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A disposable colorimetric sensor array capable permits rapid differentiation and identification 

of 12 pathogenic fungi in 3 hr with >98% accuracy, based on their metabolic profiles of emitted 

volatiles. 
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Abstract  

Human fungal infections have gained recent notoriety following contamination of 

pharmaceuticals in the compounding process. Such invasive infections are a more serious global 

problem, especially for immunocompromised patients. While superficial fungal infections are 

common and generally curable, invasive fungal infections are often life-threatening and much 

harder to diagnose and treat. Despite the increasing awareness of the situation’s severity, 

currently available fungal diagnostic methods cannot always meet diagnostic needs, especially 

for invasive fungal infections. Volatile organic compounds produced by fungi provide an 

alternative diagnostic approach for identification of fungal strains. We report here an 

optoelectronic nose based on a disposable colorimetric sensor array capable of rapid 

differentiation and identification of pathogenic fungi based on their metabolic profiles of emitted 

volatiles. The sensor arrays were tested with 12 human pathogenic fungal strains grown on 

standard agar medium. Array responses were monitored with an ordinary flatbed scanner. All 

fungal strains gave unique composite responses within 3 hours and were correctly clustered 

using hierarchical cluster analysis. A standard jackknifed linear discriminant analysis gave a 

classification accuracy of 94% for 155 trials. Tensor discriminant analysis, which takes better 

advantage of the high dimensionality of the sensor array data, gave a classification accuracy of 

98.1%. The sensor array is also able to observe metabolic changes in growth patterns upon the 

addition of fungicides, and this provides a facile screening tool for determining fungicide 

efficacy for various fungal strains in real time. 
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1. Introduction 

Worldwide mortalities from human invasive fungal infections are comparable to those from 

tuberculosis or malaria, and mortality rates exceed 50%.1  Fungal infections have received 

increasing clinical focus,2-4 and contaminated compounding pharmacies have brought this crisis 

to widespread public attention.1, 5  Despite the increasing awareness of the situation’s severity, 

currently available fungal diagnostic methods cannot always meet diagnostic needs, especially 

for invasive fungal infections. Traditional culturing methods are slow and labor-intensive, 

immunological tests often suffer from cross contamination, and molecular diagnostic methods 

lack standard criteria or diagnostic scope.4, 6, 7  Thus, the development of new techniques for the 

rapid identification of fungal strains would be highly desirable. 

The volatile organic compounds (VOCs) produced by fungi may have great utility as an 

alternative diagnostic approach. There are approximately 250 fungal VOCs identified (including 

alcohols, phenols, thiols, sulfides, hydrocarbons and aldehydes) that derive from fungal primary 

or secondary metabolic pathways.8  It has been shown that fungal VOC fingerprints can be used 

to discriminate noninvasively among medically relevant fungi9-11 and to rapidly screen and 

monitor the effectiveness of anti-fungal drugs.12, 13  Previous VOC identification and profiling 

methods, however, are either not cost-effective or not robust. Gas chromatography-mass 

spectrometry (GC-MS) is high-maintenance and expensive. Moreover, sample collection 

methods, such as solid-phase micro-extraction (SPME), can have adsorption bias and poor 

recovery.8 Conventional electronic nose techniques, another commonly used VOC fingerprint 

profiling method, rely on weak and non-specific chemical interactions that induce changes in 

sensors’ physical or electrical properties after exposure to VOCs.8, 14  Such electronic noses, 
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however, are generally very sensitive to changes in humidity, require frequent recalibration, and 

are often limited in their sensitivity. 

Previously, we have developed an optoelectronic nose approach using colorimetric sensor 

arrays for VOC detection and identification.15-19  The sensor consists of a disposable array of 

cross-responsive nanoporous pigments whose colours are changed by diverse chemical 

interactions with analytes and which is unresponsive to changes in humidity. This portable, 

inexpensive, and highly sensitive optoelectronic nose produces a composite response which 

generates a unique molecular fingerprint for each analyte or mixture. Colorimetric senor arrays 

can differentiate and identify single analytes (e.g., toxic industrial gases17, 20, 21 and explosives22) 

at concentrations well below 1 ppm. We have also successfully demonstrated fingerprinting and 

identification of complex odorant mixtures, including discrimination of the head gases of 

beverages,23-25 the rapid identification of human pathogenic bacteria,26 and even breath diagnosis 

of lung cancer.27   

Herein, we report a colorimetric sensor array system for fungi differentiation and 

identification by profiling the composite volatile metabolites produced during fungal growth. 

