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Automated and label-free colon cancer diagnosis and identification of tumor-associated 

 features using FTIR spectral histopathology directly on paraffinized tissue arrays
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ABSTRACT: 27 

Histopathology remains the gold standard method for colon cancer diagnosis. Novel complementary 28 

approaches for molecular level diagnosis of the disease are need of the hour. Infrared (IR) imaging could 29 

be a promising candidate method as it probes the intrinsic chemical bonds present in a tissue, and 30 

provides a “spectral fingerprint” of the biochemical composition. To this end, IR spectral histopathology, 31 

which combines IR imaging and data processing techniques, was employed on seventy seven 32 

paraffinized colon tissue samples (48 tumoral, 29 non-tumoral) in the form of tissue arrays. To avoid 33 

chemical deparaffinization, a digital neutralization of the spectral interferences of paraffin was 34 

implemented. Clustering analysis was used to partition the spectra and construct pseudo-colored images, 35 

for assigning spectral clusters to various tissue structures (normal epithelium, malignant epithelium, 36 

connective tissue etc). Based on the clustering results, linear discriminant analysis was then used to 37 

construct a stringent prediction model which was applied on samples without a priori histopathological 38 

information. The predicted spectral images not only revealed common features representative of the 39 

colonic tissue biochemical make-up, but also highlighted additional features like tumor budding, tumor-40 

stroma association in a label-free manner. This novel approach of IR spectral imaging on paraffinized 41 

tissues showed 100 % sensitivity and allowed detection and differentiation of normal and malignant 42 

colonic features based purely on their intrinsic biochemical features. This non-destructive methodology 43 

combined with multivariate statistical image analysis appears as a promising tool for colon cancer 44 

diagnosis and opens the way to the concept of numerical spectral histopathology. 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 
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1. INTRODUCTION: 55 

Colorectal cancer has one of the highest incidence and mortality among all the cancers affecting both 56 

sexes, of which the type adenocarcinoma is the most common.
1
 Radiation therapy, chemotherapy and 57 

surgical intervention have improved the life expectancy of cancer patients, but the outcome of these 58 

methods is dependent upon the stage and the accuracy in diagnosis.
2
 Currently different detection and 59 

screening methods are employed for colorectal cancers, including fecal occult blood test (FOBT),
3
 60 

sigmoidoscopy,
4
 colonoscopy,

5
 etc. However, the final diagnosis is settled upon the microscopic 61 

examination of the symptomatic tissue with the ‘gold standard’ histopathology in which preferential stains 62 

are used to enhance visualization of the tissue morphological alterations. Such alterations (pre-cancerous 63 

or cancerous) are the manifestations of the biomolecular changes that have already undergone the 64 

provocative changes for malignancy. However, the ongoing state of the tissue molecular changes during 65 

the onset or progression of malignancy, without any morphological signatures, poses a challenge for 66 

identification. In certain cases, immunohistochemistry (IHC) is used to identify specific proteins of interest 67 

which can give a molecular level understanding of the malignant condition. Histopathology requires 68 

precise human expertise which limits high-throughput diagnosis. Although, the histopathological diagnosis 69 

is based on morphological examination, it has successfully served in cancer diagnosis over several years. 70 

Additionally, if it is combined with approaches that could provide complementary biochemical information 71 

in a rapid, cost effective manner and reducing human involvement, the efficacy of the histopathological 72 

diagnosis can be completed.    73 

In this regard, the optical spectroscopic approach of IR imaging appears as a potential candidate for 74 

routine tissue characterization, and has been exploited as a diagnostic tool on various tissues
6-18

 which 75 

also paved the way to the concept of spectral histopathology.
19-23

 IR spectroscopy probes intrinsic 76 

chemical bond vibrations of biomolecules and thus provides a biochemical fingerprint of the tissues. 77 

