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Determination of protein secondary structure (-helical, -sheet, and disordered motifs) has 

become an area of great importance in biochemistry and biophysics as protein secondary 

structure is directly related to protein function and protein related diseases. While NMR and x -

ray crystallography can predict the placement of each atom in a protein to within an angstrom, 

optical methods (i.e. CD, Raman, and IR) are the preferred techniques for rapid evaluation of 

protein secondary structure content. Such techniques require calibration data to predict 

unknown protein secondary structure content where accuracy may be improved with the 

application of multivariate analysis.  Here, a comparison of the protein secondary structure 

predictions obtained from multivariate analysis of ultraviolet resonance Raman (UVRR) and 

circular dichroism (CD) spectroscopic data using classical least squares (CLS), partial least 

squares (PLS), and multivariate curve resolution-alternating least squares (MCR-ALS) is 

made.  Results of the multivariate analysis suggest that CD measurements provide more 

accurate prediction of protein -helical content whereas UVRR more accurately predicts -

sheet content, an observation that is consistent with previous studies. Based on this analysis it 

is suggested that the best approach to rapid and accurate protein secondary structure 

determination is to combine both CD and UVRR spectroscopic data.  

 

1.   Introduction 

In biochemistry and biophysics protein secondary structure is 

the arrangement of a subset of the amino acids in a repeating 

pattern, generally referred to as -helices, -sheets, and 

disordered motifs.  Protein secondary structure may directly 

impact tertiary (entire protein) and quaternary (protein-protein) 

structure, and thus give important insight into protein function 

and diseases caused by protein misfolding 1, 2.  Protein 

secondary structural motifs are designated by the  and  

dihedral angles of the amide backbone, categorized as helical 

(α-helical ( = -57, = -47) and 310-helical ( = -49, = -

26)), -sheet (antiparallel ( = -139, = 135) and parallel ( 

= -120, = 115)), or disordered (unfolded and structures 

having non-repetitive  and  angles, e.g., turns, loops, etc...)3-

5. Due to the importance of secondary structure motifs in 

protein function several techniques with varying levels of 

accuracy and complexity have been developed to quantify these 

structural features. Exact structure determination methods such 

as X-ray crystallography (XRC) and nuclear magnetic 

resonance (NMR) allow determination of the three-dimensional 

placement of each atom in a protein structure to within sub-

angstrom resolution, however such methods may require 

extensive preparatory work and data analysis 6, 7.  When only 

the total or change in secondary structure content of a protein is 

desired, simple and rapid methods, such as conventional 

Raman, ultraviolet resonance Raman (UVRR), infrared (IR) 

absorption and circular dichroism (CD), are preferred because 

structural information is available without the delay of lengthy 

data analysis8-14. Additionally, studies have shown that 

quantification of secondary structure content is possible by 

combining multivariate methods with these simple and rapid 

spectroscopic techniques and a limited set of standard proteins 
15-17, albeit with prediction errors as high as 10-15%10, 15, 16, 18.  

 The origin of the protein secondary structural sensitivity of 

CD and Raman spectroscopies derives from the absorption of 
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photons by the amide backbone.  CD is the current standard in 

secondary structure analysis of proteins and UVRR is an up-

and-coming technique.  In UVRR, the vibrational amide modes 

(I, II, III, and S) of the protein are enhanced, and shifts in 

position and intensity differences in these modes exist because 

of the limited molecular motions allowed by each secondary 

structural motif (Figure 1A)19-21.  In particular, the amide S 

mode only appears in a UVRR spectrum if there is disordered 

or -sheet structure within the protein21, 22. Use of the UVRR 

amide modes to predict secondary structure content can be 

complicated by the presence of aromatic amino acids 

(phenylalanine, tryptophan, and tyrosine) with vibrational 

modes that overlap the amide bands. UVRR has also been able 

to determine and monitor π – and 310–helices using the amide 

III region of spectra at both 194 and 204 nm.23 CD 

spectroscopy measures the difference in absorption of left and 

right handed circularly polarized light by a sample, which is 

related to the different structural motifs present in a protein.9, 24, 

25  The CD spectra for -helix, -sheet, and disordered protein 

structures are quite different (Figure 1B) and the dominant 

structural feature of the protein often dominates the acquired 

spectrum. For instance, the CD spectra from α- and π- helices 

are very similar making them very difficult to distinguish 

mathematically.26 The spectral response (s) of a protein for both 

techniques is the sum of the relative responses (s, s and sτ) 

and fractional amounts (f, f and fτ) of each secondary 

structure type; 

 

                       (1) 

 

where  designates -helical,  designates -sheet, and τ 

designates disordered related variables. 

