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Abstract  

A systematic approach to the study of crystal growth is presented. This approach is based on 

finding the minimum energy path(s) for crystal growth units docking at the interface. Here, 

we demonstrate the string-optimizing technique of the Finite-Temperature String (FTS) 

method with the theoretical approach of Liu et al. to study the configuration free energies of 

molecules in higher dimensional space. Using the molecular dynamics simulation and 

interfacial analysis of morphologically important (010) and (011) faces of α-glycine crystals 

in aqueous solution as an example, we extend previous works and show that the FTS method 

can be used to calculate fraction of growth units and activation energies of flexible molecules 

present at the crystal-solution interface. We then discuss our work on the (010) surface of β-

glycine grown in mixed-solvent, and show that the presence of methanol molecules can 

inhibit crystal growth. 

 

 

1. Importance and Difficulties of Studying Crystal Growth in Solutions 

 

The molecular mechanism of crystal growth in solution is an essential step towards predicting 

crystal morphology. Since the shape of a crystal influences its physical and chemical 

properties, the study of crystal growth is of great importance to the chemical and 

pharmaceutical industry 
1
. However, the molecular mechanism induced by the solution 

environment (i.e. level of supersaturation, solvent used and solution purity) at the crystal 

interface is not fully understood 
2
. Thus crystal growth in solutions is an active area of 

research. 
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Although there are many experimental techniques 
1, 3, 4

 to study crystal growth in 

solutions, most are unable to provide an atomic scale of resolution at the crystal-solution 

interface, and/or have problems investigating fast growing and high-energy surfaces 
5
. Whilst 

purely atomistic computer simulations can in principle be applied for such purposes, and have 

indeed complemented experimental results, they are extremely time consuming and demand 

large computational resources. A way forward is to use a multi-scale approach 
6-8

 that 

combines computer simulation with thermodynamic analysis. However, such an approach 

requires the development of a novel technique if flexible or complicated molecules were to be 

investigated. In this paper, we present such a technique. This technique is computationally 

cheap, reliable and robust. It can be easily extended to arbitrarily complicated and flexible 

molecules, and enables the results of desktop computer simulations to be extrapolated 

towards the thermodynamic limit.  

 

2. FTS Method and String Optimization  

 

The Finite-Temperature String method (FTS) has been used in the past to study the transition 

mechanisms and transition rates between metastable states in systems with complex energy 

landscapes 
9-11

. Examples of such phenomena include the conformation changes in 

molecules, chemical reactions and phase transitions. In such cases, the FTS method is used to 

the generate free energy surfaces and calculate the minimum energy paths (in the 

implementation by Vanden-Eijnden and Venturoli 
10

, for example, the free energy space is 

generated via sampling within the Voronoi cell associated with discretized points lying on a 

string). Because the FTS method samples the free energy surface in locally important regions, 

it is able to detect the metadynamics of the system, enabling the study of transition states in 

great detail. However, the FTS method has never been used in the study of crystal growth. 

This is because in crystal growth, reaction pathways are highly-dimensional, and are often 

degenerate with many barrier-crossing events, making the generation of free energy surface 

via local importance sampling computationally expensive. Nevertheless, we will show that if 

the free energy surface can be generated via alternate means, it can be combined with the 

string optimization component of the Finite-Temperature String method to approximate the 

generalised reaction coordinate for crystal growth.  Therefore it can be used in cases where 

the free energy, and thus activation energy, reside on a hypersurface (i.e. where the free 

energy is a function of n-dimensions, and n ≥ 3).  
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In the present paper, we use the string-optimizing component of the FTS method together 

with the theoretical approach of Liu et al. 
7, 8

 to create a novel technique that can be used to 

calculate fraction of growth units and activation energies of flexible molecules at the crystal-

solution interface. As an example, we extend and formalize an earlier work on α-glycine 

crystals grown from solutions 
6
. We then discuss our work on the (010) surface of β-glycine 

grown in mixed-solvent. 

