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Multilevel topological description of molecular 
packings in 1,2-benzothiazines 

Farhana Aman,a Abdullah M. Asiri,*b,c Waseeq A. Siddiqui,a Muhammad Nadeem 
Arshad,b,c Adnan Ashraf,a Nikita S. Zakharovd and Vladislav A. Blatov*b,d  

A new method for description of molecular networks and packings is proposed and implemented into the 

program package TOPOS. It is shown that the method is most effective in combination with the multilevel 

analysis of intermolecular interactions in terms of molecular Voronoi polyhedra. The method was applied 

to 82 1,2-benzothiazine derivatives, 11 out of which we have synthesized for the first time. As a result, we 

have determined the main transformation routes of underlying nets, i.e. the nets of molecular centroids, at 

different levels of van der Waals interaction and found the most important topologies that play a key role 

in these routes. The method can help to create the databases of topological properties of molecular 

packings (the second-level databases) from the crystallographic databases (the first-level databases); this 

is an important step to develop predictable expert systems in materials science. 

Introduction 

Prediction of possible structures that can be formed from a 
particular set of components is one of the crucial chemical 
problems. At present, the structures of molecules can be 
reasonably predicted by quantum-mechanical methods. 
Moreover, chemists know many rules that govern how atoms 
connect to each other and in what ratio. At the same time, 
chemistry has already gone beyond the molecular level and 
deals with molecular ensembles that are usually related to the 
field of supramolecular chemistry. While the simulation 
methods have had a great progress in prediction of molecular 
packings that was proved by series of blind tests,1 general 
supramolecular chemistry rules are not so well-determined yet. 
Such rules should concern the methods of connecting molecules 
into an ensemble like valence and hybridization rules 
essentially predetermine the form and topology of a molecule. 
There are a lot of experimental data on supramolecular 
architectures stored in crystallographic databases, in particular 
in the Cambridge Structure Database (CSD).2 Unfortunately, 
these data are not intensively used to search for general 
supramolecular rules because of absence of computer tools for 
description and rationalization of supramolecular ensembles. 
Moreover, crystallographic databases do not include the 
comprehensive information on intermolecular interactions. 
Thus the question is ripe how to develop tools for processing 
the experimental data and extracting the knowledge about 
preferred supramolecular motifs. 
One of possible ways to cope with this problem is to use 
topological network approaches. Topological methods are still 

rather unusual in crystal chemistry; this especially concerns 
supramolecular and extended architectures, or in general, all 
chemical objects which cannot be represented as a finite set of 
atoms connected by valence bonds. Ordinarily, topology is 
discussed mainly for molecules within graph-theory 
approaches.3 However, in the last 20 years the graph-theory 
(network) description is more and more frequently used beyond 
molecular objects. Patterns of intermolecular interactions, 
especially H bonds, were formalized in a number of 
nomenclatures;4 which, however, have not been implemented 
into widespread software. A universal network approach to be 
applicable to any kind of crystal structure was launched by 
Wells5 and essentially developed in the past 15 years;6 special 
software (TOPOS7 and Systre)8 and databases (RCSR,9 TTD 
and TTO)10 were elaborated. All these approaches establish 
correlations between local chemical architectures (coordination 
figures, molecular fragments, polynuclear complex groups) and 
the overall structural motifs. Several reviews published in the 
past ten years11 reported the most typical topological 
architectures of coordination networks but the occurrence of 
these motifs could not be predicted. Recently,12 we have 
proposed an approach to creating an expert system for 
prediction of underlying topologies of coordination 
frameworks. In this paper, we will show that this approach is 
more universal and can be applied to other types of crystalline 
solids, or even to nano objects including molecular associates.  
To check the approach, we have synthesized a series of 
molecular crystals of 1,2-benzothiazine derivatives where the 
molecules can form different kinds of intermolecular contacts 
(H bonds, halogen-halogen bonds, van der Waals interactions) 
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located with difference Fourier maps and refined using riding 
models. 

