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One-pot Solvothermal Synthesis of Well-ordered 
Layered Sodium Aluminoalcoholate Complex: A 
Useful Precursor for the Preparation of Porous Al2O3 
Particles† 

Xiansen Li,*1 Vladimir K. Michaelis,2,3 Ta-Chung Ong,2,3 Stacey J. Smith,2 Ian 
McKay,1 Peter Müller,2 Robert G. Griffin2,3 and Evelyn N. Wang*1 

One-pot solvothermal synthesis of a robust tetranuclear sodium 
hexakis(glycolato)tris(methanolato)aluminate complex Na3[Al4(OCH3)3(OCH2CH2O)6] via a 
modified yet rigorous base-catalyzed transesterification mechanism is presented here. Single 
crystal X-ray diffraction (SCXRD) studies indicate that this unique Al complex contains three 
penta-coordinate Al3+ ions, each bound to two bidentate ethylene glycolate chelators and one 
monodentate methanolate ligand. The remaining fourth Al3+ ion is octahedrally coordinated to 
one oxygen atom from each of the six surrounding glycolate chelators, effectively stitching the 
three penta-coordinate Al moieties together into a novel tetranuclear Al complex. This 
aluminate complex is periodically self-assembled into well-ordered layers normal to the [110] 
axis with the intra-/inter-layer bindings involving extensive ionic bonds from the three charge-
counterbalancing Na+ cations rather than the more typical hydrogen bonding interactions as a 
result of the fewer free hydroxyl groups present in its structure. It can also serve as a valuable 
precursor toward the facile synthesis of high-surface-area alumina powders using a very 
efficient rapid pyrolysis technique. 
 

 

Introduction 

Layered materials containing coordinatively unsaturated binding 
sites such as 5-coordinate Al ([5]Al) species are of topical interest 
because they promise improved performance for lithium-/sodium-ion 
batteries,1 adsorbent,2 and catalyst3 applications. Among these, 
intercalated layered materials have attracted considerable attention 
due to their tunable pore size and versatile guest species such as Li+ 
and Na+ cations for increased adsorption capacity and selectivity. 
They are also important precursors towards preparing nanoscale 
porous lamellas,4 nanotubes,5 and composite materials.6  
     Solvothermal synthesis exhibits a significant advantage over 
conventional hydrothermal technique in cases where either 
moisture sensitive reagents or potential occurrence of insoluble 
metal hydroxide side-reactions is inevitably involved in the 
preparation. Solvothermal synthesis involving polyols (e.g., 
1,2-diols) as the solvent has so far been moderately explored 
for the preparations of novel zeolites,7 silicopolyolate 
containing interesting [5]Si species,8 and aluminoglycolate 
analogue containing fascinating [5]Al geometry.9 For example, 
Gainsford et al. reported a trinuclear 
[Al3(OCH2CH2O)5(OCH2CH2OH)2]

3- anion and several 
concomitant by-products prepared via direct reaction between 
alumina and NaOH in considerably excessive ethylene glycol 
(EG) solvent by slowly distilling off both EG and any liberated  

 
 
water from the reaction during the synthesis period until the 
pseudo-saturation state, followed by a recrystallization step.9d 
     Although the [4]Al and [6]Al species in zeolites, clays and 
minerals, etc. have been well studied,10 relatively few [5]Al species 
have been reported in alkoxide-based crystalline solids to date.9,11 
Consequently, much less is known about their physicochemical 
properties, e.g., the chemical-shift “fingerprint” region of 27Al magic 
angle spinning nuclear magnetic resonance (MAS NMR) spectra for 
these unique [5]Al environments. The study of this unique structure is 
expected to extend the horizons of such existing systems. We herein 
report the asymmetric tetranuclear Al complex with three [5]Al  
species, which was achieved by using a modified transesterification 
synthetic strategy. In addition, we demonstrated the possibilities and 
benefits of using this layered Al complex as a valuable precursor for 
efficient preparation of high value-added nanoporous Al2O3 powders 
that are of great relevance both academically and industrially as 
catalysts, catalyst supports, adsorbents, refractory ceramics, and 
active feedstocks. 
 
