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Using the phospholane-phosphite ligand, BOBPHOS, almost 
perfect regioselectivities and high enantioselectivities (up to 
92 % e.e.) are observed in Rh catalysed enantioselective 
hydroformylation of vinyl arenes. This can be achieved under 10 

solvent-free conditions.  

Hydroformylation of alkenes is well documented as one of the 
most cost- and atom-efficient methods to produce aldehydes.1 
A significant number of catalysts offering good to excellent 
enantioselectivity in asymmetric hydroformylation have now 15 

appeared, and since the seminal work on BINAPHOS/ Rh 
hydroformylation catalysts, phosphine-phosphite ligands2 
have been amongst the most well-studied and proficient 
ligands for enantioselective hydroformylation.3 This spurred 
us to prepare the hybrid phospholane-phosphite of two of the 20 

leading ligands available for enantioselective 
hydroformylation: Kelliphite3a, 3o and Ph-BPE.3h The resulting 
ligand, nicknamed BOBPHOS4 was initially hoped to offer the 
Best Of Both of these PHOShorus ligands, since Kelliphite/Rh 
catalysts display excellent activity under very mild conditions, 25 

even for internal alkenes, and Ph-BPE/Rh catalysts are very 
robust and give very good enantioselectities for terminal 
alkenes such as styrene. Unexpectedly, Rh / BOBPHOS 
catalysts were found to favour the formation of branched 
aldehydes with high e.e. from simple terminal alkyl alkenes: a 30 

long standing issue for hydroformylation chemistry, since 
these substates normally favour the linear aldehyde.5 Given 
that 2-aryl-propanals are important chiral building blocks, 
most desirably accessed from cheap vinyl arenes, we have 
also studied enantioselective hydroformylation of styrene and 35 

a few of its derivatives using this catalyst. It is worth noting 
that several catalysts from the many published studies have 
already given good enantioselectivity in this reaction. 
However, an issue, as pointed out by Landis,2f is that 5-15 % 
linear aldehyde by-product is often formed. Regioisomer and 40 

enantiomer ratios should be considered equally important in 
alkene additions,6 so the product of % chemoselectivity, % 
regioselectivity and % enantioselectivity (enantiomer ratio): a 
‘desired isomer yield’, is perhaps the best measure of 
synthetic utility. Using this measure, only one or two ligands 45 

stand out as being directly useful to the best of our 
knowledge. For example in styrene hydroformylation, the 

Landis ligands such as (R,R,S)-1 can give desired isomer 
yields of 91%-94.8% under optimised conditions,2f Ph-BPE up 
to 94.9%,3h and BINAPHOS up to 82.7% (This can be 50 

improved to 90.2% for a derivative with different aryl 
groups,2b and 86.9% for a derivative with a P-NH function, 
Yanphos2i). Here we report our preliminary findings that show 
that the Rh / BOBPHOS catalyst gives excellent performance 
in the hydroformylation of vinyl arenes, even under solvent-55 

free conditions. 
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Fig. 1 Ligands for Enantioselective Hydroformylation. 

We initially did some screening experiments in the 
hydroformylation of styrene comparing the (S,S,S) and (S,R,R) 60 

isomers of BOBPHOS at 2 different pressures and 
temperatures. The results (Table 1, Entries 2 to 5) clearly 
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establish BOBPHOS to give a ‘desired isomer yield’ (e.g. 
Table 1, Entry 2 = 94.7%) that is competitive with the best 
results ever recorded in the many studies on hydroformylation 
of styrene. The (S) enantiomer was formed preferentially: as 
was the case with alkyl alkenes. Our alkyl alkene 5 

hydroformylation studies used  low temperatures (16 oC) to 
maintain the high selectivity. However in this case, selectivity 
holds up reasonably well at higher temperatures.  

