonstrating the

octree based LOD working on an iPad.

Results

In order to test the performance and functionality of this

application, we compared it to the previous version of

Genome3D, which is the only other implementation of this

concept [11]. Each test ran on a standard desktop with 4 GB of

RAM, an Intel c Xeon c CPU at 3.07 GHz, and running 64-bit

Windows 7 Professional. Our tests and results follow.

The main criteria we chose to judge success was the rendering

capacity, since that is the best approximation of its functional

performance from the perspective of a user. To accomplish this,

we loaded a set amount of data, and then progressively add

large amounts of data for each individual test, while also

keeping track of the running frames per second (FPS). Each of

these smaller tests was also run for an isolated LOD: fiber,

nucleosome, and atomic levels. The first set of tests was at the

fiber level with results shown in Table 1. There is a hardware

refresh limit that is 120 Hz in our system. Also game engines

typically set an upper limit on FPS to avoid any side effects;

this limit is 60 in Unity. In Unity we can set a targeted frame

rate, which is the FPS that Unity will try to reach if the system

is heavy loaded. As our genome viewer is not fast-paced, we

choose 30 FPS as the target. The original genome viewer

outperforms the new one with only one chromosome file

loaded, but it cannot load additional chromosomes without

crashing. Our new system has maximum FPS until 15

chromosomes are loaded; the FPS is still acceptable when all 23

chromosomes of human genomes are loaded.

TABLE 1. Improved performance of game engine based viewer

at the chromatin fiber level (the original viewer cannot handle

data with more than one chromosome)

Program
1

Chromosome
10

Chromosomes
15

Chromosome
23

Chromosomes

Original Genome

Viewer FPS
120 0 0 0

Game Engine Genome
Viewer’s FPS Range

60 60 60 30

Next, a similar test was conducted at the nucleosome level. In

order to gain accurate insight of performance, the test varied the

number of histones loaded and rendered while measuring the

sustained frames per second. Results appear in Table II. When

only a few nucleosomes are loaded the original genome viewer

performs faster, but once more data is added the older system

Page 4 of 6Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t
Fa

ra
da

y
D

is
cu

ss
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t

Journal Name ARTICLE

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 5

becomes unresponsive. In contrast, the performance of the new

system did not begin to lose performance noticeably until the

number of histones loaded exceeded 10,000.

TABLE II. Improved performance of game engine based

viewer at the nucleosome level (the original viewer cannot

handle more than 10 nucleosomes)

Program
1

nucleosome
1,000

nucleosomes
5,000

nucleosomes
10,000

nucleosomes

Original Genome

Viewer FPS Range
60-120 0 0 0

Game Engine Genome
Viewer’s FPS Range

60 60 30 30

Finally, the last set of tests was run in a similar vein as the

others. Much like the nucleosome scale, the purpose was to test

and evaluate each program’s performance as an increasing

amount of atoms were loaded and rendered, measuring the

frames per second. The results, as seen in Table III, show a

more comparable trend. Both systems simply rendered the

given data without any further LOD data analysis, and it first

appears that the original genome viewer out performs the game

engine version. However, the original system only seems to

allow twenty-five atoms to be rendered at once, so it cannot

make a comparison after the initial twenty five. On the

contrary, our new system can easily handle 1,000 atoms at

once, without noticeable drop of performance, achieves a 40-

times increase of information loaded.

TABLE III. Improved performance of game engine based

viewer at the atomic level (the original viewer cannot handle

more than 25 atoms)

Program
25

Atoms
500

Atoms
1000
Atoms

1500
Atoms

Original Genome Viewer

FPS Range
60-120 0 0 0

Game Engine Genome
Viewer’s FPS Range

60 60 60 30

From these tests, it is obvious to see that using a game engine

with sophisticated rendering techniques commonly used in

games greatly expands the capacities of the former Genome3D

viewer. The key to the performance enhancement was breaking

apart and grouping the large amount of data in a more

sophisticated way, which was facilitated by using an octree for

spatial information. Also, modern game engines typically

offload most rendering tasks to GPUs, which are becoming

computationally more powerful and can process multiple

rendering requests at once. In this way, more data could be

loaded, managed, and displayed at any given time yielding

significantly improved utility.

Conclusions

In this paper we addressed the problem of visualizing genomes

in three-dimensional space, and the potential benefits to such an

approach. We solve this problem by applying techniques and

tools that are commonly used in video games, which include

using a commodity game engine, partitioning data with an

octree, and grouping the files to perform multi-tier level of

detail analysis (LOD). The game engine has fast rendering

systems and also allows for simple and fast multi-platform

support. Organizing the data with an octree reduced resource

consumption allowing larger data sets to be viewed with visual

fidelity and responsive performance. Finally, recognizing the

data was given in three different formats provided another level

of detail such that the system was able to segregate displayed

content based on context. Finally, we showed that using this

application compared to the older non-game application out

performs in situations where the amount of data being viewed is

non-trivial, and is able to load much more data before losing

responsiveness. With our application we have provided

researchers with a tool that could be used for valuable genomic

work.