 

The premise of the string-optimization technique of the FTS method lies in finding the 

minimum energy path(s) (MEP) between two points ‘a’ and ‘b’ in a given energy landscape 

by repeatedly iterating an arbitrary curve called a string (Fig. 1).  A string is a path, ϕ , that 

will connect an arbitrary initial configuration ‘a’ to a final desired configuration ‘b’. Each 

iteration of the string method brings the string closer towards the minimum energy path, MEPϕ

(Fig. 2): 

 

 lim
MEP n

n
ϕ ϕ

→∞
=  (1) 

  

where n is the number of iterations. Mathematically speaking, given an energy landscape 

( )V x , defined on a suitable vector space x , the FTS method seeks to find a string MEPϕ  

between points ‘a’ and ‘b’ such that the normal force experienced by the string ( )MEPϕ⊥f   is 

zero everywhere: 

 

 ( ) 0MEP Vϕ⊥ ⊥= −∇ =f  (2) 

 

This is akin to finding the global minimum of the functional 

 

 

( )

( )

[ ] ( ( )) ( ( ))

b

T

a

F d

σ

σ

ϕ σ ϕ σ ϕ σ⊥ ⊥= ∫ f f  (3) 

 

over all paths connecting ( ( ))aϕ σ  to ( ( ))bϕ σ . Here σ is a parameterization variable that 

increases monotonically from one end of the string such that ( ( ))aϕ σ denotes the start of the 

string and ( ( ))bϕ σ denotes the end of the string. 
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3. Generation of the Free Energy Surface  

 

In the case of crystal growth, the string-optimization component of the FTS method must be 

applied to an energy landscape that represents the crystal-solution interface. Although the 

FTS method is able generate free energy surfaces 
10

, it is computationally expensive and may 

not be feasible for the highly dimensional space found in crystallization. As such, we 

generate the energy landscape by using standard molecular dynamics simulations at the 

crystal-solution interface 
6-8

, and by using a statistical thermodynamics relationship 
12

 that 

scales the microscopic orientation distributions of molecules towards the thermodynamic 

limit: 

 

 ln[ ]BG k T W const= − +   (4) 

 

Here G represents the Gibbs free energy, kB is the Boltzmann constant, T is the absolute 

temperature, and W is the multiplicity of the microscopic state. The multiplicity of the 

microscopic state, W, is the number of possible permutations between the molecules of the 

system, and hence, measures the total number of system configurations (i.e. system 

ensemble).  

 

In an earlier work, for example, Gnanasambandam and Rajagopalan 
6
 used glycine 

zwitterions as a model to study crystal growth at the (010) and (011) surfaces of α-glycine 

crystals in aqueous solution. They represented the orientation of glycine zwitterions by two 

dipole vectors, C Cα → and C Nα →  (Fig. 3) with reference to the surface normal. This 

resulted in glycine zwitterions being specified by three coordinates – the angles made by the 

dipole vectors with respect to the surface normal, ,CC CNθ θ , and the azimuth angle of the 

C Cα → dipole vector, CCφ . Hence equation (4) now becomes 

 

 ( , , ) ln[ ( , , )]  constantCC CN CC B CC CN CCG k T pθ θ φ θ θ φ= − +   (5) 

 

where ( , , )CC CN CCp θ θ φ  is the probability density of finding a glycine zwitterion of orientation 

, ,CC CN CCθ θ φ . Thus the free energy surface of glycine zwitterions at the crystal-solution 

interface is a function of these three variables (i.e. , ,CC CN CCθ θ φ ). 
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Although using standard molecular dynamics to study activated processes such as 

crystallization may result in reduced sampling efficiency, this drawback can be mitigated by 

using the theoretical framework of Liu et al. (to be discussed in section 4). The morphology 

of crystals such as urea and glycine grown in solutions, for example, has been successfully 

predicted using standard molecular dynamics and a thermodynamic model involving interface 

structure analysis 
6-8, 10, 13

, even though they are activated processes. 