 When more than one secondary structure is present in a 

protein, as is often the case, the spectral features become 

convoluted and quantification of each individual motif may be 

better addressed with the use of multivariate methods. 

Multivariate calibration methods assume a linear relationship 

between spectral intensity (variable response) and the relative 

amounts of analytes in a mixture.  In the case of proteins, the 

measured spectra (X) can be modelled as the product of the 

secondary structure content (C) and the underlying pure 

spectral profiles of each type of secondary structure (S) plus an 

error matrix (E) according to Equation 2: 

 

            (2) 

 

A wide variety of multivariate analysis techniques have been 

developed for obtaining structural information from UVRR and 

CD spectra of proteins 9, 16, 17, 25, 27, 28. However, the relative 

performance of various multivariate calibration methods on the 

prediction of secondary structure content has only been studied 

to a limited extent and mostly on IR-CD combined data sets29, 

30. Herein the performance of a partial least squares (PLS), 

classical least square (CLS), and multivariate curve resolution- 

alternating least squares (MCR-ALS) method on both UVRR 

and CD spectra of a set of nine globular proteins are compared.  

The accuracy of each multivariate method is assessed by 

comparison to the secondary structure content determined by 

XRS and NMR as listed on the protein data bank (PDB). These 

multivariate calibration methods have been extensively 

reviewed in the literature31-37. 

 

 

Fig. 1    UVRR (A) and CD (B) spectra of poly-L-lysine in -helix 

(25C, pH 11.0),  -sheet (52C, pH 11.3) and disordered (25C, pH 
4.0) conformations. 
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2.   Experimental 

2.1.  Sample Preparation 

Nine globular proteins with varying secondary structure content 

(Table 1), poly-L-lysine (70,000-150,000 g mol-1) and amino 

acids L-phenylalanine (F) and L-tyrosine (Y) were purchased 

from Sigma Aldrich (St. Louis, MO) and used without further 

purification. The proteins and amino acids were prepared in 

phosphate buffer (pH 7.2). α-Helical and disordered poly-L-

lysine were prepared by dissolving the peptide in pH 11.3 and 

pH 4 phosphate buffer, respectively. α–Helical poly-L-lysine 

was converted to β-sheet structure by heating the sample to 

52C. Concentrations were verified by UV-Visible absorption 

using a Hewlett Packard 8453 spectrometer (Palo Alto, CA), 

and were 0.5 mg mL-1 for protein and peptide solutions, and 

200 M for the amino acids. 

 The proteins chosen for this study were globular proteins 

that could be obtained at low cost and readily soluble in water- 

based phosphate buffer. The experimental design took into 

consideration a range of proteins that showed a trend of 

increasing helical content and overall a well-proportioned 

combination of the major secondary structures. The 

experimental design also strives to prove that a limited amount 

of proteins can also be used to achieve secondary structure 

determination using multivariate analysis. 

Table 1 Secondary structure content (%) of proteins used as found on the 
Protein Data Bank. 

Protein Abbreviation  Helix  -sheet Disordered 

Bovine Serum Albumin BSA38 74.0 0.0 26.0 
Carbonic Anhydrase CAH39 17.8 29.0 53.2 

Chymotrypsinogen A CTG40 13.5 32.0 54.5 

Cytochrome C CYC41 41.0 1.0 58.0 

Glucose Oxidase UOX42 34.5 19.6 46.0 

Lysozyme LSZ43 41.9 6.2 51.9 

Myoglobin MBN44 73.9 0.0 26.1 

Ovalbumin OVA45 32.7 31.9 35.3 

Trypsinogen TGN46 10.1 31.4 58.5 

 

2.2.  Instrumentation 

The UVRR instrument used to collect protein spectra has been 

previously described.47  Briefly, a Nd:YLF pumped Ti:Sapphire 

laser is frequency quadrupled (Coherent Inc., Santa Clara, CA) 

to provide a 197 nm excitation source.  Sample is circulated 

through two nitinol wires (Small Parts Inc., Miramar, FL) to 

create a thin film under a nitrogen purge, and is temperature 

controlled by a water-jacketed reservoir (Mid Rivers 

Glassblowing, Saint Charles, MO) using a bath recirculator 

(Isotemp 3016D, Fisher Scientific, Pittsburgh, PA).  Scattering 

is collected in the 135 backscattering geometry and directed 

into a 1.2 m spectrometer (Horiba Jobin Yvon Inc., Edison, NJ) 

equipped with a Symphony CCD detector and spectra collected 

using Synerjy software (Horiba Jobin Yvon Inc., Edison, NJ). 