Results and Discussion 

We present a novel solvothermal preparative method via a modified 
base-catalyzed transesterification mechanism, which is quite 
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4Al(OC2H5)3 (ester) + 6EG (alcohol) + 3NaOCH3

NaOCH3 (cat.)

Δ, MeOH (solv.)

Na3[Al4(OCH3)3(OCH2CH2O)6] (new ester) + 12EtOH (new alcohol)

scarcely explored for hybrid inorganic/organic materials 
preparations,12 for the synthesis of a layered aluminoalcoholate 
complex in the presence of methanol as a solvent rather than the 
more commonly used EG solvent. In the course of the solvothermal 
reaction, the effective deprotonation from the slightly excessive EG 
reactant is initially implemented by the action of an aliquot of strong 
base catalyst of sodium methoxide to initiate the SN2 nucleophilic 
substitution reaction, leading to the formation of bidentate ethylene 
glycolate chelators. These incoming chelators thus formed then 
compete with three aliquots of sodium methanolate for nucleophilic 
attack of the Al electrophiles, causing the concurrent departure of 
CH3CH2O

- anions (Scheme 1). Due to the chelate nature of the 
bidentate glycolate ligand, Al electrophiles as ligand acceptors 
possess a coordinative preference for glycolate ligands over 
monodentate methanolate ones, thus affording a unique mixed 
[5]Al/[6]Al complex at a methanolate/glycolate ratio of 1:2 in the final 
empirical formula. The complexing power with central Al3+ cations 
decreases in the following order: [OCH2CH2O]2- > CH3O

- > 
CH3CH2O

-. The NaOCH3 catalyst is ultimately regenerated by 
reacting the resultant NaOCH2CH3 with the MeOH formed in the 
first deprotonation step. It is worth noting that sodium methoxide in 
slight excess was employed as both the transesterifying base catalyst 
and one of the reactants. The newly formulated approach is unusual 
in that only single-step synthesis is utilized without any laborious 
cycles of fractional-/vacuum-distillations required by previous 
researchers such as Gainsford et al.9d More importantly, this 
approach is versatile since it only implicates alkali metal alkoxide 
base-catalyzed alcoholysis but without any intervention of detectable 
alkaline (OH-) hydrolysis side-reactions. 

Scheme 1 Proposed reaction pathway to the target product 
Na3[Al4(OCH3)3(OCH2CH2O)6] starting with aluminium alkoxide, 
EG and sodium methoxide by a modified transesterification 
mechanism. 
 

In the solvothermal synthesis, the conventional organic 
transesterification reaction was adapted such that the routine 
carboxylic acid ester was replaced with pseudo-covalent metal/non-
metal alkoxide ester, as exemplified specifically in Scheme 1. This 
reversible SN2 nucleophilic substitution reaction involving a 
competitive ligand-exchange step is expected to be an efficient way 
to rationally tailor the relative contributions between the nucleation 
and crystal growth events, thus favoring the efficient large single 
crystal production. The alcohol-selective rule manifests the 
possibility of crystal composition tailoring by judiciously choosing 
different monohydroxy alcohols and polyols. Solvothermal 
crystallization at 181 °C for 5 days resulted in the end product with 
an actual chemical formula of Na3[Al4(OCH3)3(OCH2CH2O)6]. It is 
anticipated that the coupled high synthetic temperature and high 
autogenous vapor pressure13 applied in the synthesis enable the 
formation of the largest tetranuclear Al complex of its kind ever 
reported in the literature. The multi-nuclear nature of this Al 
complex may explain its insolubility in MeOH, only slight solubility 
in water and EG, and enhanced stability against both hydrolysis and 
alcoholysis. This synthetic strategy is universal as long as the large 
electronegative metal/non-metal (e.g., Si and B) can be prepared in 
the form of corresponding alkoxides, and is restricted neither by the 
insolubility of metal oxide/hydroxide in alkaline solutions nor by the 
potential formation of insoluble metal hydroxide impurities in-situ 
during synthesis, as encountered by other researchers.14 Moreover, 

the reactants are not only limited to alkoxide esters, but also include 
a variety of organic-soluble salts (e.g., chlorides), organometallics 
and labile metal complexes over the corresponding metaloalcoholate 
ones, although the latter category of reactions cannot be strictly 
classified as a transesterification reaction. 

