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Using “3D-spacer” technology, we demonstrate novel all-fibre piezoelectric fabric power 

generators. The single-structure generator comprises 80% β-phase PVDF spacer 

monofilaments interconnected between woven Ag/PA66 electrodes. The structure provides 

power density of 1.10-5.10µWcm
-2

 at applied impacts of 0.02-0.10MPa, nearly five times 

higher than existing 2D structures. 
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Abstract  

The piezoelectric effect in Poly(vinylidene fluoride), PVDF, was discovered over four 

decades ago and since then, significant work has been carried out aiming at the production of 

high β-phase fibres and their integration into fabric structures for energy harvesting. 

However, little work has been done in the area of production of “true piezoelectric fabric 

structures” based on flexible polymeric materials such as PVDF. In this work, we 

demonstrate “3D spacer” technology based all-fibre piezoelectric fabrics as power generators 

and energy harvesters. The knitted single-structure piezoelectric generator consists of high β-

phase (~80%) piezoelectric PVDF monofilaments as the spacer yarn interconnected between 

silver (Ag) coated polyamide multifilament yarn layers acting as the top and bottom 

electrodes. The novel and unique textile structure provides an output power density in the 

range of 1.10 - 5.10 μWcm
-2

 at applied impact pressures in the range of 0.02 - 0.10 MPa, thus 

providing significantly higher power outputs and efficiencies over the existing 2D woven and 

nonwoven piezoelectric structures. The high energy efficiency, mechanical durability and 

comfort of the soft, flexible and all-fibre based power generator is highly attractive for a 

variety of potential applications such as wearable electronic systems and energy harvesters 

charged from ambient environment or by human movement.  

 

Keywords: Poly(vinylidene fluoride) PVDF, β phase, piezo force microscopy, all-fibre soft 

generators, energy harvesting, piezoelectric effect 
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Introduction  

The harvesting of waste energy from ambient environment and human movement has long 

been considered as an attractive alternative over traditional rechargeable batteries for 

providing electrical power to low-energy consumption devices such as wireless body worn 

sensors and wearable consumer electronics [1-3]. The battery technology and indeed the 

energy harvesting technology has not been able to keep up pace with the requirements of the 

consumer electronic devices, which are increasingly becoming more diverse, functional and 

power hungry [3]. For personal low-power electronic devices, harvesting of energy from the 

mechanical movement is believed to be the most reliable route as most human activities are 

based on mechanical movement which is irrespective of the environment [3-5]. Recently, 

inorganic nanowires of ZnO, InN, GaN, CdS, ZnS and PZT have shown remarkable ability to 

harvest energy from small mechanical movements and have shown higher energy conversion 

efficiency as compared to their micro and macro sized counterparts which was attributed to 

size-effects, decreased defects and improved mechanical flexibility [2-10]. However, it 

should be noted that these materials are quite brittle in nature, work only at small levels of 

strain (~1%) and are much harder to integrate on a large scale and quite expensive to produce 

[1-5]. The criteria for wearable energy harvesting devices are that it must; (i) be 

imperceptible to the user; (ii) not load the user; (iii) provide long term lifetime with 

reasonable power densities (dependent on the application); and (iv) be cost-effective and 

inexpensive to produce [11]. While a number of piezoelectric device architectures, materials 

(Pb[ZrxTi1-x]O3, BaTiO3) and processes (electrospinning, lithography) have been developed 

to conform to the aforesaid criteria, the materials themselves are not amenable and the 

processes are quite tedious and expensive. Moreover, for wearable applications, the energy 

harvesting devices should provide the right “feel” and comfort as well to the wearer. The 

current problems associated with flexible piezoelectric generators are; (i) low throughput and 
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long and tedious processing techniques; (ii) low output power densities; and (iii) lack of 

integration techniques [1, 4]. Moreover, for achieving truly integrated piezoelectric materials 

in textile structures, the durability and the “feel” of the piezoelectric structures need to be 

tailored. In previously published works, the piezoelectric elements have been usually 

physically embedded inside a fabric by simple stitching it, or have been based on brittle PZT 

materials which have then been deposited by electrospinning and then transferred onto 

flexible substrates [5, 12]. However, PZT based materials are lead-based and hence not 

amenable for wearable textile applications. Recently, Wang et al have developed nanowire 

based generators built on textile fibres which provide electrical output via the friction motion 

between the fibres [13]. A device built using hydrothermally grown ZnO on PVDF fibres was 

shown to produce 1-2 μWcm
-3

, however the procedure of making the device was tedious and 

time consuming [3]. While, electrospinning process used to produce PVDF and PVDF(TrFE) 

nanofibres is capable of producing flexible large area piezoelectric materials, the throughput 

of the process is again quite low [2, 15] and moreover the need to attach the flexible 

metal/metallic electrodes limits their use and lifetime. The poor fatigue resistance of the 

metal foil under repeated mechanical deformation leads to the failure hence making the 

durability a major challenge [1, 15, 16].  

  For energy harvesting from human movement, the fibre based electrical power 

generators are highly desirable as they are light weight and comfortable and look no different 

from the conventional fabrics. The conjunction of piezoelectric materials in fibres and 

therefore fabrics offers a simple route for the building of soft piezoelectric generators. The 

flexible textile structures can themselves be designed so as to provide piezoelectric output on 

low levels of strains and loadings while providing high fatigue resistance under a large 

number of variable mechanical deformation and loading cycles. To address this, we have 

used three-dimensional piezoelectric fabrics based on “3-D spacer” textile technology. The 
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basic definition of a three-dimensional fabric is that the Z-direction dimension is considerable 

relative to the X and Y dimensions [17, 18]. The thickness of the fabric or the Z dimension is 

maintained via the use of a spacer yarn and hence the name, 3-D spacer yarn. Thus, the 

spacer fabric is a three-dimensional knitted fabric consisting of two separate knitted 

substrates, which are joined together or kept apart by spacer yarns. The 3D spacer fabrics can 

be made either using warp knitted or weft knitted technologies. Warp knitted spacer fabrics 

are structures that consist of two separately-produced fabric layers which are joined back-to-

back, wherein the spacer yarn which joins the two face fabrics joins them or spaces them 

apart [17, 18]. Typically, these spacer fabrics can have a thickness ranging from 1 to 15 mm, 

with the two faces being 0.4 to 1 mm thick. The single major feature of warp knitted spacer 

fabric is that virtually any thickness can be obtained (up to 65 mm reported) using suitable 

machines [17, 18]. The weft knitted spacer fabrics (produced in this study) can be produced 

on circular double jersey machines as well as electronically controlled flat machines [17, 18]. 