Each spectrum was the sum of 3 hours of signal collection and 

run in triplicate. 

 Circular dichroism spectra were obtained using a Model 

62DS spectrometer (Aviv, Lakewood, NJ) from 190-250 nm.  

The instrument temperature control program was used for poly-

L- lysine collection in order to maintain sample temperature 

and -sheet composition.  Protein and peptide samples were 

diluted to 0.2 mg mL-1 for CD measurements, and signal was 

collected for 5 s at each wavelength and averaged over 5 scans 

to produce one spectrum for a total of 3 spectra for each 

sample. 

2.3.  Data Processing 

Analysis of all data was carried out in MATLAB (version 7.11, 

Mathworks, Natick MA).  Cosmic rays were removed using an 

in-house program, base-lined using the MATLAB curve-fitting 

toolbox, and each spectrum truncated to the 1266-1759 cm-1 

range.28  Contributions to spectra from aromatic side chains 

were removed using the phenyalanine band at 1003 cm-1 (F12) 

and tyrosine band at 853 cm-1 (Y1) (Figure 2).  

 

 

Fig. 2   Top: BSA, phenylalanine and tyrosine UVRR spectra. 

Phenylalanine and tyrosine spectra are scaled to the bands at 1003 cm-1 

(F12) and 853 cm-1 (Y1), respectively. Bottom: BSA spectrum with 
phenyalanine and tyrosine contributions subtracted.   

Contributions from tryptophan were disregarded due to its 

negligible intensity in deep-UVRR spectra. Areas that appeared 
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to be negative in the spectrum after aromatic subtraction were 

set to zero.  For CD data averaging of the 5 spectra collected 

was performed with no other pre-processing. 

 It was expected that the UVRR and CD protein spectra 

would be dominated by at least three principal components: the 

α-helical, β-sheet, and disordered conformations.  Principal 

components analysis of the data via a singular value 

decomposition33, 48 based scree plot suggested as few as three or 

as many as five components in the data matrix.  Modelling of 

both data matrices was therefore conducted for three 

components (α-helical, β-sheet, and disordered), four 

components with 310-helices, four components with β-turns, 

and 5 components with 310-helices and β-turns.  The models 

were evaluated for percentage relative error (%RE)  

 

      
[
 

 
∑ (    ̂ )

  
   ]

 
 ⁄

[
 

 
∑ (  )
 
   ]

        (3) 

where n is the number of proteins, yi is the secondary structure 

content obtained from the PDB structures, and  is the value 

predicted.  Comparison of each model’s %RE values (Figure 3) 

shows that the UVRR error is lowest for the three component 

model, suggesting not all secondary structural types (helices, 

antiparallel and parallel sheets, different classes of turns and 

bends) are independent variable49, 50. On the other hand, for CD 

the five component model had the lowest average %RE.  

 Figure 3 shows a breakdown of the individual %RE of the 

different considered components in each model for both UVRR 

and CD. For UVRR, an increase in the number of components 

does not improve the predictive capability of the model for any 

of the structures; rather, it diminishes the predictive capability 

especially for disordered structure types. For CD, the high 

average %RE’s are as a result of the method’s poor predictive 

capability for β-sheet structure (Fig. 3). Figure 3 also shows 

that while an increase in the number of components reduces the 

%RE of the β-sheet structure, the %RE for β-sheet prediction is 

still very high (>110%) and an increase in the number of 

components does not improve the prediction of helical 

structure. The increase in the number of components in the CD 

model also diminishes the %RE for disordered structure 

prediction. Therefore, all UVRR and CD data was further 

processed with only three components. 

Fig. 3 %RE of the different considered components in each model for both 

UVRR and CD. 

 For both UVRR and CD analysis, the triplicate spectra were 

compiled so that 27 individual spectra became the data matrix.  