 

4. Interface Structure Analysis and Glycine Polymorphism 

 

In the original work by Liu et al. 
7, 8

, interface structure analysis was used for a 1-dimensional 

reaction coordinate system – that is, the orientation of a solute molecule was assumed to be 

described fully by a single angle θ (defined below). The fraction of molecules at the interface 

that eventually docked onto the crystal surface to become the bulk crystal was given by 

 

 
1

exp[(1 ) / 2] [(1 ) / 2]
2

p G sech G dδ θ= × − ∆ × − ∆∫  (6) 

 

where θ  is the angle between a single dipole vector (i.e. C→O of the urea molecule) and the 

surface normal, G∆ is the energy barrier (in units of Bk T ) a molecule at the interface must 

overcome to be part of the bulk crystal, and p is the probability density of  the molecule’s 

dipole vector being at θ . Once the fraction of favourable growth units is known, the growth 

rates for the morphologically important faces can be determined. For a one-dimensional 

reaction coordinate, calculating G∆  is trivial, and can be obtained from a plot (Fig. 4). 

However, for flexible molecules like glycine that require a higher number of dimensional 

coordinates in order to be specified, the free energy landscape is a hypersurface (i.e. a plot 

involving four coordinates - , , ,CC CN CCG θ θ φ ), and calculating G∆  is non-trivial (Fig. 5).  

 

In a previous work on “extended interface structure analysis” for α-glycine 
6
,  G∆  

used in equation (6) was not able to be properly calculated due to a highly-dimensional 

energy landscape. Instead the fraction of favourable growth units, δ, was estimated by 

Gnanasambandam and Rajagopalan via looking at slices along the CNθ -coordinate and by 

manual-searching of coordinates for energy basins in which orientations were considered 

favourable (Fig. 5). This approach is not only subjective, but it is tedious and error-prone, as 
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it is difficult to map out all the possible paths a molecule could take, let alone estimate its 

energy barrier. As such, in this paper, we extend and formalize previous works with a more 

mathematical approach. We will make use of the FTS method to find minimum energy paths, 

calculate the height of their respective energy barriers, and even compute the overall 

activation energies for α-glycine crystal growth at the (010) and (011) surfaces. We then 

compare our computed results with previous work, and extend it further by examining the 

(010) surface of β-polymorph grown in mixed solvent. 

 

The α-polymorph of glycine crystals is more stable at ambient temperatures than the 

β-polymorph 
14

, and is the predominant polymorph when grown in aqueous solutions 
15

. 

However, when grown in alcoholic solutions, the β-polymorph predominates 
16

. The 

mechanism behind this is a subject of intense debate 
3, 5, 17, 18

. We will not attempt to resolve 

the debate in this paper. However, we will show using the method described above, that the 

presence of alcoholic molecules such as methanol inhibit the proper docking of glycine 

zwitterions onto the crystal surface. This inhibition is reflected by a slightly higher activation 

energy at the crystal surface. 

 

4.1 Simulation Details 

Crystal slabs for the α-polymorph were created by the Materials Studio software 
19

. They 

were constructed in two stages. First, structures of the unit cell were obtained from the 

Cambridge Structural Database and cut along the (010) and (011) planes respectively. The 

orientations of glycine zwitterions in its α-polymorph unit cell when cleaved along the (010) 

and (011) faces are given in Table 1. The (010) cut was made such that the –CH2 group of the 

glycine zwitterion was exposed to the bulk solution (Fig. 6). This was needed so as to 

conform to experimental evidence 
3
. The cleaved unit cells were then tessellated to give large 

supercell slabs. Additional vacuum slabs were then placed on top of these supercells so as to 

accommodate the supersaturated bulk solutions (σ = 0.60). The total size and contents of the 

simulation boxes are given in Table 2.  