The basic structure of the spacer fabric is limited to either knitting the spacer threads on the 

dial and tucking on the cylinder, or tucking the spacer threads on the dial and cylinder 

needles [17, 18]. Also, in weft knitting, the thickness of the spacer is usually limited to 

between 2 and 10 mm. [17, 18] These fabrics have been studied for many years now in 

applications ranging from medical textiles (anti-decubitus blankets), highly breathable 

sportswear to foundation garments such as bra cups and industrial composites [17, 18]. 

However, to the best of our knowledge, the use of 3-D spacer fabrics as energy harvesting 

textiles has never been explored or reported.  

In order to overcome the drawbacks of the existing devices and provide better energy 

solutions, we have explored the possibility of having highly flexible, efficient and durable 

piezoelectric generators based on simple processing and low-cost strategies. Here, we report 

our work on the development of present novel all-polymeric fibre based single 3-D structure 
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piezoelectric generators comprising of a PVDF monofilament spacer yarn and silver coated 

Polyamide 66 (PA66) yarn as the top and bottom conducting fabric faces. The generator is 

shown to be capable of efficiently converting mechanical energy into electrical energy; under 

a peak compressive pressure of 0.10 MPa, the fabric consistently produced a voltage of ~14 

V and a peak current of ~30μA, corresponding to a peak power density of 5.10μWcm
-2

, thus 

demonstrating a significantly higher power output under similar experimental conditions over 

the existing 2D woven and non-woven piezoelectric structures.  

 

Experimental 

Continuous melt-spinning extrusion of poled PVDF monofilaments 

PVDF homopolymer SOLEF 1006, supplied by Solvay Solexis Ltd., was used for processing 

of fibres. The polymer has a melt flow index of 40g/10 min at 230
o
C and 2.16 kg mass with 

the melting point and crystallisation temperatures of ~175
o
C and 138

o
C, respectively. The 

melt spinning of PVDF was carried out on a bi-component pilot plant scale extruder built by 

Fibre Extrusion Technology Ltd., Liverpool, United Kingdom. The polymer in pellet form is 

transported across the length of the heated barrel (temperature profile: 190, 200, 210, 220
o
C, 

across the four heated barrel zones) via a screw, where it is compressed and gets melted 

through the friction generated between the granules and the high temperatures. The melt exits 

the monofilament spinneret (Φ=0.8 mm, 230
o
C) at a pressure of approx. 100-105 bar where 

the filament is cooled down using an air quench operating at 20
o
C. At this point the melt is 

taken up by a draw down godet rotating at 101 mpm (metres per minute). The filament is then 

passed upon two pairs of heated godets, which define the draw ratio and extension of the 

filament. The first of these two godets is heated upto a temperature of 80
o
C and with a 

spinning speed of 102 mpm, produces a very slight draw in the filaments. The third pair of 
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godets produces the largest change in the orientation of the chains and the crystalline 

structure of the filament. These godets are rotating at 505 mpm, thereby producing a final 

draw ratio of 5:1 from where the filaments are finally collected on a winder running at nearly 

505 mpm.  The draw ratio of 5:1 was found to be the optimal value of the drawing where a 

high β phase (~80 %) was observed and the filament could be processed continuously without 

any breakages, which usually occurred above this draw ratio (see supplementary 

information). While the filaments are being drawn between the second and third pair of 

godets, an electric field of the order of 0.6 MV/m is applied across the filament between two 

metallic electrodes to further enhance the β phase of the filaments. It should be mentioned 

here that the β phase is not controlled during the device fabrication i.e. fabric manufacturing 

but rather during the melt spinning of the PVDF fibre itself. The structural properties such as 

the yarn diameter, tensile strength and tenacity do not in themselves control the piezoelectric 

properties but rather are a consequence of the drawing and poling process during the melt 

spinning of the fibre. The advantage of the process is that it is considerably less time 

consuming, since the piezoelectric fibres are poled during the fibre production process itself 

and can be used as such without resorting to further modifications and poling [19, 20].  

 

Knitting of 3-D spacer piezoelectric fabrics 

The fabrics were knitted on a E20 (20 needles/inch) circular weft knitting double-jersey 

machine with a 30” diameter at a machine speed of 30 rpm (at Baltex Speciality Knitters Ltd., 

Derbyshire, United Kingdom). Figure 1 illustrates the specific knitted structure produced in 

this work using three different yarns: (i) conductive yarn A, (ii) insulating yarn B and (iii) 

piezoelectric yarn C [21]. The conductive yarn A (Shieldex® Ag coated PA66, 143/34 dtex 

with a resistivity of <1kΩ/m, supplied by Statex GmbH), is plaited on the outside of each of 

the fabric face; the insulating yarn B (84 dtex, false-twist texturised polyester yarn) is plaited 
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inside the structure in such a manner that it shows on the inside of the two fabric faces and 

finally the piezoelectric monofilament spacer yarn C (300 dtex), is tucked inside the two 

fabric faces. In fact, the polyester insulating layer (Yarn B) has been used for two main 

purposes: (i) providing resilience and reinforcement to the 3-D structure and (ii) insulating 

the Ag coated Polyamide against the opposite face. During the initial compression test, 

without the insulating yarn, it was observed that beyond a certain threshold of impact (>0.02 

MPa), the voltage output from the 3-D piezoelectric fabric structure was abruptly reduced to 

zero. On closer inspection, it was revealed that upon impact, due to the lower resilience of the 

structure, the PVDF spacer yarn was momentarily compressed / sheared to such an extent, 

that the two opposite conducting ends shorted out each other and hence no output was 

observed. Moreover, it was observed that the cutting of the fabric led to a lot of fraying from 

the loose ends of the Ag coated PA66 which could potentially connect the two opposite faces, 

thereby shorting it out. Thus, it was necessary to reinforce the structure as well as provide an 

insulating layer between the PVDF yarn and Ag coated Polyamide, so that in the cases of 

high impact, the integrity and the voltage output of the 3D piezoelectric textile is maintained. 