From the data matrix, 22 spectra were randomly selected as the 

training set; the five remaining spectra were designated as the 

test set. For each multivariate method (CLS, PLS and MCR-

ALS), the secondary structure content of the test set proteins 

were calculated using the model built from the training set. The 

process was repeated 30 times for each multivariate method in 

order to obtain a mean prediction error for the technique using 

root mean squared error of cross-validation (RMSECV) such 

that: 

 

       [
 

 
∑ (    ̂ )

  
   ]

 
 ⁄

  (4) 

 

where n is the number of proteins, yi is the secondary structure 

content obtained from the PDB structures, and  is the value 

predicted by the algorithm.  Algorithms written in-house were 

employed for CLS 31, 36 and PLS analyses. The MCR-ALS 

algorithm was developed by Tauler et. al.51 and is freely 

available. An in-house rotation matrix algorithm was used to 

optimize the output profiles from the MCR-ALS analysis of the 

UVRR and CD data. Briefly, the Raman protein data matrix (X) 

is related to the secondary structure content (C) and pure 

secondary structure spectra (S) as per equation 1, therefore pure 

secondary structure spectra may be obtained by: 

 

           (5) 

 

where + denotes the matrix pseudo-inverse.  However, due to 

noise in the spectral measurement (the error matrix, E), the S 

obtained from MCR-ALS (SMCR) is only an approximation of 

the pure secondary structure, and if used to determine the 

known concentrations of the model does not give the original 

concentration matrix C such that: 

 

          
      (6) 

 

where CMCR is only an approximation of the original 

concentration matrix.  Both the approximate concentration, 

CMCR, and pure secondary structure spectra, SMCR, are related to 

the actual concentrations, C, and pure secondary structure 

spectra, S, by a rotation matrix, W: 

 

             (7) 

 

       
       (8) 

 

Such that: 

 

           (     
  )            (9) 

 

where WW-1 is an identity matrix.  Therefore, the error in the 

estimate of the actual concentrations can be minimized by using 

equation 7 on all predicted concentrations.52-55   

ŷi

ŷi
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 Occasionally, the predicted content for a particular 

secondary structure, helical for UVRR and β-sheet for CD, fell 

below zero. Given that the predicted amounts of secondary 

structure should be zero or greater, these values were set to 

zero. The sum of the predicted amounts of each secondary 

structure type was set to unity.  

3.   Results 

For both UVRR and CD spectroscopic methods, the most 

accurate prediction (lowest RMSECV) is obtained for the 

secondary structure type with the strongest spectral intensity, β-

sheet for UVRR and α–helix for CD (Table 2).  In order to 

compare the ability of CLS and MCR-ALS to resolve the pure 

underlying secondary structure UV Raman profiles, the 

resolved profiles were compared to the homo polypeptide poly-

L-lysine (Figures 5 and 7). The PLS algorithm does not 

produce resolved pure spectra so the spectrum of the protein 

with the largest predicted content for each structure type is 

presented along with the associated predicted protein spectrum. 

These proteins are designated by their three letter abbreviation. 

  Reference spectra obtained from manipulation of poly L-

lysine into the three major protein secondary structure 

conformations was chosen to evaluate the results of spectral 

resolution by CLS, PLS and MCR-ALS. It is quite possible for 

the disordered form of poly L-lysine to possess some residual 

local chain order or any other conformation for that matter.16, 56 

The inability to obtain total conformity to one secondary 

structure from globular or membrane proteins at large led to the 

decision of picking poly L-lysine as the polypeptide of choice 

for result evaluation. As a result, poly L-lysine spectra were 

only used for evaluating spectral resolution and not included in 

the modelling of the data or for prediction of secondary 

structure. 

3.1.  Results for UVRR 

Overall, each multivariate method performed similarly with an 

average prediction error of approximately 10% (Table 2). The 

RMSECV was lowest for predicted amounts of β-sheet content, 

typically less than 5%. The error in prediction of α-helical 

content ranged from 14-16% before normalization. After 

normalization, the error in prediction of helical content dropped 

and ranged from 9-12%. A similar reduction in RMSECV was 

observed for the predicted amounts of disordered structure after 

normalization. In general, normalization improved secondary 

structure estimation from UVRR spectra. 

 The predicted percentages of each secondary structure type 

show a linear correlation with the known secondary structure 

composition (Figure 4). For the MCR-ALS algorithm, 

significant under predictions were observed for disordered 

structural content of both lysozyme and cytochrome c. To 

compensate for these under estimations in disordered structure, 

the helical contents (Figure 4) of those same proteins were over 

estimated. The common factor between lysozyme and 

cytochrome c is an absence of β-sheet structure.  