 

In a similar manner, crystal slabs for the β-polymorph (Fig. 7) were obtained from the 

Cambridge Structural Database and cut along the (010) plane using Materials Studio 

software. Orientations of glycine zwitterions in its β-polymorph unit cell when cleaved along 

the (010) face are given in Table 3. Due to the reduced solubility of glycine in alcoholic 
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solutions 
20-22

, however, crystal supercells for the (010) surface were made much larger so as 

to provide better sampling statistics within the interface (Fig 8). Additional vacuum slabs 

were then placed on top of these supercells so as to accommodate the supersaturated bulk 

solutions (σ = 0.60). The total size and contents of the simulation boxes are given in Table 4. 

 

Following the protocols and methodology of  Gnanasambandam and Rajagopalan 
6
  

so as to allow for detailed comparison, we use the Amber ff03 force-field 
23

 with Mulliken 

partial charges (see Table 5) and the SPC/E model 
24

 of water for our simulation as was done 

previously 
6
. We do this for both systems of α- and β-polymorphs. These simulations were 

then conducted using the GROMACS software 
25

 for a period of 10 ns in the canonical (NVT) 

ensemble. Sampling was done in the last 7 ns within the interfacial layer. Periodic boundary 

conditions were applied in the three coordinate directions. Simulation boxes were coupled to 

a Berendsen thermostat at 298 K with a relaxation time of 1 ps. The time step for each 

simulation was 1 fs. The particle-mesh Ewald (PME) method was used for treating long-

range electrostatic interactions, and a cut-off radius of 0.9 nm was chosen. For Lennard-Jones 

interactions, the cut-off was 1 nm. 

 

5. Results and Discussion 

 

The key step in employing the FTS method is to decompose the energy state space Ω  into a 

collection of strings iϕ  (Fig. 9).  Each string starts from a different state point i  in Ω  but 

ends at the same, final state point .f  Hence for systems in higher dimensions, equation (6) 

becomes 

 

 

1

0

1
exp[(1 ) / 2] [(1 ) / 2]

2
i i ip G sech G dsδ = × − ∆ × −∆∫  (7) 

and  

 

 
1

m

tot i

i

δ δ
=

=∑  (8) 

 

In practice, molecular dynamics simulation is represented by particles in a series of discrete 

configurations. Therefore, m  is the total number of points in discretized Ω , and iG  is the re-
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parameterized curve of iϕ  based on a normalised, monotonically increasing variable s. That 

is, iG  is a string in s-space the maps directly onto the string iϕ  in Ω -space. Mathematically, 

this is represented by  

 

 { ( ) : [0,1]}i iG s sϕ = ∈  (9) 

 

for some normalized reaction coordinate s  so that  

 

 :[0,1]iG →Ω  (10) 

 

The symbol totδ  denotes the total fraction of molecules at the interface that will eventually 

become a bulk crystal, and iG∆  is the maximum energy barrier obtained in string i  between 

points [ ,1s ].  

 

 

As a first approximation, we define 

 

 
max , ( ) ( )       for 

0                                        for s s

peak i peak i peak

i

peak

G s G s s s
G

− <
∆ = 

≥
 (11) 

 

where max , ( )
peak i peak

G s  is the maximum peak in free energy for string i  at position 
peak

s  and

( )iG s is the free energy for string i  at position s . Here we implicitly assume that a string will 

have only one significant peak (Fig. 10). We are aware of algorithms that can handle multiple 

peaks 
26, 27

 but these require additional, user-defined parameters and might be considered in 

future work if warranted. In the present context, our approximation is sufficient to yield good 

results (see Table 6). 