The two different knitted fabrics with and without the insulating yarn B are shown in Fig. 4 

(supporting information), where the colour contrast observed is due to the addition of the 

insulating yarn to the structure. For compression tests, a simple experiment was designed in 

which a compression plate was attached to the load cell in the Instron system. The fabric 

sample was then connected to a voltmeter, with the voltmeter being set for measuring 

continuity. The compression plates were moved at a cross-head speed of 1mm/min and as 

soon as continuity developed across the two opposite fabric faces (i.e. the two opposite faces 

touched each other), further testing was stopped and the force required measured. It can be 

clearly observed from Fig. 5 (supporting information), that the addition of insulating yarn has 

reinforced the compressive load which can be sustained by the 3D piezoelectric fabric, by a 
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factor of 6. In fact, the compressive strength of the 3D fabric without the insulating yarn was 

only 0.02 MPa which was enhanced to ~0.13 MPa upon the addition of the insulating yarn 

(Fig. 5, supporting information). Moreover, a difference in the compression behaviour of the 

fabrics could be observed, where the structure without the insulating yarn provided virtually 

no resistance at all to the compression; whereas in the 3D structure with insulating yarn, 

much higher resilience was observed in terms of the load required for compression as well as 

the two plateaus observed in the force extension curves. This behaviour of the 3D fabrics 

under compression is associated with good energy adsorption capacity under compression 

and impact is well documented and has been reported previously as well and [17, 18]. Since, 

the impact pressures range applied in this work is of the order of 0.02- 0.10 MPa, which is 

comparable to normal human walking, clearly the fabric structures without the insulating 

yarn are of little use in this study and the study focuses on the development and use of 3D 

piezoelectric fabric structures with the insulating layer only. It should be noted that the yarn 

C is tucked in such a manner that it does not protrude through either of the fabric faces and 

always remains inside the two faces keeping them apart. The total thickness of the fabric 

structure made in this work is approx. 3.5 mm, however it should be noted that this thickness 

can be varied between 2 mm to 60 mm, depending upon the type of knitting machine used 

and the end application. 

 

Characterisation  

The thermo-analytical and crystalline properties of the PVDF monofilaments are 

characterised with differential scanning calorimetry (DSC), carried out on a TA instruments 

DSC Q2000, in the temperature range of -50 to 200
o
C at a heating rate of 5

o
C/min (under N2 

atmosphere). For DSC analysis, the specimens were prepared by rolling small amount of 

fibres by tweezers and placed inside the aluminium pans. Further analyses of the DSC curves 
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were carried out by using vendor provided Thermal Analysis software. Quantification of 

piezoelectric β-phase was carried out by Fourier Transformed Infra-red spectroscopy (FTIR) 

analysis on Thermo Scientific IS10 Nicolet FTIR spectrometer coupled with the smart iTR 

accessory. Vendor provided OMINIC software was used to analyse the results, including the 

calculation of β content. Furthermore, X-ray diffractometer (D2 Phaser, Bruker, Co Kα λ= 

1.788970 Å, operating at 30 kV and 10 mA) was used to study the crystalline structure of the 

monofilaments. Piezoresponse Force Microscopy (PFM) measurements were carried out by 

using Agilent 5600LS scanning probe microscope, wherein a small section of the specimen 

was attached to the sample plate using silver paste. Platinum coated conductive tips (HQ: 

NSC14/Pt, Mikromasch) with typical resonance frequency of 160 kHz and a force constant of 

5 N/m were used. A gold wire was also connected to the sample plate to apply the AC bias 

between the sample plate and AFM conducting tip. To ascertain a flat surface on the filament, 

scans were performed on an area of 10x10 μm. During the experiments, the vertical 

piezoresponse were recorded and PFM amplitude-phase scans were performed with AC 

amplitude up to 10 V and at a frequency of 10 kHz. Solid state Nuclear Magnetic Resonance  

(NMR) experiments were performed on a Bruker 9.4 Tesla Avance-400 wide bore 

spectrometer, at frequencies of 400.1 MHz (
1
H) and 100.5 MHz (

13
C) and magic angle 

spinning (MAS) rate of 12.5 kHz. Data was acquired using cross polarization (CP) MAS (
1
H 

/2 pulse length 2.5 micro-seconds, 
1
H cross polarization field 70 kHz, 

1
H-

13
C cross-

polarization contact time 2.5 ms, broadband two phased pulsed modulated (TPPM) 

decoupling during signal acquisition at a 
1
H field strength of 100 kHz. Repetition time was 2 

seconds in all experiments. 
13

C chemical shifts were referenced to the signal of the methylene 

carbon of solid -glycine at 43.1 ppm relative to tetramethylsilane at 0 ppm and the total 

number of scans acquired was 30k. The impact testing of the fabrics was carried out by using 

an Instron Dynatup 9200 test rig with the open circuit voltage being measured directly on an 
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oscilloscope and current with an optimal resistive load of 470 kΩ. 

Results and discussion  

Microstructure of poled PVDF filaments 

Poly(vinylidene fluoride), PVDF, is a semi-crystalline polymer which has been widely 

investigated for its piezo, pyro-electric properties which are inherently related to its structure 

[20-25]. Upto five different crystal phases (α, β, γ, δ, ε) have been reported for PVDF out of 

which, α and β phases are the most common phases [20, 22]. PVDF primarily exists in the α-

phase, which is thermally stable and shows a TGTG′ (T-trans, G-gauche
+
, G′-gauche

−
) 

dihedral conformation wherein the molecular dipoles are anti-parallel, resulting in non-polar 

crystal structure (Fig. 2(d)) [20, 22-25]. The β phase shows an all TTTT conformation 

wherein the polar C-F and C-H bonds possess a dipole moment perpendicular to the carbon 

backbone (Fig. 2(d)). Additionally, all the chains are oriented parallel to the direction of 

dipoles, giving β phase the highest spontaneous polarisation among all the five phases. The β 

phase, which is kinetically stable under ambient temperature and pressure, is the phase that 

exhibits outstanding piezo- and pyroelectric properties and consequently for designing of 

piezoelectric fabrics, is the most interesting phase [20, 22-25]. In recent years, various 

techniques have been used to control and enhance the formation of β phase. The polar β 

phase in PVDF is usually obtained by controlled crystallization from solution [26], quenching 

and poling of the film [27] but most frequently by uniaxial or biaxial stretching of α phase 

films [28]. Other techniques such as electrospinning technique [29] and more recently melt 

spinning under strong electric field [19, 20] have also been explored. Furthermore, the 

incorporation of various nanoparticles such as multiwalled carbon nanotubes [30], graphene 

oxide (GO) [31] or reduced graphene oxide (RGO) [32], and other polymers [33] into PVDF 

matrix have also been shown to influence the crystallization behaviour of PVDF.  
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Figure 2 (a) shows the SEM images of poled and stretched PVDF fibres, where the 

formation of fibril like structures, created during the stretching of the polymer chains from 

the melt, can be observed. The literature reports that during the melt spinning processing of 