 Figure 4 presents the pure secondary structure spectra 

obtained from the multivariate analysis, with the exception of 

PLS where the protein with the largest predicted percentage of 

any one secondary structure is present instead.  The predicted 

pure UVRR α-helical spectrum from CLS is unrealistic with 

both positive and negative features. In contrast, the predicted α-

helical spectrum from MCR-ALS is the most interesting in that 

the amide S (1390 cm-1) is absent and the amide III (~1240 cm-

1) modes are significantly reduced. These two amide modes are 

markers of non-helical structure.16, 22 Only the MCR-ALS 

algorithm effectively removes these contributions from the pure 

secondary structure Raman spectrum (PSSRS). The position of 

the amide I (1648 cm-1), II (1544 cm-1) and III (1299 cm-1) 

bands in the PSSRS from MCR-ALS are slightly lower than 

observed with α- poly L-lysine (Table 4) but are still within the 

expected region for a helical protein. Bovine serum albumin is 

predicted to be 82% helical by PLS. The predicted spectrum of 

BSA obtained from the PLS method appears similar to α-helical 

poly-L-lysine spectrum.  

 For -sheet PSSRS, the spectrum obtained from the CLS 

algorithm is most similar to the -sheet poly-L-lysine spectrum. 

For all three algorithms, the predicted amide I (1668-1673 cm-1) 

and amide II (1552-1560 cm-1) positions fall within the 

expected regions (~1668 cm-1 for amide I, ~1563 cm-1 for 

amide II) for a β-sheet protein 8, 22 (Table 3). The amide S mode 

is predicted to be downshifted to 1389 cm-1 (CLS, PLS) and 

1392 cm-1 (MCR) from that of poly L-lysine which occurs at 

1408 cm-1. The amide III band of the CLS β- sheet spectrum 

(1240 cm-1) is closest in position and shape to that of the β- 

sheet poly L-lysine spectrum. Whereas the amide III band in 

the predicted β- sheet spectrum from MCR is broad ranging 

from 1229-1271 cm-1. 

 

Table 2    RMSECV (%) values calculated 

UVRR 

Algorithm helix -sheet Disordered Average 

CLS 14.4 3.3 11.0 9.5 

Normalized CLS 9.0 2.6 9.0 6.9 

PLS 16.3 4.0 10.7 10.3 

Normalized PLS 12.1 5.8 9.1 9.0 

MCR-ALS 15.7 4.0 14.2 11.3 

Normalized MCR-ALS 12.2 4.0 12.0 9.4 

CD 

CLS 6.4 31.8 22.5 20.2 

Normalized CLS 16.3 17.9 9.3 14.5 

PLS 4.4 14.1 18.7 12.4 

Normalized PLS 15.5 9.6 10.1 11.6 

MCR-ALS 5.8 14.8 14.2 11.6 

Normalized MCR-ALS 10.8 11.4 6.7 9.6 

CD + UVRR 

CLS 6.4 3.3 5.6 5.1 

PLS 4.4 4.0 4.2 4.2 

MCR-ALS 5.8 4.0 5.4 5.1 

 

 All the multivariate methods produced a disordered 

spectrum very similar to that of disordered poly L-lysine. 

Specifically, all the spectra have two distinct features in the 
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amide III region that occur at approximately 1240 and 1280 cm-

1. These features occur at approximately 1260 and 1300 cm-1 in 

poly-L-lysine. The difference in the predicted positions versus 

disordered poly L- lysine may be due to the difference in amino 

acid composition between a globular protein and a homo 

polypeptide. The amide S mode is predicted to be 3-5 cm-1 

lower for disordered structure with respect to β-sheet structure 

regardless of multivariate method, similar to poly-L-lysine 

(Table 3). The predicted amide I and II bands also occur in the 

expected experimental amide I (1548–1561cm-1) and amide II 

(1661–1682 cm-1) regions8. 

 

 

Fig. 4 The actual versus predicted percentage composition for UVRR of 

α-helical (circles), β-sheet (squares), and disordered (triangles) 

structures as a percentage of content.  The (1,1) line is shown to 
illustrate the deviations in the prediction.  