Analysis of the Cambridge Structural Database 

To make a comprehensive overview of molecular crystals 
containing 1,2-benzothiazine derivatives we have screened the 
CSD (release 5.34, October 2012) and found 71 monomolecular 
structures (see the ESI), i.e. consisting of only one kind of 1,2-
benzothiazine molecule, although, they could contain several 
symmetry non-equivalent molecules of the same kind. We did 
not consider the structures where benzothiazine molecules 
cocrystallize with other molecules. 

Voronoi approach to description of intermolecular interactions 

To determine intermolecular interactions from the 
crystallographic data we have used the method of molecular 
Voronoi polyhedra.23 An intermolecular contact considered if 
Voronoi polyhedra of the corresponding atoms had a common 
face. The strength of the bonding was estimated by the value of 
the solid angle () of the face expressed in percentage of the 
total solid angle of 4 steradian. This criterion was shown to be 
more universal than other geometrical criteria of bond strength, 
including bond valences, and especially useful to study non-
valence interactions (see the review24 and references therein). 
The contacts with 1.5% were ignored as they correspond to 
a typical experimental error of the  values. To distinguish H 
bonds and specific bonds with participation of halogen atoms 
we have applied additional geometrical criteria.25 Namely, the 
contact H…B in a fragment A-H…B (A, B=N, O) was 
considered as an H bond if all the following criteria were hold: 
d(H…B) ≤ 2.5 Å; d(A…B) ≤ 3.5 Å; A-H…B ≥ 120. The 
contact Hal…B in a fragment A-Hal…Hal (Hal=Cl, Br, I; A=C, 
N, O, F, S, Cl, Se, Br, I) was referred to as a specific bond if 
A-Hal…Hal ≥ 160. Below we apply the term “van der Waals 
interactions” to all intermolecular interactions that are not H 
bonds or specific bonds according to the criteria mentioned 
above, but obey the 1.5% criterion. 

Graph-theory approach to description of intermolecular 
interactions 

In the graph-theory approach, an extended atomic structure is 
described as an infinite graph (network), whose vertices and 
edges correspond to atoms and interatomic bonds, respectively. 
This representation keeps only the information about structure 
connectivity, and ignores geometrical properties like 
interatomic distances, bond angles, etc. As a result, rather far 
relations can be found between the extended architectures that 
differ by chemical composition and geometrical form. If a 
chemical compound contains complex groups like molecules, 
clusters, synthons, polynuclear complex groups, etc. , these 
groups are squeezed to their centers of gravity to give a so-
called underlying net, i.e. the net that shows the method of 
connecting the complex groups (structural units). The set of 
structures that have the same underlying net topology 
irrespective of the internal structure of the complex groups are 
considered belonging to the same isoreticular series. The 