 

Once the activation energy, ∆Gi,, associated with each string is obtained, it can be 

reconciled with the physical reality of the molecules which generated the free energy in the 

first place. The overall activation energy will then be the weighted-average of all the energy 

barriers, where the weights are simply the density of the configuration multiplicity of the 
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molecules. For a system of N molecules, for example, where each molecule is specified by a 

vector x  (for glycine, [ , , ]CC CN CCθ θ φ=x ) , and ni  molecules are in the state ix , the overall 

activation energy, G∆ , is given by 

 

 

m

i i

i

n G

G
N

∆
∆ =

∑
 (12) 

 

Here, m is the number of grid points used to approximate the state space, Ω, and N is the total 

number of molecules, and is related to ni  by the following summation: 

 

 
m

i

i

N n=∑  (13) 

 

5.1 Interfacial Analysis of α-glycine Revisited 

We conducted molecular dynamics simulation at the (010) and (011) crystal-solution 

interfaces of the α-polymorph (see section 4.1 for details). We then examined the orientation 

distribution of the molecules at the interface and generated the free energy hypersurface 

according to equation (5). Plots of our results can be seen in Figure 5. Subsequently, we 

analysed our results using the FTS method and interfacial analysis of Liu et al. 
7, 8

. 

 

  The FTS method was carried out as described earlier. The state space Ω  was 

discretized into 8000 points and the fraction of favourable growth units δ  for the 

morphologically important (010) and (011) faces of α-glycine crystals grown in aqueous 

solutions were computed. We chose 8000 points because this choice corresponded to the 

number of bins (i.e. 20 x 20 x 20 for the three angles, , ,CC CN CCθ θ φ , that defined the 

configuration orientation of glycine molecules) we used to create our dataset from molecular 

dynamics simulations. We implemented an algorithmic version of the FTS method by 

Eijnden and Venturolli 
10

 in the MATLAB package 
28

, and ran our code on a single node of a 

Quad-Core Intel Xeon processor over a period of 2.5 days. The results obtained were in good 

agreement with previous work (Table 6).  
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  We then extend the previous work by calculating the activation energy for crystal 

growth at the (010) and (011) surfaces. Our results are tabulated in Table 7. We notice that 

the activation energy of the (011) surface is much higher ( > 10 kJ mol
-1

) than the (010) 

surface. As suggested by Gnanasambandam and Rajagopalan 
6
, this could be due to H-

bonding interference by a Type 2 molecule at the bulk crystal surface (see Fig. 6), resulting in 

a misorientation of glycine molecules docking from the bulk solution onto the interface. 

Because H-bonds are very strong, a considerable amount of energy is required for the 

interfacial glycine molecules to re-orientate into the correct configuration (i.e. Type 4). This 

is reflected by the higher generalized activation energy of the (011) surface. However, it is 

important to note that the (011) surface of the α-polymorph is more ‘corrugated’ than the 

(010) surface, allowing for more glycine molecules to reside at the interface (Figs. 11-12). As 

a result, the growth rate of the (011) surface is still faster than the (010) surface (see reference 

6
 for detailed calculations) despite its higher activation energy. This is consistent with the 

experimental studies of α-glycine crystal growth in solutions 
29

. 

 

5.2 β-glycine and Surface Inhibition by Methanol 

 It is speculated that if the polymorphism between α- and β-glycine could be attributed to a 

surface phenomenon, that surface would be the (010) plane 
18

. As such, we use the technique 

and methodology described above to investigate the growth at the (010) surface of the β-

polymorph in 50% v/v water-methanol solution. 

 

Our calculations show that the β-polymorph has a slightly higher activation energy 

than the α-polymorph for a similar bulk supersaturation of σ = 0.60 (Table 8). This difference 

in activation energy can be attributed to surface inhibition by methanol molecules. That is, 

the presence of methanol molecules at the interface somehow makes it difficult for the proper 

docking of glycine molecules onto the crystal surface. Hence, more energy is required for 

glycine molecules to dock with the correct configuration. Our results show that the presence 

of methanol molecules at the interface increases the activation energy by about 4.2 kJ mol
-1

. 