PVDF filaments, the fibres are subjected to strong uniaxial drawing at high speeds which 

introduces a strong elongation force in the direction of draw, creating molecular orientation 

which leads to an increase in the crystallisation [20, 22-25]. The further drawing of the fibre 

enhances the mechanical properties and is accompanied by orientation of the crystallites 

along the fibre axis. It has been shown that with drawing, the α-phase crystallites begin to 

shear apart and deform into small crystallites, some of which convert into β-phase [22, 23, 

33]. This transformation is associated with the transformation of the spherulitic 

microstructure via the “tearing-away” of small areas from the lamella and formation of 

micro-fibrillar structure [25, 34]. Thus, the stretching or cold drawing (below melting point) 

of the fibre leads to an increase in the crystallinity and consequently the strength of the fibre 

as ascertained by the DSC analysis (see supporting information). DSC is a thermo-analytical 

technique often used to identify and quantify the crystalline phases of the polymers. Figure 

2(b) shows the DSC curves for the starting PVDF pellets and poled melt-spun fibres; which, 

both of which display an endothermic peak at ~170
o
C. However, for the poled melt-spun 

fibres, the endotherm is much narrower, implying a more uniform distribution of the 

crystalline phase as compared to the endotherm of the pellets which displays nearly two 

distinct melting peaks, corresponding to the presence of multiple phases. Now, the 

assignment of absolute melting temperature for different crystalline phases has been 

contentious and instead a melting range exists for the different crystalline phases [24]. 

According to Prest and Luca [35], the expected melting temperature, represented by the 

endothermal peak, of the α-phase of PVDF is 172
o
C while Gregorio and Cestarini [36] refers 

that it occurs at 167
o
C. On the other hand, β crystallites have been reported to present a 
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melting temperature similar to α-PVDF [37, 38] and therefore, DSC is not used often to 

distinguish these two phases, but to calculate the crystalline percentage of the film [24]. The 

degree of crystallinity (ΔXc) of each sample can be calculated according to the following 

equation:  

    
    

      
                                           1 

where ΔHm is the melting enthalpy of the sample and ΔHm100 is the melting enthalpy for 

100% crystalline material [24, 36-38]. For starting pellets, a low crystallinity of the order of 

38.6% is observed which is enhanced to nearly 52.1% for melt spun monofilaments. In fact, 

the ΔXc shows a rapid increase with the increase in the draw ratio until the draw ratio of 5:1, 

beyond which it starts to reduce (see supporting information for detailed discussion). Similar 

results have been reported by various groups such as Lund et al, Gregorio et al and Gomes et 

al among others [22-25, 33, 34]. 

  The FTIR spectrum of melt-spun filament and the starting pellets is shown in Figure 

2(c). It can be clearly observed that the starting pellets consist of primarily α-phase, as 

evident by the strong characteristic absorbance bands at 760, 796 and 974 cm
-1

 [25, 37-40]. 

For poled melt-spun fibres, the emergence of peaks at 840, 1276 and 1430 cm
-1

 

corresponding to the β phase can be clearly observed, along with a corresponding decrease in 

the peak at 760 cm
-1

 [37-40]. Furthermore, this change in the β-phase can be quantified using 

the following equation: 

        
  

     
  

  

           
                                       

where Aα and Aβ are their absorption bands at 760 and 840 cm
-1 

[25, 37-40]. Using the above 

equation, the β-phase content for pellets is calculated to be ~39.1 % and for poled melt-spun 

fibres the value is nearly 80%. Similar results have been observed by various authors where it 

was shown that both the stretching temperatures (80-100
o
C range) as well as the drawing 
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ratios have a detrimental effect on the β-phase content [25, 37-40]. It has been suggested by 

Lund et al., that an increase in the drawing ratio leads to a higher conversion from the α-

phase to β-phase with a strong correlation between the drawing speeds and the conversion 

between the phases [22, 41]. During melt extrusion of PVDF monofilaments, the filaments 

are subjected to uniaxial drawing at moderate to high rates, depending upon the take-off 

speed on the winder [22, 33, 41]. This uniaxial drawing introduces a strong axial flow 

creating molecular orientation along the drawing direction, leading to an increase in 

crystallisation [22, 33, 41]. This crystallisation also changes the morphology of the structure 

from spherulitic (predominantly α phase and at low drawing ratios) to more fibril like 

(predominantly β phase and at high drawing ratios done at high speeds (~500 mpm) [22, 33]. 

Also, the presence of the applied electric field further promotes the formation, alignment and 

locking-in of the β-phase and is discussed further in the later sections. The X-ray 

diffractograms obtained for PVDF pellets and poled melt-spun fibres are shown in Fig. 2(d). 

The results show that the melt spinning followed by drawing has a profound effect on the 

formation of β phase in the monofilaments. In the XRD scan of starting PVDF pellets, a peak 

at ~ 21.3
o
, corresponding to a sum of diffractions from the (100) and (020) planes is observed 

along with another diffraction peak at 23.1
o
 corresponding to (110) plane [20, 24, 42, 43]. 

The diffraction from (021) plane leads to the appearance of peak at 30.9
o
. All these three 

peaks can be characterised to α phase of PVDF [20, 24, 42, 43]. Upon the melt spinning 

process, only one peak at 24
o
 can be observed, which peak refers to the sum of (200) and 

(110) β-phase diffraction planes and may include diffractions from residual (110) α planes 

[20, 24, 42, 43]. The broadening of the peak attributed to the β-phase can be attributed to 

multiple factors such as small crystallite size and defects in crystalline lattice due to 

occurrence of unit cells with deviating dimension [22]. During melt spinning at high draw 

ratios and fast godet speeds, the phase transformation occurs via the deformation of α-
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crystallites into smaller crystallites which are then converted to β-phase and hence the 

broadening of the peak can be largely ascribed to the small crystallite size. The presence of a 

small shoulder is also observed at 21.5
o
, which can be attributed to the residual α content 

present. These results are in agreement with the FTIR and DSC results where the formation 

of β phase was confirmed along with the presence of some residual α phase. 