   

 

Fig. 5    The PSSRS obtained from the various methods compared to the 

poly-L-lysine (PLL) pure conformer spectra.  The dotted line is used to 
indicate the zero line for the spectrum that has a negative region.  PLS does 

not produce PSSRS, so the largest predicted content for each structure type 

obtained during the iterative calculations is presented along with the protein 

spectrum (designated by the 3 letter abbreviation) associated with the 

prediction. 

3.2.  Results for CD 

For CD, the most accurate predictions were obtained for the 

amount of α-helical content in each protein. The PLS algorithm 

predicted the helical content most accurately with an RMSECV 

of 4.4%. MCR-ALS performed nearly as well with a RMSECV 

of 5.8% (Table 2). Regardless of multivariate method (CLS, 

PLS, MCR-ALS), a linear correlation between the known 

secondary structure composition and the predicted amounts of 

each type of secondary structure was obtained (Figure 5). 

However, the predicted percentages of each secondary structure 

type from PLS and MCR-ALS cluster more tightly on the (1,1) 

line indicating a greater error in the predicted secondary 

structure compositions for CLS. Overall, the RMSECV for 

prediction of secondary structure compositions from CD 

spectra are significantly higher for β-sheet and disordered 

structure (Table 2). While normalization improves prediction of 

β-sheet and disordered contents, it appears to degrade the 

prediction of α-helical content from CD spectra.  

Table 3.   Frequencies (cm-1) of amide bands in the resolved UVRR 

spectra for secondary structure obtained from CLS, PLS, MCR-ALS 

and the poly-L-lysine (PLL) pure conformer spectra. 

 CLS PLS MCR PLL16 

Helix 

Amide III - 1257 - 1253 

Amide III 1308 1299 1299 1291 

Amide S - 1386 - 1401 

Amide II 1516 1549 1544 1552 

Amide I  1647 1656 1648 1650 

β-Sheet 

Amide III 1240 1240 1229 1247 

Amide III - - 1271 - 

Amide S 1389 1389 1392 1408 

Amide II 1552 1558 1560 1563 

Amide I 1670 1668 1673 1668 

Disordered 

Amide III 1237 1240 1240 1260 

Amide III 1280 1282 1288 1298 

Amide S 1384 1384 1389 1398 

Amide II 1552 1558 1552 1560 

Amide I 1668 1659 1668 1667 

 

 

Fig. 6   The predicted versus actual percent composition of secondary 

structure from CD analysis of helical (circles), β-sheet (squares), and 
disordered (triangles) structures as a percentage of protein content.  The (1,1) 

line is shown to illustrate the deviations in the prediction. 

 The resolved pure CD spectra from CLS and MCR are 

shown in Figure 6. As mentioned above, the PLS algorithm 
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does not produce resolved pure spectra. Therefore, the 

predicted protein spectrum with the largest predicted content 

for each structure type is presented along with the protein 

spectrum. Each PLS spectrum is designated by the 

representative protein’s three letter abbreviation. The predicted 

α-helical spectrum from each method appears similar to the 

pure CD spectrum of α-helical poly-L-lysine. The resolved pure 

β-sheet CD spectra from both the CLS and MCR-ALS are 

inconsistent with the CD spectrum of β-sheet structured poly-L-

lysine. For CLS, the minimum is shifted to 205 nm from 212 

nm for the CD spectrum of β-sheet structured poly L-lysine. 

The predicted pure β-sheet CD spectrum from MCR-ALS is 

unrealistic with a minimum of 200 nm versus the expected 

minimum of 217 nm for pure β-sheet structure. Therefore, this 

factor likely represents a mixture of β-sheet and disordered 

content.  

 The pure resolved disordered CD spectra from CLS and 

MCR have minima at 191 nm, 5 nm lower than the minima of 

disordered poly-L-lysine. The resolved pure disordered spectra 

also have positive features as expected for an unfolded protein 

but the positive features are unrealistically broad. Thus, neither 

algorithm sufficiently predicts the pure disordered CD 

spectrum. Chymotrypsinogen is predicted to have the greatest 

amount of disordered (49%) and β-sheet (34%) structure via 

PLS. Indeed, the predicted CD spectrum is characteristic of a 

protein with large amounts of disordered and β-sheet structure 

with a broad minimum at 202 nm that extends out to almost 230 

nm.  