Combined with an imaging set-up, spectral images can be obtained rapidly in a label-free manner, in 78 

which each pixel element harbors an IR spectrum containing biochemical information at each 79 

wavenumber. Such IR images can be exploited using computer based multivariate cluster analysis to 80 

generate digitally stained morphological maps of the tissue histology. Since the constituent IR spectra of 81 

each digitally stained histological class represent its biochemical signature, such as collagen features in 82 
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the connective tissue, specific spectral signatures can be identified from different histological classes. 83 

Such signatures can be used to train predictive algorithms for identification of unknown tissues in a rapid 84 

and user-friendly manner. One of the important possibilities of using this methodology is automation of 85 

this protocol which can reduce human involvement and provide an objective biochemical based 86 

diagnostic approach.   87 

In this regard, we carried out spectral histopathology based on IR imaging in conjunction with multivariate 88 

analysis. The main objectives were to digitally detect and identify malignancy and its associated features 89 

on unknown tissues without any chemical staining, constituting an automated diagnosis for colon 90 

adenocarcinoma. For this, 77 human colon tissues from normal and moderately differentiated 91 

adenocarcinoma were analyzed, in the form of paraffinized tissue arrays that were stabilized in an 92 

agarose matrix. The agarose matrix provides stability to the paraffinized tissue cores thereby reducing 93 

tissue loss during microtome sectioning, and also facilitates handling of tissue array sections. The tissue 94 

arrays are increasingly used in pathological studies since they constitute a large source of information 95 

and permit high-throughput analysis for modern histological practices.
24

 An innovative process of digital 96 

deparaffinization was specially implemented to avoid chemical dewaxing, and also to reduce toxic 97 

chemical treatments and time consumption.
20

 Then, a prediction model representing the main colon 98 

histological classes was constructed and its robustness was evaluated on subsequent number of tissue 99 

array cores. Digital annotation using this model facilitated characterization of malignancy, and malignancy 100 

associated features such as tumor budding, and tumor-stroma association.  101 

 102 

2. MATERIALS AND METHODS:  103 

2.1. Sample preparation:  104 

Seventy seven formalin fixed paraffin embedded (FFPE) colon tissue samples (48 tumoral and 29 non-105 

tumoral) from 32 cancer patients were obtained from the Reims University Hospital, with the approval of 106 

the Institutional Review Board. All the tumoral samples were moderately differentiated colon 107 

adenocarcinoma with the TNM grade ranging from T3N0M0 to T4N2M0. The sample details are 108 

presented in Supplementary Table 1. Several paraffinized tissue arrays that were stabilized in an agarose 109 

matrix were manually prepared from these samples. A single sample spot in the tissue array block was 110 
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approximately 3 mm in diameter. For each tissue array consisting around 12-16 spots, 3 and 10 µm thick 111 

sections (adjacent in most cases) were obtained. While the 3 µm section was used by the pathologist for 112 

conventional histopathological analysis via hematoxylin, phloxine, and saffron (HPS) staining, the first 10 113 

µm unstained section was used for IR imaging analysis and the second stained section for additional 114 

histopathological comparison. The HPS stained sections were chemically deparaffinized while the 115 

unstained tissue section for IR imaging was mounted on an IR compatible calcium fluoride (CaF2) support 116 

without any chemical deparaffinization. 117 

  118 

2.2. Instrumentation and FTIR data collection:  119 

IR images were acquired, by an IR imaging system (Spotlight 300, Perkin Elmer, Courtaboeuf, France) 120 

equipped with liquid nitrogen-cooled 16-element MCT detector, at 6.25 x 6.25 µm
2
 pixel size, and 4 cm

-1 121 

spectral resolution averaged to 16 scans, in the mid-IR range of 750 to 4000 cm
-1

. The system was 122 

continuously purged with dry air. The background spectrum from the CaF2 support was recorded each 123 

time prior to image acquisition, using the same parameters as that of the IR image. The methodology for 124 

