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The regulation of citrate on amorphous calcium phosphate 5 

(ACP)-mediated crystallization of hydroxyapatite (HAP) is 
revealed in this work. The surface associated citrate on ACP 
plays the key role in controlling the nucleation of HAP by 
inhibiting the reaction of surface nucleation, and the effect of 
embedded citrate inside ACP or citrate in solution is weak.  10 

Biomolecules are generally believed to play important roles 
in controlling biomineralization. The regulation of 
biomolecule for nucleation is still a mystery in 
biomineralization. In bone, about one-sixth of bone-apatite 
crystallites are strongly bound with citrate, a small 15 

biomolecule containing three carboxyl groups.1 The ultrathin 
bone minerals are thought to be correlated with the strong 
interaction of citrate with apatite mineral,1 for which, 
hydroxyapatite (HAP, Ca5(PO4)3OH) is a widely used 
prototype crystal.2 It is well documented that citrate will be 20 

associated with HAP,1,3 and in crystallization kinetics, citrate 
can inhibit both nucleation and crystal growth of HAP.4 

However, in both biomimetic mineralization (in vitro)2c-d, 5and 
biomineralization (in vivo),6 a transient precursor phase, 
amorphous calcium phosphate (ACP, Ca3(PO4)2), has been 25 

widely observed prior to HAP formation. These findings 
complicate the classical understanding of biomineralization in 
the scenario of the molecular interaction between biomolecule 
and mineral, and arose some important questions, which 
remain unanswered: At what stage does citrate enrol in HAP 30 

crystallization?1,7 Is citrate present in ACP precursor phase? 
What is the role of citrate in nucleation kinetics? 

The purpose of this work is to reveal the regulation 
mechanism of citrate on ACP-mediated crystallization under 
simulated body fluid (SBF),8 which has the similar ionic 35 

species, pH and ionic strength to that of physiological 
solutions (see recipes in Table S1 in ESI†). 

As the crystallization of HAP is accompanied by the drop in 
pH,9 the kinetics of HAP nucleation can be monitored by pH 
meter. All pH curves were repeated for at least four times, and 40 

the relative standard deviation for induction time is within 6% 
(see Fig.S1 in ESI†). In pH curves, the crystallization 
processes can be divided into three stages (Fig. 1). In the 
stage I, after the mixing of a calcium solution and a phosphate 
solution, the solution pH fast dropped to designated pH and 45 

then, it kept stable. ACP was precipitated in this stage (see 
below), and it remained stable till crystallization. This stage 
can be regarded as the induction period for HAP nucleation. 

In the stage II, the fast drop of pH was observed, suggesting 
the occurrence of HAP crystallization (cf. eq. 1). In the stage 50 

III, the pH levelled off (cf. Fig.S1 in ESI†). It was HAP 
ripening. The induction time, ti, is determined by the 
intersection of tangents on the pH curve for the stage I and II 
as shown in Fig. 1. The induction time is an indication for the 
stability of ACP. The shorter the induction time, the less 55 

stable the ACP. 
 

 
Fig. 1Representative pH curves of HAP crystallization in the present (Cit-
0) and absent (Control-1) of citrate.The pH curves can be divided into 60 

three stages, named I, II, III, and the induction time, ti, is determined by 
the intersection of tangents drawn on the first (I) and the second (II) stage 
of pH curve.  

The phase of minerals at each stage has been examined by 
ex situ characterizations. At designated time intervals (marked 65 

by numbers in Fig.1), slurry samples were withdrawn, filtered, 
and examined. At early induction period (Time 1 in Fig. 1), 
sphere aggregates have been observed by Transmission 
Electron Microscopy (TEM) (cf. Fig. 2a, b). The diffusive 
electron diffractions (ED) (inset in Fig. 2a, b) indicate the 70 

mineral to be an amorphous phase. The evolution of mineral 
phase has been tracked by Fourier Transformed Infrared 
spectroscopy (FTIR). As the mineralization, FTIR spectra 
show the splitting of absorption peaks out of broad absorption 
bands at 1055cm−1 (phosphate 3 vibrations) and 570 cm−1 

75 

(phosphate 4 bending) (Fig. 2c, d), suggesting the 
transformation of the amorphous phase to the crystalline 
phase.10 After the crystallization, sheet-like crystallites were 
formed (cf. Fig. S2). X-ray Diffraction patterns confirm the 
crystalline phase to be poorly crystallized HAP instead of 80 

octacalcium phosphate (OCP) as the absence of diffraction 
peak at about 4.7 degree for the initial crystallized phase (see 
Fig.S3 in ESI†). The above phase characterizations confirm 
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Citrate controls nucleation by association with precursor amorphous phase, which inhibits the 

surface reaction for nucleation. 
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