reference topologies of underlying nets are gathered in the 
RCSR database9 and TOPOS TTD collection;10 these sources 
are used to classify chemical structures into isoreticular series. 
Several nomenclatures designate the reference topologies; here 
we use two of them: the three-letter RCSR symbols9 and 
TOPOS NDk-n symbols.11c NDk-n symbol is used in two forms: 
for periodic nets the short form NDn is applied, where N is a 
sequence of degrees (coordination numbers) of all independent 
nodes of the underlying net; D is one of the letters C, L, or T 
designating the dimensionality of the net (C – chain, L – layer, 
T – three-periodic framework); n enumerates non-isomorphic 
nets with a given ND sequence. For finite (molecular) graphs 
the symbol NMk-n is applied, where k is the number of nodes 
(atoms) in the graph.  
An important question, why some isoreticular series are very 
long while others contain the only representative, leads us to 
search for possible causes that invoke a particular underlying 
net topology. One of the obvious causes is the local topology 
that describes the method of connecting every structural unit 
with surrounding structural units;, the primitive element of the 
local topology in an underlying net is coordination figure. Thus 
the relation “coordination figure - underlying net” is an 
important point in prediction of extended architectures. 
Recently,12 we have proposed an approach that uses 
correlations between chemical composition, local and overall 
topology of coordination compounds to develop an expert 
system for prediction of periodic motifs in coordination 
polymers. Below we extend this approach to supramolecular 
architectures and molecular crystals. 
To describe the topology of supramolecular complexes we use 
the concept of molecular connection type that is formalized 
with molecular connection type symbol (MCTS). MCTS 
generalizes the symbol of ligand coordination type26 that we 
used recently12 to specify the method of connection of ligands 
with metal atoms in coordination polymers. Like the ligand 
symbol, MCTS has the general view Lmbtkpghond…, where L is a 
capital letter that designates the number of atoms (n) in the 
molecule that participate in the intermolecular contacts under 
consideration. This letter is M, B, T, K, P, G, H, O, N, D for 
n=1-10 or X[n] for n>10. The line of integers mbtkpghond 
contains the numbers of other molecules, to which a given 
molecule is connected by one (m), two (b), three (t), etc. 
intermolecular contacts; the terminal zero numbers are not 
shown in the line. MCTS essentially predetermines 
coordination figure of the molecule; the sum 
m+b+t+k+p+g+h+o+n+d+ is equal to molecular 
coordination number, i.e. the number of molecules connected to 
the given one. Let us first consider some simple examples. 
In compound III, each molecule forms two H bonds N-HN 
with participation of one N and one H atom (Fig. 1a), so L=B 
(two atoms participate in the intermolecular contacts under 
consideration), and each of the two bonds connects the 
molecule with a different molecule, so m=2 (two molecules are 
connected to the given one by one bond each) and all other 
numbers btkpghond are equal to zero. Hence MCTS looks 
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importance of the corresponding routes (see the previous item 
(iii)) the following nets should be mentioned: 3-coordinated 
hcb; 4-coordinated sql and dia; 5-coordinated bnn; 6-
coordinated sxd; 7-coordinated svk; 8-coordinated hex; 14-
coordinated bcu-x. Most of them were noticed as important for 
other classes of chemical compounds.11,25a 
(v) Molecular connection types are not as characteristic for van 
der Waals bonding as for H bonded patterns; more 
characteristic is coordination figure or molecular coordination 
number. For example at rather high level of strength of van der 
Waals contacts that corresponds to i>10%, molecules in 
compounds I, III, VIII, IX, and X have molecular coordination 
number 12, but their MCTSs are different: X[16]2631, X[12]66, 
X[16]470001, X[17]0(11)01, and X[14]4503, respectively. 
The results obtained show that molecules of a particular kind 
prefer to be organized in particular topological packing motifs. 
For example, the honeycomb motif is well known in crystal 
chemistry and the most abundant in 2-periodic 3-coordinated 
underlying nets,12 but there are also frequent 3-periodic motifs 
srs and ths.11 Why do these motifs not occur in 1,2-
benzothiazines? Apparently, one of the reasons is that the 1,2-
benzothiazine molecules are planar and can form the largest 
number of intermolecular contacts being in a coplanar 
orientation that promote a 2-periodic motif. This feature also 
provides some other motifs based on close-packed layers, like 
hxl, hex, fcu, or hcp. 

Conclusions 

The method of multilevel topological description of molecular 
packings proposed in this paper can be applied to molecules of 
any chemical composition and nature, organic, metal-organic or 
inorganic, connected by intermolecular interactions of any kind. 
Importantly, this approach can essentially facilitate 
formalization of the motifs of interconnecting molecules and 
storing this information in an electronic form. This information 
can then be used to find relations between the organization of a 
molecular packing and supramolecular ensembles at different 
levels of chemical interaction as well as between different 
molecular packings or ensembles. Among the theoretical 
methods of materials science, such approach could complement 
the quantitative methods of mathematical modeling, like 
quantum-mechanical methods, since it allows one to solve a 
number of tasks that require analysis of large samples of data, 
namely: 

 to find typical coordination types of a molecule in 
packings; 

 to analyze the relations between the local coordination 
of a molecule and the packing motif as a whole; 

 to understand what peculiarities of the molecular 
composition and structure influence the local and 
overall topological motifs of the packings. 

In general, the method proposed will help to create the 
databases of topological properties of molecular packings (the 
second-level databases) from the crystallographic databases 
(the first-level databases); this is an important step to develop 
predictable expert systems in materials science.12  
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A new method for description of molecular networks and packings is proposed and implemented 

into the program package TOPOS. 
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