2. Experimental 

2.1 VOC sensing experimental procedures 

12 fungal strains were tested, including Candida albicans (CAI-4), Candida albicans (B311), 

Candida albicans (1-28), Candida glabrata-1, Candida guilliermondii, Candida parapsilosis, 

Trichosporon asahii 3323, Debaryomyces hansenii 3333, Candida stellatoidea, Candida keyfr, 

Saccharomyces cerevisiae 4742 and Kluyveromyces lactis (cf. Table S1) Strains were maintained 
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 5

on solid yeast extract-peptone-dextrose (YPD) medium. Fungal cell suspensions were prepared 

by inoculating 10 mL medium with a single colony, and liquid cultures were incubated overnight 

for 16 h at 30°C. A subculture was prepared by diluting the overnight culture into 10 mL fresh 

YPD medium to an optical density (OD600) of 0.1, where 1 OD corresponds to 2.4x107 colony 

forming units/mL (CFU/mL). After 6 more hours of rotary shaking at 30 °C, after which all 

strains were in exponential phase, 4.8x107 CFU were harvested and re-suspended in 150 μL 

sterile water (i.e., 3.13×108 CFU/mL)  and then uniformly spread on 6 cm diameter plates 

containing 7 mL of solid YPD medium which had been pre-dried at 37 °C for 1 h. The 

inoculating suspension was allowed to soak into the agar medium for 10 min, after which the 

sensor array was exposed to the headspace, at room temperature, of the culture by replacing the 

original petri dish lid with one containing the sensor array and sealing with parafilm. A control 

with 150 μL sterile water inoculation was performed in parallel in each trial.  

For anti-fungal drug experiments, 20 µL of stock drug solutions in dimethyl sulfoxide (DMSO) 

were added to 130 µL sterile water-suspended fungal cells. 20 µL DMSO in 130 µL sterile water 

was used as control.  

2.2 Colorimetric sensor array and composite volatile response detection 

The disposable colorimetric sensor array was prepared by printing a 6x6 matrix of 

nanoporous dyes onto polyvinylidene fluoride (PVDF) membrane. PVDF was chosen because it 

is neutral, inert, and hydrophobic. The specific dyes used for this study is listed in Table S2. In 

order to support the array in the head space of the culture and to easily conduct the experiments, 

an engineered petri dish lid was designed. The colorimetric sensor array was attached to a plastic 

stage via 3M double-sided tape (which showed no effect in controls), which allowed volatiles 
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 6

diffuse and interact with all the dyes. The stage was then secured to the petri dish lid using 

silicone oil (2x106 cSt). After the engineered lid was in place, the Petri dish was sealed with 

parafilm and placed inverted on a commercially available scanner (Fig. S1) inside an incubator at 

30 °C. Data was collected every 15 min using Epson Perfection V600 scanner.  

Colour difference maps were generated by averaging the colour value changes of red, green 

and blue (RGB), at each spot. The baseline values were taken 15 min after sealing the Petri dish. 

Each strain has a unique colour difference map at each specific time point. Time response 

profiles were obtained by plotting colour changes of all 108 channels (i.e., ΔR, ΔG, ΔB values of 

36 spots) over time (Fig. S3). The complete database is provided in Database S1.  

2.4 Linear Discriminant Analysis (LDA) and Tensor Discriminant Analysis (TDA) 

Linear discriminant analysis28 was performed using a commercially available program, 

SYSTAT13 (Systat Software Chicago, Illinois, USA, 2009). The data set consisted of 155 array 

responses (i.e., observations) at a single time (180 min). In the classification matrix (Table S3), 

each observation is classified into the group where the value of its classification function is 

largest. All 13 classes, including 12 strains and 1 background, were classified 100% correctly. A 

Jackknifed classification (leave-one-out cross-validation) was used to test the predictability of 

the sensor array: one observation is left out and the rest of the data are used as a training set to 

generate the linear discriminant function, the model is then tested with the single left-out 

observation, and the procedure is then iterated through all of the observations in turn. The 

accuracy thus determined for the Jackknifed LDA prediction was 94%. The complete Jackknifed 

classification matrix table is shown in Table S4.  
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 7

For our tensor discriminant analysis (TDA), we used the colour difference changes (∆R ∆G 

∆B) from all 36 dye spots for 9 different times (from 120 min to 360 min in 30 min intervals). 

TDA is a generalization of LDA to multiway arrays.29-31  TDA constructs optimal linear 

classifiers in a trimodal fashion, optimized separately for (1) the combination vector of dye spot, 

(2) the effects of the three colour factors (∆R ∆G ∆B) for each dye, and (3) the temporal 

progression.  The general strategy of the TDA algorithm in the colorimetric sensor array 

classification can be clearly illustrated using the flow chart given below in Scheme S1.29   

 

3. Results and Discussion 

3.1 Colorimetric Sensor Arrays 

A colorimetric sensor array uses cross-reactive chemoresponsive colorants whose colour 

changes reflect a diverse range of chemical interactions between the analytes and the colorants.  

