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A highly efficient ZnCl2-catalyzed cascade reaction of 
enaminones with 2-furylcarbinols under mild reaction conditions 
has been developed. This methodology offers chemo- and 
diastereo-selective access to functionalized cyclopenta[b]pyrrole 
derivatives in good to excellent yields. 10 

 
Organic syntheses with chemoselectivity are of great value 

because it can avoid unnecessary protection and deprotection 
steps.1 The selective reaction of a specific functional group in 
polyfunctional molecules is challenging. Enaminones are 15 

versatile building blocks in synthetic organic chemistry.2 They 
combined the ambident nucleophilicity of enamines with the 
ambident electrophilicity of enones. Both α-carbon and amino 
group can be nucleophilic centers. Although much progress has 
been made in recent years in devising new process,3 especially 20 

for heterocyclic synthesis,4 on the utility of enaminones, the 
development of chemoselective reactions of enaminones for the 
precise construction of heterocyclic compounds with biological 
potential remains in high demand. On the other hand, 2-
furylcarbinols are valuable synthetic precursors.5 In 1970s, 25 

Piancatelli et al reported an interesting acid-catalyzed cascade 
rearrangement of certain 2-furylcarbinols for the synthesis of 4-
hydroxycyclopentenone derivatives.6 Since then much effort has 
been made for its application in the synthesis of biologically 
active products. Several elegant works have been disclosed 30 

recently based on Piancatelli rearrangement, such as 
intramolecular reactions with oxygen- or nitrogen-containing 
nucleophiles for the synthesis of oxa- or aza-spirocycles,7 
intermolecular reactions with amines to 4-substituted 
cyclopentenones 8 and others.9 However, in all these reactions, 35 

only heteroatom nucleophiles were employed. There were no 
examples with carbon-nucleophiles, especially in an 
intermolecular fashion. Given the ambient properties of 
enaminone, we envisioned that the selective nucleophilic attack 
by the α-carbon of enaminone might be realized by proper choice 40 

of catalyst systems. During the course of our continued work on 
synthesis of heterocycles starting from enaminones,10 we 
discovered novel cascade reactions of enaminones with 2-
furylcarbinols divergently leading to the formation of  
 45 
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1) Reported work: with heteroatom nucleophiles

2) This work: selective α-carbon nucleophilic attack
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cyclopenta[b]pyrrole rings in good yields through chemoselective 55 

intermolecular α-carbon nucleophilic attacking/intramolecular 
Michael addition sequence. The resulting azabicyclic compounds 
are important azacarboprostacyclin analogs which are potentially 
useful in the treatment of thrombotic disease. 11 

Initial studies were conducted with furan-2-60 

yldiphenylmethanol (1a) and enaminones 2, which was readily 
prepared through conjugate addition of aniline to terminal 
alkynone.11c The reaction of 1a with (Z)-1-phenyl-3-
(phenylamino)prop-2-en-1-one (2a) was selected as a model case 
to screen the experimental conditions. Firstly, the reaction of 1a 65 

with 2a was carried out using CF3COOH (10 mol%) as the 
catalyst in toluene at 80 oC, however, only trace amounts of the 
desired cyclopenta[b]pyrrole ring were detected (Table 1, entry 1). 
THF resulted in no formation of the target product (Table 1, entry 
2).  To our delight, when dichloroethane was used, the desired 3a 70 

was produced in 66% yield (Table 1, entry 3). TsOH·H2O gave 
53% yield of the desired bicyclic compound (Table 1, entry 4). 
Lewis acids such as Sc(OTf)3, BF3·Et2O, FeCl3 and FeCl3·6H2O 
gave good to high yields of the desired product, respectively 
(Table 1, entries 5-8).  It is interesting that ZnCl2 in DCE 75 

afforded 3a in 94% yield within 2 h (Table 1, entry 9). Other 
solvents such as CH3CN, toluene also produced the desired 3a in 
good yields (Table 1, entries 10 and 11). 1,4-dioxane resulted in 
42% of 3a (Table 1, entry 12). However, THF or DMF gave no 
desired product (Table 1, entries 13 and 14). When the reaction 80 

was carried out at 50 oC in DCE, the desired product was 
obtained in 84% yield and required much longer reaction time 
(Table 1, entry 15). Reaction conducted at room temperature 
resulted in trace amount of 3a even after 24 h (Table 1, entry 16). 
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Lowering the catalyst loading to 5 mol% gave 89% yield of 3a in 
4 h (Table 1, entry 17). Changing the ratio of 1a/2a resulted in 
slightly lower yields (Table 1, entries 18 and 19). A control 
experiment showed that no desired product was formed in the 
absence of ZnCl2 (Table 1, entry 20). Therefore, the optimized 5 