 

Fig. 7   The CD pure spectra obtained from the various methods compared to 

the poly-L-lysine (PLL) pure conformer spectra.  The dotted line is used to 

indicate the zero line for the spectrum that has a negative region.  PLS does 
not produce PSSRS, so the largest predicted content for each structure type 

obtained during the iterative calculations is presented along with the protein 

spectrum associated with the prediction. 

3.3.   Results for UVRR + CD - Improving prediction of 

disordered structure 

 An accuracy of about 5% can be achieved when predicting 

helical content with CD and β-sheet content with UVRR. 

However, the error in the prediction of disordered (unfolded) 

structure remains around 10% with a minimum of 6.7% 

(normalized MCR-ALS/CD) and a maximum of 22.5% 

(CLS/CD). In order to improve the prediction of the fraction of 

disordered structure (fD), the predicted percentages of α-helical 

(fα) and β-sheet (fβ) structure from CD and UVRR were 

combined, where fD = 100 - (fα + fβ). Prediction of disordered 

structure was improved and the RMSECV for disordered 

structure lowered to about 5% for each multivariate method, a 

significant improvement to other multivariate approaches where 

CD and IR spectroscopic data is combined with an average 

error of approximately 7%.29  

 A plot of the predicted amount of disordered structure 

versus the amount determined from the PDB structure for MCR 

illustrates how the values cluster more tightly to the (1,1) line 

when both types of spectroscopy are incorporated into the 

prediction (Figure 8). 

 

 

Fig. 8   The predicted versus actual percent composition of disordered 
secondary structure from UVRR analysis, CD analysis, and (100 - (CDα + 

UVRRβ)).  The (1,1) line is shown to illustrate the deviations in the 

prediction. 

4.   Discussion and Conclusion 

 It is not surprising that the algorithms give the best 

predictions for -sheet content using the UVRR data set, given 

that the -sheet structured poly-L-lysine has the most intense 

UVRR spectrum and thus the greatest signal-to-noise ratio.  It 

is interesting that the CLS algorithm predicts the -sheet 

content more accurately than the other algorithms given that it 

is the simplest used here. However, the difference in prediction 

errors between all the algorithms is small.   

 It is also intriguing that though all the algorithms predict the 

-sheet content more accurately, none of them give the smallest 

error for the highest -sheet content protein in the data set 

(trypsinogen). In contrast, analysis of the CD data has PLS and 

MCR-ALS very close in prediction ability while CLS is poor 

comparatively.  Additionally, despite the fact that all algorithms 

give the best predictions for the helical content as the -helix 

has the largest signal in CD data, none of the algorithms 

predicts the highest -helical content protein (myoglobin) with 

the most accuracy. 

 None of the multivariate methods were able to accurately 

predict the amount of disordered content from either UVRR or 

CD spectra. Combining the predicted amounts of helical and -

sheet contents enabled a more accurate estimation of the 
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disordered content. When the results of the two data sets are 

combined, the average RMSECV for PLS is slightly lower 

(4.2%) than CLS and MCR-ALS (5.1%).Thus, more accurate 

predictions of secondary structure content can be achieved 

when multiple techniques are employed, much as seen with 

CD+ IR spectroscopy10, because of the difference in structural 

sensitivity of each technique. A slight improvement in 

RMSECV was observed when combining CD+UVRR (~5%) 

versus CD+IR (7.23%)10, despite the smaller protein data set 

employed in the CD+UVRR analysis. The addition of the 

amide S and III regions that are visible in UVRR spectra but 

not in IR spectra, likely improved our RMSECV values.  

 Both CLS and MCR-ALS can be used for resolution of pure 

secondary structure profiles. CLS outperformed MCR-ALS 

when resolving pure secondary structure profiles from CD 

spectra of proteins. However, MCR-ALS outperformed CLS 

when resolving pure secondary structure profiles from UVRR 

spectra of proteins. This might be attributed to the application 

of non-negative constraints during the ALS optimization, which 

could not applied when analysing the CD spectra via MCR-

ALS. 

 Multivariate techniques may be used to model a limited 

protein data set and predict unknown protein secondary 

structure content based on the model in both UVRR and CD 

spectroscopy, and is most accurate when both techniques are 

used in unison.  An advantage of employing CD and UVRR is 

that the same sample can be used for both techniques as water 

does not contribute significantly to UVRR spectra. 

Normalization should be used with caution as it seriously 

degraded prediction of helical content from CD spectra. 
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