  As mentioned earlier, the presence of applied electric field (poling) during drawing 

promotes the formation and locking in of the β-phase domains. The 
13

C NMR spectroscopy 

of PVDF has not been extensively reported and from the existing solution-state 
13

C NMR, the 

–CH2 and –CF2 of the main chain have been identified along with the low-intensity signals 

which have been ascribed to –CF2 and –CH2 in defect units. The difference in the –CH2 

carbon shifts of α and β phases has been observed in solid-state NMR by filtration of the 

amorphous phase using a post CP T1p filter, where α and β phases give rise to signals at 43.0 

and 42.1 ppm. Figures 2(e) to 2(g) show the 
13

C-NMR result of the poled and unpoled melt-

spun PVDF fibres. Since, both of the samples have same draw ratios and similar β phase 

values (see supporting information), there should no be any variation in the –CH2 and –CF2 

NMR shifts. However, significant changes in the line shape and line width of the –CF2 (~122 

ppm) and specifically the –CH2 carbon (~44 ppm) are observed after the poling of the fibre. 

Both these bands show sharpening after poling which can be attributed to a change in the 

distribution of the backbone torsion angles, which tend to alter under the applied electric field 

present during the poling process [44-46]. As a consequence, the proportion of cis:trans 

conformation around the atomic microenvironments is changed and hence the distribution of 

chemical shifts changes in the polymeric backbone. In addition to the main resonance lines of 

CH2 and CF2, further low intensity signals are observed in the range of 26 ppm. These shifts 

can be interpreted as arising from head-to-head or tail-to-tail sequences in the chain and occur 

due to the presence of defects in the structure which can be as high as 5-6%. Thus, the 
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simultaneous drawing and the application of electric field helps in the formation of β phase 

wherein the distribution of –CF2 and –CH2 is altered further leading to a possible 

enhancement in the β phase [44-46].  

 

Piezoelectric effects in PVDF filaments and 3-D spacer textiles  

  Now, it is of particular importance to determine the piezoelectric constant d33, the 

induced polarization per unit stress applied in the out-of-plane (poling) direction. 

Piezoresponse force microscopy (PFM) has become the accepted method for quantifying d33 

where small displacements are involved [47-49] For PFM, an alternating current signal is first 

applied between a conducting atomic force microscope (AFM) tip (usually Pt) and a bottom 

contact electrode after which the conducting tip is brought into contact with the surface. The 

electromechanical response of the sample is detected as the deflection of the tip that 

simultaneously supplies simultaneously applies ac bias and detects vertical electromechanical 

response through tip deflection. The ac amplitude was ramped from 0 to 9V and effective 

piezoelectric coefficient was calculated from linear fit between displacement and the ac bias 

amplitude. The piezoelectric constant d33 at any given point can be described by the 

following equation: 

                                         Eq. 3          

where   is the amplitude of the piezoresponse signal, A is  the amplitude of the testing AC 

voltage and δ is the conversion factor between the mechanical displacement of the PFM tip 

and the electrical deflection signal [49]. Figure 7(a-d) shows the acquired topography and 

piezoelectric amplitude images of the obtained of poled and unpoled melt-spun fibres (drawn 

at the same draw ratio). It can be clearly observed that poled melt-spun fiber shows higher 

Piezoresponse and using the equation shown of with an effective d33 value of nearly 17.1 

pm/V as compared to 7.68 pm/V obtained for the unpoled melt-spun fiber. Now, the results 
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from the FTIR analysis show that the β phase for both the poled and the unpoled samples is 

quite similar to each other and hence, there should not be any major differences between the 

d33 values for the samples (see supporting information). However, the d33 value of the poled 

sample is nearly twice that of the unpoled sample. It can be argued that while the initial 

drawing of the monofilament provides the orientation of the crystallites in the direction of the 

drawing, the dipole formation via the re-orientation of the -CF2 groups occurs during the 

application of the electric field only. This assumption is supported by the NMR analysis 

where a change in the proportion of the cis:trans conformation around the polymeric 

backbone was observed upon the application of electric field. 

 As mentioned earlier, until now the only way to integrate piezoelectric component into the 

textiles was to actually embed the commercial PVDF film based sensors inside the textiles by 

stitching them together or through nonwoven PVDF fabrics made by electrospinning or by 

transferring the brittle nanowires onto a flexible substrate which is further integrated to the 

textile structure [1, 5, 12]. However, for true integration to occur, the textiles themselves 

should become the active component and not just act as a matrix to hold the active 

component in place. While, a few attempts have been made to make simple 2-D textile 

structures using piezoelectric and conductive yarns, the use of nonwoven or electrospun 

fabrics makes the process difficult to scale up [1, 2, 4, 14]. Moreover, the 2D textile 

structures are prone to fatigue and on extended use over time the textile structures will fail 

[17, 50]. For the all fibre piezoelectric generator produced in this work, with an effective area 

of 15 cm x 5.3 cm, the peak values of the open-circuit voltage and current were found to be 

14 V and 29.8 μA, respectively at an applied pressure of 0.106 MPa. In fact, the total power 

output increases from 0.08 mW to 0.4 mW over the measured impact range of 0.02 MPa to 

0.106 MPa, as shown in Figs. 4(a) to 4(c). The power output of the piezoelectric fabric can be 

modelled by using the following equation:   
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                   ⁄   
                                   Eq. 4 

 

where x is the applied impact pressure and power output is measured in μWcm
-2

. The 3D 

structures provide nearly five times the output power density, with a maximum power density 

of 5.07 μWcm
-2

 (vs. 1.18 μWcm
-2

 for knitted 2D structures, see supporting information). The 

power densities from 3D piezofabric are much higher than those reported for 2D nonwoven 

NaNbO3-PVDF nanofibre based generators which provide a power output of 2.15 μWcm
-2

 

(corresponding to an output of 3.4 V and 4.48 μA, at impact pressures of 0.2 MPa) [1] and 

electrospun nonwoven PVDF fabrics which generated nearly 3.2 μWcm
-2

 (corresponding to 

2.05 V and 3.12 μA at impact pressures of 0.05 MPa) [2]. These values are also significantly 

higher than 0.43 V and 0.78 μA achieved by PVDF nanofibre based generators and 3.2 V and 

72 nA achieved by NaNbO3 nanowires in PDMS envelope, which provide an effective power 

output of 0.115 μWcm
-2 

[16]. The excellent performance of our novel generator can be 

attributed to the following factors: (i) high β phase of the PVDF fibres, (ii) enhanced charge 

collection due to intimate contact between the PVDF fibres and conductive yarns leading to 

improved efficiency and (iii) transfer of the uniform compression pressure across the fabric 

surface. The 3D structure of the fabric makes it quite “porous” in nature and hence relatively 

easy to compress. When the structure is impacted, then the direction of the applied force and 

the direction of the produced dipoles is the same, hence making the active mode as d33 