Table 1 Enantioselective hydroformylation of styrene catalysed by Rh / 
(S,S,S)-BOBPHOS. 10 

 

 

 

 

Entry Temp. 
(oC) 

P 
(bar) 

Time 
(h) 

Catalyst  
(mol%) 

Conversionb 

(%) 
B/Lb eeb 

1 c 30 2.5 16 0.4 62 55 19 
2 30 2.5 11 0.4 99 75 92 
3 30 10 16 0.4 98 79 92 
4d 35 3 4 0.25 >99 55 92 
5d 35 14 15 0.25 >99 66 91 
6e 50 3 3 0.05 >99 50 85 
7 60 2.5 0.5 0.4 >99 25 82 
8 60 10 1 0.4 >99 46 89 
9f 50 10 5 0.025 >99 50 91 

10f 65 12 6 0.01 >99 50 81 
 

a The reaction times refer to either total reaction time, or if >99% 15 

complete, time after which >99% of gas was consumed. Pressure is 
constant, a ligand : Rh ratio of 1.25 was used and [styrene] = 0.3M in 
toluene except where noted.  b Conversion and B/L determined by 1H 
NMR (alkyl protons either against cyclooctane internal standard or alkene 
protons), and confirmed by GC. The ee was measured using capillary GC 20 

(see ESI), and in all cases the S enantiomer was the major isomer. c 
Mismatched (R,S,S)-BOBPHOS used as chiral ligand. d Ligand: Rh ratio 
of 2.5:1, 0.63M. e 4 M concentration. f No solvent, L:Rh = 2.5. 

 
A large scale protocol would need lower catalyst loadings, or 25 

a very good recycling protocol, so some reactions were 
carried out at low loadings, and a kinetic analysis was carried 
out (Fig. 2 and E. S. I. †). We were pleased to find that a 
reaction at 0.05 mol% at 4M concentration delivered >99% 
conversion in around 4 hours at just 50 oC with a peak T.O.F. 30 

of 950 in the early stages of the reaction. A plot of T. O. F. 
versus substrate concentration is a convenient graphical way 
to measure: the initial T. O. F., if catalyst activation is 
complete when substrate is added, and to detect if the 
reactions are diffusion-limited. In the low temperature 35 

asymmetric hydroformylations at 0.63 M concentration, the 
reactions of styrene, (and 4-chloro-styrene) are both pseudo 
first order in the alkene substrate, with the T.O.F. dropping 
evenly as its concentration decreases (Fig. 2). † A plot of the 
natural log of [S] versus time also demonstrates this. On the 40 

other hand, the very highly concentrated reaction 
demonstrates kinetics that are in agreement with this being 
diffusion limited (see plot of T. O. F vs. [substrate] in ESI). 
However, as shown in Fig. 2, the asymmetric 
hydroformylations using the Rh/(S,S,S) BOBPHOS catalyst 45 

are negative order in syngas, so good rates are still achieved 
even if limited by solubility of syngas. This, along with the 

very high desired isomer yields, the high solubility and 
robustness of BOBPHOS / Rh catalysts prompted us to 
investigate solvent-free hydroformylation. The solvent in any 50 

chemical process is the most significant contribution to the 
environmental impact and a significant cost contributor 
whether disposed or recycled. It was pleasing to find that neat 
styrene can be hydroformylated using 0.025 mol% Rh pre-
catalyst (with no activation) at just 50 oC and 10 bar pressure 55 

to give complete consumption of product within 6 hours, and 
maintain the excellent regio-, chemo- and enantioselectivity. 
A 1H NMR spectrum of the reaction ‘mixture’ is archived in 
the ESI and resembles a commercial sample (albeit 
contaminated with traces of Rh that would need to be removed 60 

in downstream reactions if used in a drug synthesis). While 
neat hydroformylations (and hydroformylation of mixtures of 
alkenes) are quite widely reported,3a,7 the direct loading of a 
vessel with pre-catalyst, ligand and as-received-substrate in 
air, followed by the conversion to product of good purity 65 

seems of practical value. The best procedure we have 
discovered so far is shown in Table 1, entry 9, although we 
also note that an unoptimised neat reaction also worked using 
0.01 mol% catalyst at 65 oC (T. O. F. = 2500 mol/mol/h), but 
gave lower e.e. In any case, the productivity we have observed 70 

is in the range suitable for application in commercial 
processes. 
 

 75 

Fig. 2 Asymmetric hydroformylation of styrene at 3 and 14 bar 
respectively and 35 oC. Top: plot of Conversion versus time; Bottom: Plot 

of T. O. F. (measured at 0.1M intervals) versus substrate concentration.  