However, the mechanism behind this is unclear. It could be due to some form of stearic 

hindrance by methanol molecules, and/or the fact that the reduced solubility of glycine in 

methanol-water solution causes a higher degree of solvation of glycine monomers which in 

turn creates an additional energy barrier of desolvation for docking to take place.  
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5.3. Concluding Remarks 

 

One of the advantages of using the string-optimization technique of the FTS method is that it 

can be easily extended to more complicated molecules such as proteins in n-dimensional 

space. As seen by the work of  Gnanasambandam and Rajagopalan 
6
, even a small molecule 

like glycine requires three dimensions (i.e. , ,CC CN CCθ θ φ ) to be minimally specified. This 

resulted in a 4-dimensional energy landscape which required a considerable effort to analyse. 

Although they managed to get accurate results via careful slicing of the hyperspace into 

pseudo 3-dimensional energy landscapes (from which the fraction of favourable orientations 

could be estimated), such ad-hoc methods will not work for larger molecules. This is because 

larger and more flexible molecules require an even higher number of coordinates to be 

completely specified, and would result in an energy hyperspace that can never be visually 

plotted. As such, any attempts to study the energy hyperspace via slicing and visual 

inspection carries the risk of missing out on energy channels or energy funnelling between 

and within slices. With the string-optimization component of the FTS method, however, the 

energy hyperspace can be transformed into a vector space and be treated analytically. As a 

result, it is scalable and allows the study of molecules in highly-dimensional spaces. The only 

caveat in the current approach is that standard molecular dynamics is used to generate the 

free energy surface. As mentioned in section 3, this means that for highly activated processes, 

there will be reduced efficiency in the sampling of the state space, resulting in a possible 

overestimate in the activation energies calculated. 

 

In this paper we have described the use of the FTS method 
9-11

 with the interfacial 

structure analysis of Liu et al. 
7, 8

. We demonstrated the technique on the morphologically 

important (010) and (011) faces of α-glycine crystals grown in aqueous solution, and was 

able to calculate the fraction of favourable growth units at the interface as well as the 

generalised activation energies of the (010) and (011) surfaces. We then demonstrated the 

technique on the (010) surface of β-glycine crystal grown in 50% v/v water-methanol 

solution, and showed that the presence of methanol at the interface inhibits crystal growth by 

about 4.2 kJ mol
-1

. We also highlighted that the FTS method can be used to study more 

complicated and flexible organic molecules such as proteins in higher dimensional space. 

Thus it is a useful tool for crystal engineering. 
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Appendix: Code Validation 

In this section, we validate our implementation of the string-optimization technique of the 

FTS. As a trial function, the following analytic equation 
30

 is used: 

 

 
2

2 2 2

2 2
( , ) (1 )

y
V x y x y

x y
= − − +

+
 (14) 

 

The three-dimensional and contour plots of V are illustrated in Figure 13. As observed, the 

energy landscape has two minima at A = (-1, 0) and B = (1, 0). The exact minimum energy 

pathway MEPϕ  between points A and B is given by the arc of the unit circle: 
2 2 1x y+ = . That 

is, the relationship between the variables x and y connecting points A = (-1, 0) to B = (1, 0) 

resulting in the lowest energy barrier V∆  is given by the equation 

 

 ( )1/2
2

1y x= −  (15) 

When the Finite-Temperature String method is used to approximate the analytical solution 

given in equation (15), the results are a good fit (Fig. 14).  
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Table 1: Orientations of glycine zwitterions in its α-polymorph unit cell when cleaved along 

the (010) and (011) faces. θCC  is the angle between the C Cα → dipole vector and the surface 

normal, θCN  is the angle between the C Nα → dipole vector and the surface normal. ΦCC is 

the azimuthal angle of the C Cα → dipole vector 

 

 

 

 

 

 

 

 

 

 

Table 2: Glycine/water mixtures for the crystal/bulk solution of the α-polymorph. Bulk 

glycine supersaturation is σ = 0.60 in pure water. 