(transverse mode). Due to the largely insulating nature of the PVDF fibres, the generated 

charges are separated at the opposite faces resulting in a potential difference across the 

thickness of the fabric structure [1]. Furthermore, these energy harvesting textiles can be 

coupled up with the knitted and screen printed carbon-fibre based supercapacitors for energy 

storage in wearable electronics which opens up a completely new field of textile based energy 

harvesting and storage [51, 52].  
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In order to test the performance of the nanogenerators, mechanical input induced electrical 

outputs are often measured for a large number of nanofibres of the piezoelectric material [4, 

53, 54]. These signals are often very small (mV voltage output and nA-μA current range) and 

are difficult to measure due to the nature of the small size of the nanofibers. It is especially 

problematic when dealing with single nanofiber structures such as ZnO based nanogenerators 

[4, 53, 54]. For example, the capacitance changes between the wires and the electrodes and 

possible electrical coupling of the measurement instruments could surpass the real nanofiber 

signals [4, 53, 54]. Therefore, it is important to filter out or reject noises generated from the 

surrounding experimental environment. Some of these experimental validation conditions 

have been previously proposed for semiconductor-based or ceramic-based nanogenerators 

such as ZnO nanowires including Schottky behaviour, switching polarity and superposition 

test; for PVDF nanogenerators, the Schottky behaviour test does not apply [4]. For 3D 

piezoelectric fabrics, upon reversing the electrode connections, a switching in the polarity of 

the observed signal was observed, demonstrating that the output signal is indeed from the 3D 

piezoelectric fabric only rather than instrumental noise or any other artefact (see fig. 6, 

supporting information). To observe the superposition phenomena, both the samples need to 

be impacted simultaneously. To this effect, instead of using two large sample sizes (15 x 5.3 

cm), the samples were cut into smaller sizes of approx. 5 cm x 6 cm to accommodate under 

the impact tester with an applied impact pressure of ~0.02 MPa. During the impact tests, the 

samples were impacted simultaneously in different configurations where (a) the output of the 

two samples would add up and (b) the output of the two samples would cancel out each other. 

In the condition where the sample output added up together a voltage of nearly 8 V was 

obtained (each of the samples on individual tests showed a voltage output of nearly 4.3 V 

each at same applied impact pressures). In the case when the samples were such connected 
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that they would cancel out the voltage output of each other a voltage of nearly 1 V was 

observed as shown in Fig. 7 (supporting information) 

   Now, the technologies for knitting of 3D spacer fabrics have been around for 

over three decades now [17, 18] and the underlying technology and understanding is highly 

developed. However, we understand that there have been no previous reports on the use of 

3D spacer fabrics as energy harvesting fabrics and as is the case with every technological 

development, there are some foreseeable technical challenges which include: (i) optimisation 

of positioning, spacing and the thickness of the spacer piezoelectric yarn and its arrangement 

in the 3D structure to enhance the piezoelectric response; (ii) optimisation of fabric density, 

thickness of the spacer fabric for different applications, (iii) ensuring that the conducting 

yarns used in the opposite faces do not come in contact with each other during the knitting 

process or during the cutting procedure, (iv) as the textiles are intended for use as wearable 

energy harvesting textiles, the important factors such as air permeability, wicking properties, 

stretchability and recovery need to tested and controlled to provide high level of comfort to 

the user, and finally (v) the effects of wear and tear, washing and regular use also need to be 

verified to ensure reproducibility of the piezoelectric response and provide a certain lifetime 

value for the fabric. Especially, the conductivity of the Ag coated PA66 yarn, which is 

responsible for charge transfer across the faces of the fabric needs to be monitored carefully 

over the lifetime of the 3D piezoelectric fabric. The measurements of the electrical output as 

a function of number of impact cycles (~ 150 cycles, see Fig. 8, supporting information) was 

conducted to comment on the stability of these 3D piezoelectric fabrics. It can be clearly 

observed that the electrical output shows very little variation of 9.93 ± 0.47V in the time 

duration tested. Thus, the 3D piezoelectric fabrics can provide an efficient and novel way to 

overcome the stability issues presented by the poor fatigue resistance of the metallic 

electrodes [1, 15, 16, 55]. Further tests are being carried out to assess the long-term stability 
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and durability of the fabrics and will be the subject of a separate study. Further work on the 

coupled mechanical and piezoelectric analysis of the 3-D fabric generators is under way to 

ascertain the complex relationship between the structure of the fabric and power output and to 

enhance it further.  

Conclusions  

In summary, a novel all fibre piezoelectric nanogenerator comprising of principally β-phase 

PVDF fibres in a three dimensional spacer structure, with Ag coated Polyamide yarn as the 

charge collecting conducting faces, has been designed, developed and fully characterised. 

The phase change from a predominantly α phase in raw pellets to nearly 80% β-phase in 

filaments has been obtained by drawing of the fibre under an applied electric field. The α to β 

phase transition has been quantified by using a variety of techniques including FTIR, DSC, 

NMR, XRD and PFM analysis where it was observed that the application of electric field has 

a profound effect on the rotation of the –CF2 and –CH2 groups responsible for the 

introduction of the piezoelectric phase in PVDF. The 3D spacer piezoelectric fabrics exhibits 

power density in the range of 1.10 μWcm
-2

 to 5.10 μWcm
-2

 at applied impact pressures of 

0.02 MPa to 0.10 MPa. This all fibre piezoelectric fabric possesses the advantage of efficient 

charge collection due to intimate contact of electrodes and uniform distribution of pressure on 

the fabric surface, leading to enhanced performance. Also, the fabric can be cut into any 

shape and size without compromising on its flexibility and offers a simple route to 

integration. Moreover, the “feel” of the all-fibre piezoelectric generator is not very different 

from any other conventional textile material and is soft and flexible providing potential 

maximum level of comfort to the wearer. Bearing all these merits in mind, we believe our 

method of producing large quantities of high quality piezoelectric yarn and piezoelectric 

fabric provides an effective option for the development of high performance energy-
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harvesting textile structures for electronic devices that could be charged from ambient 

environment or by human movement. 
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Figure Captions: 