We have developed an optimized set of 36 dyes that yield an essentially universal chemical 

sensor array.17  The dyes fall into four classes: (1) dyes containing metal ions (e.g., 

metalloporphyrins) that respond to Lewis basicity (that is, electron-pair donation, metal-ion 

ligation), (2) pH indicators that respond to Brønsted acidity/basicity (that is, proton acidity and 

hydrogen bonding), (3) dyes with large permanent dipoles (e.g., vapochromic or solvatochromic 

dyes) that respond to local polarity, and (4) metal salts that participate in redox and precipatory 

reactions.  This colorimetric sensor array, therefore, is responsive to the chemical reactivity of 

analytes, rather than to their effects on secondary physical properties (e.g., mass, conductivity, 

adsorption, etc.). The specific dyes used for this study are given in Table S2.  
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 10

most responsive channels are shown in Fig. 2B, again for C. albicans as an example. The time 

response profiles for all 12 strains of fungi are provided as Fig. S3. The differences in the time 

response provides for each of the fungal strains serve as fingerprints that allow one both to 

qualitatively differentiate and identify strains even by the naked eye and to provide a quantitative 

pattern analysis.  

The time response profiles for different fungal strains vary both in the intensities of the 

colour changes and in the times at which such response begin to occur.  For example, thiols and 

sulfides are common metabolites among fungi,33 and the sensor spot that are most responsive to 

thiols and sulfides (i.e., the blue, green, and purple lines in Figure 2B and Figure S3) do indeed 

undergo large colour changes.  The timings of these colour changes, however, are strain specific:  

rapid changes occur for C. albicans (CAI-4) (even after just 15 min), whereas the changes begin 

to occur only after 180 min for C. keyfr, 450 min for C. stellatoidea, and not at all with D. 

hansenii.  This thiol and sulfide responding spot has a dye formulation containing Pb(O2CCH3)2 

(Table S2).  

3.4 Pattern Recognition and Statistical Analysis 

To provide a statistically meaningful analysis, we utilized a standard chemometric approach, 

hierarchical cluster analysis (HCA),28 to discriminate the VOC temporal profiles among the 12 

strains and to demonstrate excellent reproducibility among replicates. HCA is a model-free 

clustering analysis that generates a dendrogram based on the Euclidean distances between the 

difference maps of each trial using all 108 dimensions. No mis-clusterings were observed for 

data from 155 trials after 180 min growth (Fig. 3A), which demonstrates that the method is 

reproducible and differentiates among different strains of fungi. It is worth noting that the 
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account for only 18.2% of the total discriminant power. The accuracy of classification using 

TDA maximizes at 98.1% using an optimal 10 dimensions. 

 

 

To provide a quantitative evaluation of the accuracy of classification of the fungal strains by 

our colorimetric sensor arrays, we first completed a standard linear discriminant analysis (LDA). 

LDA of the array response (i.e., the RGB colour changes of each sensor spot) at 180 min gave a 

classification matrix with no errors (Table S3). To quantitatively test the prediction accuracy of a 

new unknown input using LDA, a standard Jackknifed analysis was performed (leaving out one 

observation at a time and permuting through the full dataset), giving a prediction accuracy of 

94% (Table S4). Data from these colorimetric sensor arrays have an exceptionally high 

dimensionality, and LDA does not provide optimal classification with such data due to the “curse 

of dimensionality” (i.e., the difficulties that a large number of  dimensions can create for function 

approximation, model fitting, information extraction, as well as computation).34 

Tensor discriminant analysis (TDA) is an array generalization of LDA better able to take 

advantage of high dimensionality.30, 31 More precisely, tensor discriminant analysis is used to 

classify multi-way array measurements (i.e., “tensor measurements”), rather than one-way vector 

measurements. The data collected using colorimetric sensor arrays can be viewed as a 3-way 

tensor with the first mode corresponding to choice of the dye, the second mode corresponding to 

the effects of the colour changes (i.e., ΔR, ΔG, ΔB), and the third mode corresponding to the 

time progression.29  The general strategy of tensor discriminant analysis is to find orthogonal 

linear classifiers so as to maximize the ratio of between-class variation to within-class variation 

(i.e., to maximize discrimination among classes).  Those orthogonal linear classifiers are 
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essentially linear combinations of the three-way interactions of (1) the effects of the dye spot 

choice, (2) the three colour changes of each spot (i.e., ΔR, ΔG, ΔB), and (3) the temporal 

evolution.  