Acknowledgements
This work is supported by NSF award #1161586 to JJS, LZ, YZ

and JT, as well as #1339470 to WJZ. .

Notes and references
a Department of Computer Science and Engineering, University of South

Carolina, SC 29205, USA.
b Howard Hughes Medical Institute, Janelia Farm Research Campus,

Ashburn, VA 20147, USA.
c School of Biomedical Informatics, U. Texas Health Science Centre at

Houston, TX 77030, USA.
d Key Laboratory of Systems Bioengineering of the Ministry of

Education, Tianjin University, Tianjin, 300072, PR China.

* Corresponding authors

† Footnotes should appear here.

1 R. Schopflin, V. B. Teif, O. Muller, C. Weinberg, K. Rippe, and G.

Wedemann, “Modeling nucleosome position distributions from ex-

perimental nucleosome positioning maps,” Bioinformatics, 2013.

2 A. Barski, S. Cuddapah, K. Cui, T.-Y. Roh, D. E. Schones, Z. Wang,

G. Wei, I. Chepelev, and K. Zhao, “High-resolution profiling of

histone methylations in the human genome,” Cell, vol. 129, no. 4, pp.

823–837, 2007.

3 P. Unneberg and J.-M. Claverie, “Tentative mapping of transcription-

induced interchromosomal interaction using chimeric EST and

mRNA data,” PLoS One, vol. 2, no. 2, p. e254, 2007.

4 D. Baù, A. Sanyal, B. R. Lajoie, E. Capriotti, M. Byron, J. B.

Lawrence, J. Dekker, and M. A. Marti-Renom, “The three-

dimensional folding of the α-globin gene domain reveals formation

of chromatin globules,” Nature Structure & Molecular Biology, vol.

18, no. 1, pp. 107-114, 2011.

5 E. Lieberman, N. L. van Berkum, L. Williams, M. Imakaev, T.

Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O.

Dorschner, R. Sandstrom, B. Bernstein, M. A. Bender, M. Groudine,

A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, J.

Dekker, “Comprehensive mapping of long-range interactions reveals

folding principles of the human genome,” Science, vol. 326, pp. 289-

293, 2009.

6 J. Shepherd, R. Dougal, and J. Tang, “Visualization and simulation

potential of Microsoft’s XNA,” Grand Challenge in Simulation and

Modeling (GCSM), pp. 306–310, July 2010.

7 F. Khatib, F. Dimaio, S. Cooper, M. Kazmierczyk, M. Gilski, and et

al, “Crystal structure of a monomeric retroviral protease solved by

Page 5 of 6 Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t
Fa

ra
da

y
D

is
cu

ss
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t

ARTICLE Journal Name

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012

protein folding game players,” Nature Structural & Molecular

Biology, vol. 18, no. 10, p. 1175, November 2011.

8 W. Kent, C. Sugnet, T. Furey, K. Roskin, and T. Pringle, “The human

genome browser,” Genome Res 12, vol. 12, pp. 996–1006, November

2002.

9 “The Encode (Encyclopedia of DNA Elements) project,” Science, vol.

306, pp. 636–640.

10 N. Siva, “1000 genomes project,” Nature Biotechnology, vol. 26, p.

256.

11 T. Asbury, M. Mitman, J. Tang, and W. Zheng, “Genome3D: a

viewer- model framework for integrating and visualizing multi-scale

epigenomic information within a three-dimensional genome,” BMC

Bioinformatics, vol. 11, p. 444.

12 K. Eisfeld, R. Candau, M. Truss, and M. Beato, “Binding of NF1 to

the MMTV promoter in nucleosomes: influence of rotational phasing,

translational positioning and histone H1,” Nucleic Acids Res, vol. 25,

pp. 3733–3742, 1997.

13 D. Schones, K. Cui, T. Roh, and A. Barski, “Dynamic regulation of

nucleosome positioning in the human genome,” Cell, vol. 132, pp.

887–898, 2008.

14 T. Zhang, J. Shepherd, J. Tang, and R. A. Dougal, “The simulation

tool for mission-optimized system design,” in Proceedings of the

2011, Grand Challenges on Modeling and Simulation Conference.

Society for Modeling & Simulation International, 2011, pp. 348–355.

15 D. Ginsburg, “Octree construction,” Game Programming Gems, pp.

 439–443, August 2000.

16 T. Ulrich, “Loose octrees,” Game Programming Gems, pp. 444–453,

August

Page 6 of 6Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t
Fa

ra
da

y
D

is
cu

ss
io

ns
A

cc
ep

te
d

M
an

us
cr

ip
t