reaction condition was to use 10 mol % of ZnCl2 as the catalyst, 
and DCE as the solvent at 80 oC. One of the advantages of this 
method to prepare cyclopenta[b]pyrrole rings is that the cascade 
nucleophilic attack of the α-carbon of enaminone took place in a 
chemoselective manner to give only one isomer of the desired 10 

product (Scheme 1, eq. 2). 
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With the optimized reaction conditions in hand, we then 15 

examined the substrate scope of this cascade reaction for the 
synthesis of cyclopenta[b]pyrrole derivatives using a variety of 
enaminones and 2-furylcarbinols. The results are depicted in 
Table 2. We first investigated the electronic effects of the 
aromatic substituents on nitrogen of enaminones. It was found 20 

that an electron-withdrawing (-p-Cl) aryl group afforded the 
corresponding product 3b in 78% yield (Table 2, entry 2). 

Electron-donating (-3,4,5-tri MeO, -2,6-di Me, 2,6-di iPr) aryl 
groups also gave high yields of 3c, 3d and 3e, respectively (Table 
2, entries 3-5). The structure of 3c was further confirmed as a cis-25 

diastereomer by X-ray crystallographic analysis.12 The 
substituents on nitrogen of enaminone could also be alkyl groups, 
such as benzyl (2f), n-hexyl (2g) and t-butyl (2h) with the 
corresponding 3f, 3g and 3h obtained in 83, 65 and 90% yields 
with relatively longer reaction time, respectively (Table 2, entries 30 

6-8). The electronic effects of the aromatic substituents on 
carbonyl carbon of enaminones were then examined. An electron-
withdrawing (-p-Cl) aryl group gave 3i in 82% yield (Table 2, 
entry 9), while an electron-donating (-3,4,5-tri MeO) aryl group 
produced 3j in 87% yield (Table 2, entry 10). A naphthyl 35 

substituted enaminone was compatible under the reaction 
conditions, furnishing 3k in 91% yield (Table 2, entry 11). The 
reaction also proceeded smoothly with cyclohexyl group (2l), 
affording the corresponding 3l in quantitative yield (Table 2, 
entry 12). The cascade reaction has been successfully extended to 40 

enaminones with two substituents on the β-carbon. Enaminones  
 

Table 2. Synthesis of various of cyclopenta[b]pyrrole rings
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with one more phenyl group at the β-carbon, such as 2m and 2n, 45 

reacted with 1a leading to the formation of 3m and 3n in 53 and 
91% yields, respectively (Table 2, entries 13 and 14). It is 
noteworthy that the reaction time is much longer for these 
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substrates, presumably due to the steric hindrance. Other 2-
furylcarbinols were also attempted in the cyclization reaction. 
Compound 1b with two p-Cl aryl groups gave the corresponding 
bicycle 3o in 85% yield (Table 2, entry 15). Incorporation of two 
different aryl groups on the 2-furylcarbinol in the reaction 5 

provided 3p as two diastereomers in a good yield (Table 2, entry 
16). Unfortunately, when furylcarbinol 1d bearing an alkyl 
substituent was employed, no desired product was detected due to 
a competitive dehydration pathway. Furan-2-yl(phenyl)methanol 
(1e) with a secondary carbinol side chain reacted with 2a 10 

resulting in no formation of the desired bicyclic compound. 
On the basis of the above results and the reported work 

concerning the reaction of 2-furylcarbinols,5,6 a possible reaction 
mechanism is proposed in Scheme 2. Initially, carbocation 5 or 
oxocarbenium ion 6 is generated in the presence of ZnCl2, which 15 

is attacked by an α-carbon of enaminone 2 to give iminium 7. 
Prototropic shift of 7 forms 8. Acid-catalyzed rearrangement of 8 
followed by the 4π-electrocyclization of 10 to produce 
cyclopentenone 11. Intramolecular Michael addition leads to 
product 3. 20 
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Scheme 2. A proposed reaction pathway 

In order to ‘observe’ intermediate 11 before Michael addition, 
the reaction of 1a with 2a was carried out at lower temperature. 25 

However, no information about such intermediate could be 
obtained at the current stage. It seems that the intramolecular 
Michael addition step is fast. 

In conclusion, we have shown that functionalized 
cyclopenta[b]pyrroles are efficiently prepared by the ZnCl2-30 

catalyzed cascade reactions using enaminones and 2-
furylcarbinols. Aryl and alkyl substituents on enaminones are 
compatible in the cascade reactions, furnishing the desired 
cyclopenta[b]pyrrole derivatives in good to excellent yields. In 
this procedure, nucleophilic attack of the α-carbon of enaminones 35 

took place in a chemoselective manner followed by cascade 
Piancatelli rearrangement/Michael addition reactions to give only 
one cis-diastereomer of the desired bicyclic product. 
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