Fig. 1 (a) Schematic of fabric structure with the position of various yarns in the structure, (b) 

cross-sectional SEM image of the actual fabric clearly showing the position of piezoelectric 

and conductive yarns  

Fig. 2 (a) SEM images of the poled and drawn fibre, (b) DSC scans of the starting PVDF 

pellets and the prepared fibres showing the stark change in the melting endotherms, (c) 

enhancement of vibration associated with β phase measured with FTIR, (d) XRD spectra of 

pellets and fibres showing the enhancement of the β phase , (e-g) NMR data showing the 

change in the peak shapes of –CH2 and –CF2 signals for poled melt-spun and unpoled melt-

spun fibres, the torsion angles φ1 is -CF2 centred and φ2 is -CH2 centred   

Fig. 3 Simultaneously obtained PFM topography of (a) poled melt-spun fibre and (d) unpoled 

melt-spun fibre (the red arrow shows the stretching direction); PFM phase of (b) poled melt-

spun fibre and (e) unpoled melt-spun fibre; and PFM amplitude of (e) poled melt-spun fibre 

and (f) unpoled melt-spun fibre 

Fig. 4 (a) Schematic structure of the packaged 3D piezoelectric fabric power generator; 

typical (b) voltage and (c) current outputs of the 3D piezoelectric fabric (obtained at impact 
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pressure of 0.034 MPa across a 470 kΩ load), (d) variation of total output power as a function 

of applied impact pressure for 2D and 3D piezoelectric fabrics.  
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Fig. 2 of 4 
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Fig. 3 of 4 
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Fig. 4 of 4 
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1. FTIR analysis of PVDF fibres at different draw ratios:  

The FTIR spectrum of monofilaments drawn and poled at different ratios is shown in figure 

1(a). It can be clearly observed that the free-fall fibres (unpoled and undrawn fibres at a draw 

ratio of 1:1) consist of primarily α-phase, as evident by the strong characteristic absorbance 

bands at 760, 796 and 974 cm
-1

 [1, 2]. Previous reports from literature have reported that the 

uniaxial stretching of PVDF films and fibres results in the appearance of β phase [1, 2]. From 

figure 1(a), it can be observed that upon drawing in the presence of electric field, the 

formation of β phase is promoted. The peaks at 840, 1276 and 1430 cm
-1

 corresponding to the 

β phase can clearly be observed with an increase in the drawing ratio, with a corresponding 

decrease in the peak at 760 cm
-1

, corresponding to the α-phase [1,2]. Furthermore, the β phase 

for all the samples can be calculated using the following equation: 

 

where Xα, Xβ are crystalline mass fractions of α and β phase and the Aα and Aβ are their 

absorption bands at 760 and 840 cm
-1 

[1, 2]. Using the equation shown above, the calculated 

β content for unpoled undrawn fibres is approx. 39.1 % and for drawn and poled samples 

increases rapidly (upto a draw ratio of 5) as a function of the drawing rate to reach nearly 

78.9 %. Beyond the draw ratio of 5:1, the increase in the β phase is much slower and reaches 

a maximum value of approx. 83% at a draw ratio of 8:1. It must be mentioned here that at 

high draw ratios beyond 7:1 in continuous production, the yarn breaks frequently. Also, on 

comparison of poled and unpoled samples (only drawn, without the application of electric 

field), a marginal change in the β-phase was observed for poled and drawn samples as shown 

in Fig. 1(b) and Fig. 2(b).  

 

     
      

 =   
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Fig. 1: FTIR spectra of (a) poled and (b) unpoled PVDF fibres drawn at different draw ratios 

 

2. DSC analysis of PVDF fibres at different draw ratios:  

To measure the variations in the degree of crystallinity as a function of draw ratio and poling, 

the samples were subjected to DSC scans, wherein the degree of crystallinity (∆Xc) of each 

sample was calculated according to the equation: 

    
   

      
       

where ∆Hm is the melting enthalpy of the sample and ∆Hm100 is the melting enthalpy for 

100% crystalline material [3-5]. The value of ∆Hm100 for 100 % β phase PVDF was taken to 

be 104.7 J/g and ∆Hm was calculated from the area of the endothermic melting peak [3-5].  
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Fig. 2: (a) DSC analysis of poled PVDF samples and (b) variation of β-phase content and 

ΔXc as a function of draw ratio and poling.  

 

As observed in Fig. 2(a), all the samples show an endothermic melting peak in the region of 

165-175
 O

C with some variations in the position and width of the melting peak. The degree of 

crystallisation, ∆Xc for the unpoled undrawn samples was nearly the same as that of PVDF 

granules at 40.3 %. For PVDF granules, the melting temperature is observed at approx. 175 

O
C with a low degree of crystallinity, ∆Xc of the order of 38.6 %. However, upon the cold 

drawing and poling of the monofilament fibres, the crystallinity of the fibres is enhanced as 

evident by the temperature shift and the narrowing of the endotherms from nearly 175
o
 C for 

unpoled undrawn fibres to nearly 170 
O
C for poled and drawn fibres (draw ratio 5:1). Also, 

the degree of crystallisation, ∆Xc shows maxima for a draw ratio of 5:1 of nearly 52.1%. In 

fact, the ∆Xc shows a rapid increase with the increase in the drawing ratio until the draw ratio 

of 5:1, beyond which it starts to reduce as shown in Fig. 2(b). While the initial enhancement 

in the crystallinity of the monofilaments can be attributed to an increase in the β phase due to 

drawing and poling of the samples, the lowering of the β phase at higher drawing ratios can 

be attributed to various reasons. According to the theory put forward by Sajkiewicz et al. [6], 

the variation in the β phase can be related to the presence of a transition/initiation temperature 
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for the conversion of α  β phase. At this transition temperature (of nearly 65 
O
C, as reported 

by Sajkiewicz et al., [6]) the chain mobility in the disordered regions increases greatly so that 

the stress generated during the uniaxial drawing is transferred into the crystals to rearrange 

them into all trans-planar β phase. At higher draw ratios, the subsequent increase in the chain 

mobility mainly results in the crystal reorientation along the direction of the drawing without 

considerable conformal change in the crystal structure leading to the suppression of β phase. 

This is however in contradiction to our FTIR results, which show a nearly incremental 

increase in the β phase even at draw ratios above 5:1. According to Hellinckx et al [7] and 

Gomes et al [3] the reduction in the crystallinity suggests that the mechanism of phase 

transformation is associated with a melting and posterior recrystallization along the draw 

direction of the polymer chains within the crystallites. Also, it is noted that with the increase 

in the draw ratio, the endotherms get narrower implying that the crystallite distribution is 

much more homogeneous. Thus, on drawing, a reorganisation of the crystals occurs and the 

parts of the chains that belong to the interphase region become more ordered thereby 

becoming part of the crystalline region [8].   