The details of the crystal structure and its structural refinement 
are listed in Table 1. The Al compound crystallizes in the monoclinic 
crystal system and space group P21/c. 
 
 
Table 1 Crystallographic data and structural refinement for the Al 
complex. 
 

Parameter Data 

CCDC No. 955650 
Empirical formula  C15H33Al4Na3O15·0.1CH4O 
F.W. 633.35 
Temp. 100(2) K 
Wavelength 0.71073 Å 
Crystal system monoclinic 
Space group  P21/c 

Unit cell dimensions 

a = 11.2481(12) Å; α = 90° 

b = 13.1877(14) Å; β = 105.738(2)° 

c = 18.235(2) Å;     γ = 90° 
Volume 2603.5(5) Å3 
Z 4 
Density (calculated) 1.616 mg/m3 
Absorption coefficient 0.299 mm-1 
F(000) 1319 
Crystal size 0.11 × 0.04 × 0.01 mm3 
θ collection range 1.88 to 30.99°. 
Index ranges -16≤h≤15, -19≤k≤18, -26≤l≤26 
Reflections collected 67765 
Independent reflections 8270 [Rint = 0.0539] 
Completeness to θ = 30.99° 99.7%  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.9970 and 0.9678 
Refinement method Full-matrix least-squares on F2 
Data/restraints/parameters 8270/459/395 
Goodness-of-fit on F2 1.046 
Final R indices [I > 2σ(I)] R1 = 0.0405, wR2 = 0.0994 
R indices (all data) R1 = 0.0633, wR2 = 0.1110 
Largest diff. peak and hole 0.521 and -0.438 e.Å-3 

 
 
     As determined by SCXRD, the asymmetric unit (AU) in the 
crystal structure contains one sodium 
hexakis(glycolato)tris(methanolato)aluminate complex 
Na3[Al4(OCH3)3(OCH2CH2O)6] (Fig. 1). Three of the four Al3+ 
ions reside in considerably distorted [5]Al environments of 
rectangular pyramidal geometries rather than the more expected 
trigonal bipyramids by inspecting the O-Al-O bond angles. The 
remaining fourth Al3+ ion in the complex is octahedrally 
coordinated to one oxygen atom from each of the six glycolate 
units in the AU, effectively tethering together the three 
surrounding [5]Al monomers into a tetranuclear configuration 
(i.e., secondary building unit (BU)) by sharing the basal edges 
of AlO5 pentahedra. 
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4. Solid-state NMR (ssNMR) 
Solid-state NMR experiments were performed at either 11.7 (500 
MHz, 1H) or 16.4 T (697 MHz, 1H) using a home-built NMR 
spectrometer (courtesy of Dr. D. Ruben, FBML-MIT) and a 3.2 mm 
Chemagnetics triple-resonance MAS probe for 13C and 27Al, 
respectively. The crystalline sample was ground using an agate 
mortar and pestle under dry atmosphere and packed quickly into a 
3.2 mm (o.d.) ZrO2 rotor (~26 μl sample). 27Al spectra were acquired 
at a spinning frequency, ωr = 16000(4) Hz and between 4096 and 
65536 co-added transients. Recycle delays were optimized using a 
saturation recovery experiment and set to 1.2 s using a Bloch26 
experiment with a short quantitative tip angle (14°) and 3.0 s using a 
Hahn echo27 sequence (27Al ɣB1 = 60 kHz). Non-spinning 
experiments (not shown here) were also collected using identical 
parameters above (Hahn-echo) with 83 kHz of 1H continuous-wave 
decoupling. 27Al spectra were referenced relative to 1.1 M Al(NO3)3 
solution at 0 ppm.28 13C{1H} CP29 and direct detection spectra were 
acquired at ωr = 13450(1) Hz, 8192 co-added transients and recycle 
delay of 3 and 25 s, respectively. The contact time during the CP 
experiment was set to 1.5 ms. Both experiments were acquired using 
high-power (1H ɣB1 = 100 kHz) two-pulse phase modulation 
(TPPM)30 1H decoupling during acquisition. 13C spectra were 
referenced using solid adamantane to 40.49 ppm.31 The magic angle 
within the probe was set using the 79Br resonance of solid KBr and 
shimmed using adamantane prior to signal acquisition. The sample 
temperature was regulated between 22 and 26 °C during acquisition. 
All spectra were processed using RNMRP data processing software; 
quadrupolar line shapes were simulated using either WSOLIDS or 
SPINEVOLUTION software packages.32 
 