While many papers only report studies on styrene as a model 
substrate, some of the more synthetically useful publications 80 

also report other vinyl arenes. These can give less desirable 
results in some cases; in the case of asymmetric 
hydroformylation of 4-chlorostyrene and 4-methoxystyrene, 
the class-leading Landis ligands report a desired isomer yield 
down to 86.9% and 81% due to a drop-off in e.e. We studied 85 

alkenes 2a and 3a under the unoptimised low temperature 
conditions. The results obtained for the 3- and 4-chloro 
styrenes (desired isomer yield ~ 94-95%) appear to be the best 

Ph

cat. [Rh(acac)(CO)2]

cat. ligand

CO / H2 (1:1)
Ph

CHO

Ph

CHOb l

Page 2 of 3ChemComm

C
h

em
ic

al
 C

o
m

m
u

n
ic

at
io

n
s 

A
cc

ep
te

d
 M

an
u

sc
ri

p
t



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  3 

observed for these substrates. Reactions were complete in 
several hours. To investigate if more electron donating vinyl 
arenes could be used, we also studied the hydroformylation of 
4-vinyl anisole under solvent-free conditions and got excellent 
results with a desired isomer yield of 93.3%. 2-methoxy-6-5 

vinyl-naphthalene also gave good results, although not quite 
matching the very best2f reported (Table 2, Entry 5 and 6).  
In summary, The use of rhodium complexes of (S,S,S)-
BOBPHOS as catalyst for the enantioselective 
hydroformylation of vinyl arenes enables very high desired 10 

isomer yields with good activity. The ability to give good 
activity at low pressures, the high solubility, and the ease of 
operation enable a solvent-free highly enantioselective 
hydroformylation at low catalyst loading directly delivering 
product of excellent purity. Projects studying the mechanism 15 

of action of this unusually selective catalyst, new related 
ligand systems and further applications are getting underway. 

Table 2 Enantioselective hydroformylation of vinyl arenes catalysed by 
Rh / (S,S,S)-BOBPHOS. 

 20 

 

 

 

 

 25 

 

 

Entry substrate Temp. 
(oC) 

Time 
(h) 

Catalyst  
(mol%) 

Conversionb 

(%) 
B/Lb eeb 

1 c 2a 30 3 0.5c >99 >80 89 
2 2a 30 3.5 0.5 >99 >80 89 
3 3a 30 4.5 0.5 >99 [89] >80 89 

4 c,d 4a 45 9 0.05 >99[89] 54 90 
5 5a 30 6 0.5 >99 [96] 75 86 
6 e 5a 60 1 0.4 52 [46] 48 89 

 

a The reaction times refer to either total reaction time, or if >99% 
complete, time after which >99% of gas was consumed. Constant 
pressure of 4 bar used, and a ligand : Rh ratio of 1.25 was used and 30 

[styrene] = 0.5M in toluene except where noted.  b Conversion and B/L 
determined by 1H NMR (alkyl protons either against cyclooctane internal 
standard or alkene protons), and confirmed by GC. >80:1 refers to either 
undetectable linear aldehyde or measured values of c. 99% branched 
aldehyde content. [Unoptimised yields of aldehydes of high purity 35 

(spectra in ESI)]. The ee was measured using capillary GC or HPLC (see 
ESI). c Ligand: Rh ratio of 2.5:1. d No solvent. e 0.4% Rh, 0.5% ligand. 
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† Electronic Supplementary Information (ESI) available: [Full 
experimental details, further kinetic experiments, NMR and GC spectra]. 
See DOI: 10.1039/b000000x/ 
† We also note here that when we have used a significant excess of ligand 
(e.g. L:Rh of 2.5:1), rather than observe inhibition, the reaction proceeded 50 

slightly faster than using the complex formed from [Rh(acac)(CO)2] and 
BOBPHOS without large excess of ligand. Whether excess ligand 
prevents catalyst decomposition needs to investigated in our future 
mechanistic studies. We certainly recommend an excess of ligand for the 
no-solvent+no activation process. 55 
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Ar

0.5 mol% [Rh(acac)(CO)2]

0.625 mol% (S,S,S)-Bobphos

CO / H2 (1:1)
Ar

CHO

Ar

CHOb l

2a, Ar = 4-ClC6H4

MeO

3a, Ar = 3-ClC6H4

4a, Ar = 4-MeO-C6H4

5a, Ar =

2b, Ar = 4-ClC6H4

MeO

3b, Ar = 3-ClC6H4

4b, Ar = 4-MeO-C6H4

5b, Ar =
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