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From the interplay of STM imaging and DFT calculations we 5 

have investigated the isomerization of an alkene molecule on 

Cu(110) under ultrahigh vacuum conditions. We show that 

the on-surface cis-trans isomerization could efficiently occur 

well below room temperature, in which the copper surface is 

speculated to play a key role. 10 

In certain biological systems, cis-trans isomerizations of alkenes 

(i.e. involving carbon-carbon double bond) are important because 

different isomers often exhibit tremendous differences in 

physiological activities and pharmacological effects. For example, 

the trans-fatty acid could result in cardiovascular problems while 15 

the cis state not,1,2 and ferrous fumarate (trans-Butenedioate) has 

been used to treat iron deficiency anaemia.3 Due to the 

intrinsically different properties of isomers, great efforts have 

been devoted to synthesize geometrically pure alkenes and such 

studies are mainly performed in solutions to date.4,5 Surface has 20 

been identified to potentially influence the molecular 

isomerization behaviors,6-8 e.g., the stabilities of cis and trans 

isomers could be inverted on a surface,9 and the scanning probe 

microscopy has proven to be an invaluable tool to explore on-

surface isomerization behaviors at the atomic scale. Nowadays, 25 

such investigations on azobenzene molecules (i.e. involving 

nitrogen-nitrogen double bond) have been widely performed and 

achieved great progress in understanding their isomerization 

behaviors.10-13 However, isomerization of alkene molecules on 

surfaces has rarely been reported.14,15 It is therefore generally 30 

interesting to investigate the isomerization of alkene molecules 

on surfaces to supplement the understanding of on-surface 

molecular isomerization behaviors. 

In this communication, we investigate the isomerization of an 

alkene molecule (shortened as DNHD) on Cu(110) under 35 

ultrahigh vacuum (UHV) conditions at the atomic scale. Cu(110) 

surface is employed as a platform to heterogeneously catalyze the 

on-surface cis-trans isomerization due to its relatively high 

chemical activity and the well-known 1-D templating effect. As 

shown in Scheme 1, the DNHD molecule involves a C=C moiety 40 

exhibiting potential cis-trans isomerization capability. From the 

interplay of high-resolution scanning tunneling microscope 

(STM) imaging and density functional theory (DFT) calculations, 

we show that the cis-DNHD molecules could be converted to the 

trans form with a rather high yield at unexpectedly low 45 

temperatures (~255 K), in which the copper surface is speculated 

to play a key role in assisting this isomerization process. 

Moreover, kinetic scenario of this process is described and found 

to follow an Arrhenius dependence on temperature. These novel 

findings have broadened our knowledge of on-surface molecular 50 

isomerization, and such system may serve as a prototype to 

efficiently control the isomerization behaviors of alkene 

molecules, which may further provide theoretical guidance on the 

production of geometrically pure alkenes. 

 55 

Scheme 1 Isomerization of the DNHD molecule. 

All the STM experiments were performed in a UHV chamber 

(base pressure 1×10–10 mbar) equipped with a variable-

temperature “Aarhus-type” STM,16,17 a molecular evaporator and 

standard facilities for sample preparation. After the system was 60 

thoroughly degassed, the DNHD molecules (synthesized by 

Sonogashira coupling reaction between cis-1,2-dichloroethene 

and 2-ethynylnaphthalene under inert atmosphere18) were 

deposited by thermal sublimation at ~310K onto a Cu(110) 

substrate held at ~170 K. The STM measurements were carried 65 

out in a temperature range of 100 K−150 K. All of the 

calculations were performed in the framework of DFT by using 

the Vienna Ab Initio Simulation Package (VASP).19,20 The 

projector augmented wave method was used to describe the 

interaction between ions and electrons,21,22 and the PBE 70 

generalized gradient approximation exchange−correlation 

functional was employed,23 and van der Waals (vdW) interactions 

were included using the dispersion corrected DFT-D2 method of 

Grimme.24 The atomic structures were relaxed until the forces on 

all unconstrained atoms were ≤0.03 eV/Å. The simulated STM 75 

image was obtained using the Tersoff−Hamann method.25 

As shown in Fig. 1a, after deposition of cis-DNHD molecules 

on Cu(110) at low temperature (~170 K) and annealing the 

sample up to ~210 K, it is seen that nearly all of the molecules are 

resolved as a uniform heart shape demonstrating the cis 80 

characteristic of DNHD molecule, and the molecules are 

distributed on the surface in an isolated way, which was reported 

in our previous work.26,27 Interestingly, when increasing the 

annealing temperature to ~227 K, besides the majority of heart- 
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Fig. 1 STM images after annealing the sample with cis-DNHD molecules 

at (a) 210 K, (b) 227 K, (c) 235 K and (d) 255 K, respectively. Scanning 

conditions: It = 0.65 nA, Vt= –2500 mV. 

shaped features some rod-like motifs appear and also adsorb in an 5 

isolated way on the surface as shown in Fig. 1b. When keeping 

on increasing the annealing temperature to ~235 K, more and 

more heart-shaped features transform to rod-like motifs as shown 

in Fig. 1c. Finally, when the annealing temperature is up to ~255 

K it is found that nearly all of the heart-shape features transform 10 

to rod-like motifs as shown in Fig. 1d. Note that if we anneal the 

sample with heart-shaped features directly up to 255 K we also 

find that only rod-like motifs are present on the surface. 

According to the STM topography and molecular dimension of 

the rod-like motif we speculate that this motif is very likely to be 15 

the trans-form DNHD molecule. 