FTIR spectral imaging of tissue arrays is represented in Supplementary Figure 1. A total of 8 141 566 IR 125 

spectra were recorded from 77 images at an average of 105 734 per image owing to the large size of the 126 

tissue array spots, and the high spatial resolution selected for imaging.  127 

 128 

2.3. Data pre-processing:  129 

Raw IR data was corrected from various spectral interferences. An atmospheric correction was performed 130 

to remove contribution from water vapour and CO2 by the built-in Perkin Elmer Spotlight software and 131 

further processing was carried out using programmes written in Matlab 7.2 (The Mathworks, Natick, MA). 132 

The spectra were reduced to the IR absorption range of 900-1800 cm
-1

 that contains several informative 133 

biochemical vibrations
25,26

 as far as the tissue features are considered. Neutralization of paraffin and 134 

agarose contributions was carried out using a modified Extended Multiplicative Signal Correction (EMSC). 135 

In addition to paraffin model, a correction model for agarose was inserted into the EMSC algorithm.
20, 27

 136 

As detailed, the EMSC algorithm neutralizes the influence of their spectral variabilities by a modeling 137 

procedure rather than directly subtracting the spectral signatures of paraffin and agarose.
20

 Therefore it is 138 
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important to note that paraffin and agarose features are not removed, but their spectral variabilities are 139 

neutralized. Therefore, in the image analysis only the spectral variabilities originating from the 140 

biochemical features are taken into account rather than those from physical features of paraffin and 141 

agarose which are no longer apparent. Furthermore, EMSC has been adapted to address the inter-142 

patient variability using a single target spectrum (also called the model spectrum or the reference 143 

spectrum) for the all the tissue samples. Using the same target spectrum for all the samples has been an 144 

important criterion in our application in order to correct all the spectra from the same amount of baseline, 145 

paraffin and agarose, while keeping the biochemical information specific to each sample. If a different 146 

target spectrum is used for each sample (e.g. for normal and cancerous tissue), the corrected spectra of 147 

each sample will have different shapes mainly because of the different baselines and/or paraffin signals 148 

and/or agarose signals composing each of the target spectra, and not because of the biochemical 149 

differences between normal and cancer tissues.
28-29

 The IR spectra were also corrected for baseline and 150 

then normalized using the same algorithm. Outliers (N=3 335 684 spectra) in the form of paraffin and 151 

agarose spectra, and spectra with poor signal-noise ratio were eliminated from the analysis and were 152 

depicted as white pixels in all the IR images. 153 

 154 

2.4. Data processing:  155 

The pre-processed data (N=4 805 882 spectra) was subjected to multivariate statistical prediction 156 

analysis. For this, spectral data from the non-tumoral and the tumoral samples was separated into a 157 

training group (N=9, Supplementary Table 1, sample # TG), and a validation group (N=68). While the 158 

training group, representing the IR spectral signatures indicative of malignancy and other histological 159 

structures, was used for construction of a prediction model based on linear discriminant analysis (LDA), 160 

the validation group (external validation) was used for validating the model on unknown samples for 161 

automatic recognition of tissue features, to enable identification of malignancy. LDA is a multivariate 162 

supervised statistical technique that aims at maximizing the between-class variance and minimizing the 163 

within-class variance and has been exploited in various studies.
26-27, 30-31 164 

 165 

 166 
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2.4.1. Cluster analysis for LDA training:  167 

The huge number of IR spectra from each image corresponding to the training group was subjected to 168 

unsupervised k-means clustering method owing to its capability of rapid and huge data clustering.
32

 This 169 

method iteratively partitions the spectra into different clusters based on the spectral signatures from the 170 

intrinsic biochemical composition of the tissue. Therefore, spectra with similar biochemical characteristics 171 

group into the same cluster. In k-means clustering, each spectrum belongs to a unique cluster and can 172 

thus be represented by one color. K-means clustering performed using defined cluster numbers resulted 173 

in the construction of digital color-coded images. These were then compared to adjacent HPS stained 174 

sections to annotate by an expert pathologist, each spectral cluster to the tissue structural feature that it 175 

corresponds to. The spectral distance between different k-means clusters was visualized in a dendrogram 176 

obtained by hierarchical clustering analysis using Ward’s linkage algorithm.  177 