5. Powder X-ray diffraction (PXRD) 
PXRD pattern was taken using a PANalytical X’Pert Pro 
Multipurpose Diffractometer in reflectance Bragg-Brentano 
geometry at 45 kV and 40 mA using Ni-filtered Cu Kα radiation (λ = 
1.54 Å). The data collection was carried out at a constant 
temperature of 25 °C with a step increment of 0.084° 2θ, a counting 
time of 6.4 s/step, and the 2θ angular range from 3 to 50°. 
 
6. Thermogravimetric analysis (TGA) 
The sample with an initial mass of 18.48 mg was heated in a Pt 
pyrolytic pan at a constant ramping rate of 10 °C/min from ambient 
temperature up to 800 °C on a Discovery TG analyzer (TA 
Instruments) in flowing N2 and air atmospheres both set to 25 
ml/min. The isothermal duration at 800 °C was set to 3 min. 
 
7. Attenuated total reflectance-Fourier transform infrared 
spectroscopy (ATR-FTIR) 
IR absorbance spectrum was collected on the Al complex using a 
Nexus 870 FT-IR E.S.P. spectrometer (Thermo Scientific) equipped 
with an ATR accessory with a single reflection diamond crystal. The 
FT-IR chamber was flushed constantly with flowing N2 stream (ca. 
0.71 m3/h). Scans at a spectral resolution of ±4 cm-1 were taken at 
RT on a self-supporting sample disc from 4000 to 500 cm-1. Sixteen 
scans were averaged, and the resulting spectrum was background 
subtracted. 
 
8. Gas sorption analysis on the pyrolyzed Al complexes with and 
without aqueous rinse 
Gas sorption studies were carried out to investigate the textural 
properties of the pyrolyzed products (3NaAlO2·0.5Al2O3) with 
and without aqueous rinse. The N2 sorption measurement was 
performed at -196 °C using an Autosorb iQ2 automated gas 
sorption analyzer (Quantachrome). Before adsorption run, the 

sample was degassed under vacuum (ca. 0.2 Pa) at 370 °C for 
12 h. Afterwards, a proper glass rod filler was inserted in a 
sample cell to minimize the cell dead voids. The BET 
(Brunauer, Emmett, and Teller) surface area (SBET) was 
obtained by applying the BET equation to a relative pressure 
(RP) range of 0.05-0.30 on the adsorption branch. The total 
pore volume (Vt) was evaluated from the adsorbed N2 amount at 
a maximum RP of 0.95. The pore size distribution (PSD) was 
calculated by the BJH (Barrett, Joyner, and Halenda) method 
on the desorption branch. The micropore volume (Vmicro) was 
determined by applying the D-R (Dubinin-Radushkevich) 
equation to an RP range of 0.00005-0.009 on the adsorption 
isotherm. 
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