To verify our hypothesis that the rod-like motif is attributed to 

the trans-form DNHD molecule, we have performed the DFT 

calculations on the adsorption geometries and simulated STM 

images of cis-form and trans-form DNHD molecules on Cu(110) 20 

at a bias voltage of the experimental condition as shown in Fig. 

2a and 2b. In comparison with the high-resolution experimental 

STM image, the DFT-based STM simulation of trans-form 

DNHD molecule shows a quite consistent profile. Moreover, 

trans-form DNHD molecules is calculated to be more stable than 25 

the cis form by 0.28 eV on Cu(110) (cf. Fig. 2c) implying that 

this cis-trans isomerization is an exothermic reaction, which 

accounts for the formation of trans-form DNHD molecules after 

overcoming the energy barrier. From the above analysis we 

conclude that the rod-like motif is the trans-form DNHD 30 

molecule. Note that after further annealing the sample to 400K 

the DNHD molecules undergo Bergman cyclization to form 1-D 

polyphenylene on the surface,26 Since Bergman cyclization has to 

occur via cis-form DNHD molecules, thus this experimental 

result implies that the cis-trans isomerization is reversible on 35 

Cu(110) at higher temperatures. 

It is noticeable that most of the isomerization processes of 

analogue alkene molecules require relatively harsh conditions in 

solution or gas phase, e.g. UV irradiation, high temperature,28-30 

or under ambient conditions with specific catalysts.[4] However, 40 

in our case the isomerization of DNHD could occur well below 

room temperature and no complex catalyst is necessary (only the  

 
Fig. 2 The high-resolution STM images, DFT-optimized structural 

models and DFT-based simulated STM images of (a) the cis-form DNHD 45 

molecule and (b) the trans-form DNHD molecule. (c) Schematic diagram 

of the double-well potential for the isomerization of DNHD molecule on 

Cu(110). The trans-form DNHD molecule is calculated to be more stable 

than the cis form by 0.28 eV. 

Cu(110) substrate). Note that we have also studied DNHD 50 

molecule on Au(111) and Ag(110) surfaces and, however, no 

isomerization is found to occur under thermal treatment. It is 

known from the literatures that the isomerization of alkene 

molecules normally requires a quite high energy barrier of ~2 eV 

in gas phase or in solution,29,30 while in the present study the 55 

barrier is significantly reduced to ~0.59 eV (227 K). The 

temperature-dependent transformation scenario (cf. Fig. 1) 

indicates that the cis-trans isomerization occurs on the copper 

surface rather than in gas phase during thermal sublimation. We 

thus speculate that the copper surface plays an important role in 60 

this isomerization process. 

To get further insight into the isomerization behavior of 

DNHD molecule on Cu(110), a statistical analysis of the 

experimental data has also been performed to estimate the 

isomerization rate for understanding the kinetic characteristics. 65 

The isomerization rate R is defined as the trans/total ratio within a 

time interval in the temperature range of 210 K to 255 K. After 

detailed analysis we find that the isomerization rate obeys the 

Arrhenius law, i.e. R = Aexp[-Ea/(kBT)], as plotted in Fig. 3. As 

extracted from the plot, the activation energy Ea is determined to 70 

be 0.52 ± 0.03 eV and the prefactor A to be 6.3×108.0±0.41 s-1. The 

derived Ea for isomerization of the surface-bound DNHD 

molecule is nearly reduced by a factor of four as compared to the 

activation energy for thermal isomerization of stilbene in gas or 

solution phases,29,30 which is similar to the case of TBA molecule 75 

on the metal surface.[8] 
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Fig. 3 Arrhenius plot of cis-trans isomerization rate of DNHD molecules 

on Cu(110), which is derived from analysis of the STM data in a 

temperature range of 210 K−255 K. 

Concerning the mystery of such low activation energy for cis-5 

trans isomerization of DNHD molecule on Cu(110), based on the 

experimental conditions and findings, we propose the following 

factors which may account for this unpredictable isomerization 

behavior: (1) surface defects such as step edges are known to be 

highly active and could somehow facilitate specific surface 10 

reactions;31,32 (2) the Cu(110) substrate is known to supply freely 

diffusing adatoms even below room temperature,33,34 such 

adatoms may serve as the catalyst to assist the isomerization 

process; (3) the charge transfer induced by the surface-mediated 

effect35 may affect the physicochemical properties of surface-15 

bound DNHD molecule and lower the activation energy for the 

isomerization; (4) it is noteworthy that the disperse distribution of 

DNHD molecules on the surface could also facilitate the 

isomerization process because the isomerization behaviors were 

greatly restricted in a densely packed molecular arrangement 20 

owing to the steric hindrance.7,36 Note that the electric field and 

tunnel current are found to have no influence on this cis-trans 

isomerization. 

In conclusion, from the interplay of high-resolution UHV-STM 

imaging and DFT calculations, we have studied the cis-trans 25 

isomerization of DNHD molecules on Cu(110). We find that the 

Cu(110) surface could facilitate the isomerization of surface-

bound DNHD molecule by significantly reducing the activation 

energy barrier, and this novel phenomenon warrants further 

experimental or theoretical studies into the origin and generality 30 

of this unanticipated surface effect on isomerization of alkene 

molecules. 
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Interplay of STM imaging and DFT calculations demonstrates the isomerization of an alkene 

molecule on Cu(110) under ultrahigh vacuum conditions. We show that the on-surface cis-trans 

isomerization could efficiently occur well below room temperature, in which the surface is 

speculated to play a key role in assisting this isomerization process. 

Page 4 of 4ChemComm

C
h

em
ic

al
 C

o
m

m
u

n
ic

at
io

n
s 

A
cc

ep
te

d
 M

an
u

sc
ri

p
t