Plane Molecule Type θCC / Degrees ΦΦΦΦCC /Degrees θCN / Degrees 

010 1 81 290 64 

  2 81 110 64 

  3 99 110 116 

  4 99 290 116 

011 1 143 25 71 

  2 24 228 88 

  3 37 204 109 

  4 156 48 92 

Plane (010) (011) 

No. of glycine molecules in 

the bulk crystal 

560 672 

No. of glycine molecules in 

the solution 

206 373 

No. of water molecules 1931 3544 

Dimensions of the simulation 

box (Ǻ) 

x: 40.84 

y: 85.90 

z: 35.54 

x: 52.63 

 y: 102.08 

z: 35.31 
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Table 3: Orientations of glycine zwitterions in its β-polymorph unit cell when cleaved along 

the (010) face. θCC  is the angle between the C Cα → dipole vector and the surface normal, 

θCN  is the angle between the C Nα → dipole vector and the surface normal. ΦCC is the 

azimuthal angle of the C Cα → dipole vector 

 

 

 

 

 

 

Table 4: Glycine/water-methanol mixtures for the crystal/bulk solution of the β-polymorph. 

Bulk glycine supersaturation is σ = 0.60 in 50% v/v water-methanol solution. 

 

Atom index Atom Charge 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

N 

H1 

H2 

H3 

CA 

HA1 

HA2 

C 

OC1 

OC2 

–0.127 

0.199 

0.218 

0.224 

0.007 

0.064 

0.061 

0.483 

–0.578 

–0.552 

 

Table 5: Mulliken partial charges for zwitterionic glycine. Adapted from 
6
. 

 

 

Plane Molecule Type θCC / Degrees φCC /Degrees θCN / Degrees 

010 1 81 290 64 

  2 81 110 64 

Plane (010) 

Number of glycine molecules in the bulk crystal 3888 

Number of glycine molecules in solution 200 

Number of methanol molecules 4106 

Number of water molecules 9582 

Dimensions of the simulation box (Ǻ) x: 91.70 

y: 105.40 

z: 96.90 
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Fraction of favourable 

orientation, δ  

Values obtained by manual 

counting and estimation 

(See reference 
6
 ) 

Values computed by Finite-

Temperature String 

Method 

010δ  0.240 0.216 

011δ  0.130 0.108 

 

Table 6: Comparison of favourable growth units obtained from FTS and visual inspection for 

the α-polymorph. 010δ  is the fraction of favourable orientation in the (010) plane and 011δ  is 

the fraction of favourable orientation in the (011) plane. The FTS is able to calculate these 

values to reasonable agreement with previous work 
6
. Note that bulk glycine supersaturation 

is σ = 0.60 in pure water. 

 

 

Plane Activation energy / kJ mol
-1

 

010 17.3 ± 0.5 

011 27.7 ± 0.5 

 

Table 7: Generalized activation energies for the crystal faces of the α-polymorph. Bulk 

glycine supersaturation is σ = 0.60 in pure water. The (011) surface has a higher activation 

energy due to interference from a Type 2 molecule at the interface (see Table 1, Fig. 6 and 

ref. 
6
 for detailed discussion) 

 

 

 

Table 8: Favourable growth-units and generalized activation energy for the (010) surface of 

the β-polymorph.  Bulk glycine supersaturation is σ = 0.60 in 50% v/v water-methanol 

solution.  

 

 

 

 

 

Plane Fraction of favourable orientation, δ  Activation Energy / KJ mol
-1

 

(010) 0.13 21.5 ± 0.5 
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List of Figures 

 

 

Figure 1: Hypothetical two-dimensional energy landscape with energy minima, ‘a’ and ‘b’. 

String I is an initial arbitrary string that is repeatedly iterated in order to form String II. String 

II is the minimum energy pathway between points ‘a’ and ‘b’.  