Tensor discriminant analysis can greatly improve the sensitivity, specificity, and 

computational efficiency of discriminant analysis method.29-31  LDA and most other existing 

classification methods largely ignore the array structure of the colorimetric sensor array data:  the 

three colour changes for each spot are not fully independent dimensions compared to the three 

colour changes of the other spots.  For our array data over time, LDA would simply vectorize 

each 3-way observation into a vector with 972 dimensions (36×3×9, i.e., where 36 dyes × 3 

colour factors (∆R ∆G ∆B)  × 9 time points (120 min to 360 min in 30 min intervals)) and find 

classifiers using 972 parameters.  In contrast, TDA constructs the optimal linear classifiers and 

estimates them in a trimodal tensor (separating spot choice, colour, and time). By separating 

these three classes of effects, we can (1) keep the original design information and avoid 

interpretation difficulties, (2) substantially limit the effective dimensionality (we only need 48 

parameters (i.e., 36+3+9) for TDA, rather than 972 parameters in LDA or PCA), and (3) improve 

prediction accuracy.  

As a result, the directions created in TDA are not obscured by the noise present in the very 

large number of additional dimensions in LDA or PCA.  As a consequence, excellent 

discrimination of the fungal strains is achieved even with only two TDA directions, which 

account for only 18.2% of the total discriminant power (as defined by the ratio of the between-

group variation to the within-group variation), as seen in Figure 3B. The prediction accuracy of 

TDA was assessed quantitatively by using a Jackknifed classification (leave-one-out cross-

validation using the rest of the data as a training set and permuting through the full dataset). The 
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prediction accuracy of the tensor discriminant analysis reaches a maximum of 98.1% using an 

optimal 10 dimensions (Fig. S4, based on 155 trials).   

 

3.5 Limit of Detection 

The limit of detection (LOD) at a given time may be defined as the smallest number of viable 

fungal cells in the initial inoculum that will give a response from a single channel that is larger 

than three times the noise at that given time. A more quantitative measure of the LOD at 720 min 

can be approximated as 3[I]/Cmax where [I] is the initial inoculum concentration,  is the 

standard deviation of the channel with the largest net colour response at 720 min, and Cmax is that 

largest net colour response.  Time response profiles of the 10 most responsive channels of array 

response to Candida albicans (CAI-4) is shown in Figure 4.  We can interpolate the LOD from 

the three lowest initial inocula (Fig. S5), and calculate the LOD after 720 min. to be 2x104 CFU 

for the initial inoculum. One may also define a time to detection as the time at which the 

response of a single channel is larger than three times the noise. Not surprisingly, there is a 

roughly linear correlation between the time to detection vs. the log of the initial inoculum (Fig. 

S6); for example, with an initial inoculum of 106 CFU, the time to detection is ~400 min.  
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3.6 Effects of Fungicides on Metabolic Patterns 

Although chemical profiling at a single time point can be achieved by methods such as GC-

MS, monitoring the changing VOC profile continuously during culture growth is challenging. 

Using this colorimetric sensor array, however, one can monitor cell growth conditions 

continuously and inexpensively.  It is well established that there are changes of metabolic states 

in response to fungicides35, 36, and we should expect that the VOCs produced by the fungi should 

therefore change under drug induced stress.  In this manner, the colorimetric sensor array can be 

used to monitor changes in fungal metabolic states or in response to fungicides during cell 

growth.  

Indeed, the array response (as measured by the total change in the Euclidian distance (ΔED) 

of all 108 colour channels) of C. albicans (CAI-4) is substantially affected by the presence of 

various concentrations of clotrimazole or miconazole (Fig. 5A).  The colour difference maps 

(Fig. 5B) demonstrate the shut-down of VOC production at high concentrations of anti-fungal 

drugs: volatiles are no longer being released (and the ΔED of the sensor array no longer changes) 

after roughly 180 min, for clotrimazole at >400 µg/mL and for miconazole at >0.5 µg/mL, which 

represent the minimum inhibitory concentrations of two drugs. At lower concentrations, the 

volatile metabolites are clearly changed, relative to untreated fungi, which can lead to either 

greater or diminished sensor array response (Fig. 5B). While the colorimetric sensor array does 

not provide a direct indication of what the changes in the VOCs may be (i.e., the component by 

component analysis provided by GC-MS, for example), it does yield a rapid and simple 

indication that significant metabolic changes are occurring. This could prove useful for rapid 

parallel screening of fungicidal effectiveness. 
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4. Conclusions 

In summary, we have used an optoelectronic nose to detect fungal VOCs and generate unique 

metabolic patterns that differentiate among twelve different fungal strains with high accuracy. 

The sensor array is also able to observe metabolic changes in growth patterns upon the addition 

of fungicides, which provides a facile screening tool for determining fungicide efficacy in real 

time.   
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