 

3.  Flexibility of 3D piezoelectric fabrics:  

Recent studies by Zeng et al [10] have indicated that the failure of simple Aluminium based 

sheet electrodes under cyclic compression can be attributed to the stress concentration at the 

edges of the impact area [1]. Moreover, under compressive impacts, the flat foil electrodes do 

not facilitate the occurrence of local strain gradients and associated charge generation, unlike 

the 3D piezoelectric fabric incorporating Ag coated PA66 electrodes. The aspects of 

achieving high flexibility have been addressed by fabricating a single fabric structure which 

incorporates flexible polymeric materials such as PVDF, Ag coated PA66 and Polyester 

yarns. The absence of any metal foils/metallic films makes the structure highly flexible and 
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the structure can be flexed quite easily (Fig. 3 below). In fact, for the 3D fabric structures, the 

flexural rigidity and the bending modulus tests, carried out using BSI 3356, provided values 

of 11.25 g/cm and 3.14 kg/cm
2
, respectively. The value of bending modulus is of the same 

order as that of cotton based fabrics which have been reported in the literature, indicating that 

the fabrics are quite flexible in nature.  These values are very much similar to those reported 

for cotton based fabrics in the literature and shows the high flexibility of the 3D piezoelectric 

fabrics.  

 

Fig. 3: Digital photograph of 3D piezoelectric fabric folded multiple times to demonstrate the 

flexibility of the fabric structure  

 

4.   Effect of addition of insulation yarn “Yarn B” on the compression properties of 3D 

piezoelectric fabrics: 

The insulating yarn “Yarn B” is used to reinforce the 3D piezoelectric fabric structure. As 

mentioned in the main text, the maximum load that the 3D fabric (without insulating yarn) 

can take without the two opposite conducting faces touching each other is <0.02 MPa, which 

is very low. Upon the addition of insulating yarn, this maximum value of load increases to 
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approximately 0.13 MPa, thereby ensuring much higher energy adsorption capacity which 

will ultimately manifests into much more durable 3D piezoelectric textile structures.  

 

Fig. 4: Digital photograph of 3D piezoelectric fabrics with and without the insulating yarn 

 

 

Fig. 5: Compression tests carried out on the fabric (a) with and (b) without the insulation 

yarn added to the 3D structure.   

    With Insulating yarn                              Without Insulating 
yarn 
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5. Superposition, polarity switching tests and stability tests: 

To confirm that the voltage signal being obtained is from piezoelectric effect only, both the 

polarity-switching and superposition tests were carried out. For 3D piezoelectric fabrics, 

upon reversing the electrode connections, a switching in the polarity of the observed signal 

was observed, demonstrating that the output signal is indeed from the 3D piezoelectric fabric 

only rather than instrumental noise or any other artefact (see Fig. 6 below).  

 

Fig. 6: Switching of the output signal on reversing the electrode connections 

To observe the superposition phenomena, both the samples need to be impacted 

simultaneously. To this effect, instead of using two large sample sizes (15 x 5.3 cm), the 

samples were cut into smaller sizes of approx. 5 cm x 6 cm to accommodate under the impact 

tester with an applied impact pressure of ~0.02 MPa. During the impact tests, the samples 

were impacted simultaneously in different configurations where (a) the output of the two 

samples would add up and (b) the output of the two samples would cancel out each other. In 
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the condition where the sample output added up together a voltage of nearly 8 V was 

obtained (each of the samples on individual tests showed a voltage output of nearly 4.3 V 

each at same applied impact pressures). In the case when the samples were such connected 

that they would cancel out the voltage output of each other a voltage of nearly 1 V was 

observed as shown in Fig. 7 below. 

 

Fig. 7: Voltage response of two samples (S1, S2) and the superposition voltage output with 

additive effect and negating effect.  

The measurements of the electrical output as a function of number of impact cycles (~ 150 

cycles, ) was conducted to comment on the stability of these 3D piezoelectric fabrics. It can 

be clearly observed that the electrical output shows very little variation of 9.93 ± 0.47V in the 

time duration tested.  
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Fig. 8: Voltage response of 3D piezoelectric fabric measured over 150 test impact cycles. 

 

6. Power output from 2D knitted fabrics 

The as prepared PVDF monofilaments were hand knitted into fabrics on a flat V bed 

DUBIED NHF2 100 c/m J.36 hand-knitting machine. This knitted fabric was tested for its 

piezoelectric voltage response by connecting two electrodes (Electrolycra, resistance 50 Ω/m) 

on the opposite faces of the fabric; which were further connected to an oscilloscope. The 

samples were impact tested using the same conditions as that for 3D piezoelectric fabrics. 

The voltage and current response for the 2D knitted fabric is shown in Fig. 9.  
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Fig. 9: Voltage and current measurement from 2D knitted fabrics  
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TOC entry 

 

 

Using “3D-spacer” technology, we demonstrate novel all-fibre piezoelectric fabric power 

generators. The single-structure generator comprises 80% β-phase PVDF spacer 

monofilaments interconnected between woven Ag/PA66 electrodes. The structure provides 

power density of 1.10-5.10μWcm
-2

 at applied impacts of 0.02-0.10MPa, nearly five times 

higher than existing 2D structures. 
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Broader context: 

The harvesting of waste energy from ambient environment and human movement has long 

been considered as an attractive alternative over traditional rechargeable batteries for 

providing electrical power to low-energy consumption devices such as wireless body worn 

sensors and wearable consumer electronics. However, the materials and device architectures 

demonstrated in the literature are not always amenable and do not provide the right “feel” and 

comfort level to the user. Moreover for piezoelectric application, the usage of metallic films 

usually limits their lifetime owing to their poor fatigue resistance to impacts. Using “3D 

spacer” technology, we demonstrate all-fibre flexible soft piezoelectric power generators for 

energy harvesting applications. A simple process utilising established knitting techniques can 

provide 3D piezoelectric fabric structure with integrated metallic electrodes whose flexibility 

is comparable to that of conventional fabrics. These 3D piezoelectric fabrics are highly 

suitable for applications such as wearable electronic systems, energy harvesting from human 

movement, body-worn sensors among others.  
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