 

 

 

 

Figure 2: Each string will undergo repeated iteration and reparameterization. The final 

evolved string will represent the minimum energy path. 
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a                                                                                    b                                         

Figure 3: (a) Dipole vectors of glycine molecule. (b) Snapshot of a molecular dynamics 

simulation for glycine in water. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Gibbs free energy diagram for urea crystals grown in solution 
7
.  The reaction 

coordinate, θ,  is the angle the dipole vector C→O of urea molecules make with the surface 

normal of the crystal slab. For such a simple, one-dimensional reaction coordinate, 

calculating the energy barrier (i.e. activation energy), ∆G, is quite trivial. 

 

 

Cα→N Cα→C 
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Figure 5: (a) Gibbs free energy distribution for the (010) surface as a function of CCθ  and 

CC
φ  at 116o

CN
θ =  (corresponding to a Type 3 growth unit) and its associated contour plot (b). 

In previous work, slices about 30
o
 thick were examined in the CNθ  direction. The figures seen 

here are the juxtapositions of three slices centered around 116o

CN
θ = . The fraction of 

molecules with favourable orientations is then counted based on visual inspection of the 

energy basin. See reference 
6
 for more details. By using the FTS method, however, we no 

longer need to cut arbitrary slices, and furthermore, we can extend our work to even higher 

dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 
b 
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Figure 6: Arrangement of the glycine molecules of the α-polymorph relative to the (010) and 

(011) surfaces (a) (010) surface (b) (011) surface. Orientations of molecules above the broken 

red line are considered growth units. For the (010) surface the Type 3 molecule is the growth 

unit. For the (011) surface the Type 4 molecule is the growth unit. See Table 1 for the 

orientation configuration of the molecules and reference 
6
 for more details. Label: Red-

Oxygen, Blue-Nitrogen, Cyan-Carbon and White-Hydrogen  
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Figure 9: An example of a single string iϕ  along a minimum energy path connecting 

arbitrary starting configuration point ( )
i

iϕ  to final configuration point ( )
i

fϕ . Here f  is 

a point in Ω  that corresponds to a Type 3 growth unit (See Figure 6 and Table 1). Ω  is 

eventually decomposed into thousands of such strings. 

CC
φ  

CNθ  

CCθ  

String iϕ  in Ω  space 

( )i fϕ  

( )i iϕ  

             String iG   in s - space 

                     s  

Figure 10: iG  is the parameterization of string iϕ  along a normalized reaction coordinate 

s The maximum peak occurs at 0.57s = . Any molecular orientation to the right of this peak 

will face no energy barrier, and will be automatically considered a crystal growth unit. 
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Figure 11: Density profile at the (010) surface of an α-glycine crystal slab in contact with its 

supersaturated solution of glycine zwitterions and water molecules. The interface is from 4.0 

nm to 4.5 nm. All sampling is done within the interface. 

 

 

 

 

Figure 12: Density profile at the (011) surface of an α-glycine crystal slab in contact with its 

supersaturated solution of glycine zwitterions and water molecules. The interface is from 2.8 

nm to 3.4 nm. All sampling is done within the interface. Note that the amount of glycine at 

the (011) interface is much higher than the (010) interface of Figure 11. This is probably due 

to the ‘corrugated’ surface of the (011) plane. 
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                           a                                                                                    b 

Figure 13: (a) Energy landscape of the real-valued function ( , )V x y . (b) Contour plot of

( , )V x y . The black arc is the minimum energy pathway MEPϕ  between the two energy 

minima A = (-1, 0) and B = (1, 0). 
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Figure 14: (a) Analytical solution of the minimum energy path in V(x, y) connecting points A 

= (-1, 0) to B = (1, 0) is given by the curve
2 1/2(1 )y x= − . (b) Numerical solution of the 

minimum energy path given by the FTS method with 10000 iterations, (c) Numerical solution 

of the minimum energy path given by the FTS method with 2000 iterations.  
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Mathematical ‘strings’ can be used with computer simulations and statistical mechanics to 

calculate fraction of growth units and activation energies of flexible molecules present at the 

crystal-solution interface. 
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