 178 

2.4.2. Prediction model:   179 

The initially k-means clustered and annotated spectra were used as inputs for the LDA model. Training 180 

group spectra (Supplementary Table 1 # TG) from 9 samples across 6 different patients were considered 181 

for the model, to take into account the inter-patient variability. The prediction model consisted of 8 classes 182 

with different number of spectra, representing various histological features of non-tumoral and tumoral 183 

tissues: the normal epithelium defined by the crypt inner-part (Crypt-IP) (N = 8377) and the crypt outer-184 

part (Crypt-OP) (N = 3567), the lamina propria (N = 14 106), the submucosa (N = 3964), the tumor 185 

epithelium (N = 35 083), the tumor-associated stroma (N = 16 409), the blood vessel (N = 782) and the 186 

muscularis propria (N = 4514). These spectra (N=86 802) constituting one-third of the spectra from each 187 

class were used to train the model and the other two-thirds were used for an internal validation to 188 

optimize the model. The prediction model was then applied in an external validation on different unknown 189 

samples, the spectra from which were secluded from the model, to evaluate its robustness. The external 190 

validation consisted of 68 samples encompassing a large scale spectral data base of 4 130 879 spectra. 191 

It has to be noted that if only the number of patients used in the external validation was to be considered 192 

(instead of the number of samples from all the patients as is the case in this study) the external validation 193 

group consisted of 26 patients, since several samples were obtained from a single patient 194 
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(Supplementary Table 1). The predictions were carried out in the IR spectral range of 1080 cm
-1 

- 1300 195 

cm
-1

, at a posterior probability of 0.5, wherein for each pixel a probability of belonging to each class is 196 

calculated, and the pixel showing the highest probability is assigned to a class. If the highest probably is 197 

inferior to the posterior probability of 0.5, the pixel is termed as unclassified and is not attributed to any 198 

class. The final model based diagnosis of cancer by the presence of tumor pixels was confirmed by the 199 

presence of tumoral areas in the corresponding region of the HPS stained tissue, using the gold-standard 200 

histopathological validation. Validation based on the presence of certain number of pixels (tumor pixels) 201 

was not considered as a dedicated approach in this study where heterogeneous tumoral tissue types are 202 

considered which contain varying amount of tumoral cells.  203 

 204 

2.4.3. Spectral information to biochemical information (spectral analysis):  205 

Since the spectral signatures are based on the biochemical properties of the tissue features, it was 206 

attempted to characterize the biochemical alterations characteristic of malignancy and the relationship of 207 

malignant tissue with the surrounding stroma. For this, the Mann-Whitney U test was applied to compare 208 

spectra from selected cluster groups used in the prediction model training in order to identify the most 209 

discriminant wavenumbers. 210 

 211 

2.5. Immunohistochemistry (IHC):  212 

IHC was used as a complementary tool (on adjacent sections) to enhance visibility of tumor budding 213 

(Anti-Human Cytokeratins-large spectrum Monoclonal Antibody, Clone KL 1, dilution 1/50, Immunotech, 214 

France) and to precise the nature of the inflammatory cells: T-lymphocytes (CD3 Rabbit anti-Human 215 

Polyclonal Antibody, dilution 1/200, Dako, France), and B-lymphocytes (CD20 Mouse antibody, clone L6 216 

mouse, dilution 1/400, Dako, France), in order to validate some of the important observations detected by 217 

IR spectral imaging. This was performed using the fully automated IHC staining protocol (XT ultraView 218 

DAB v3).   219 

 220 

 221 

 222 
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3. RESULTS: 223 

3.1. Cluster analysis:  224 

K-means clustering was used to identify the spectral signatures characteristic of the main histological 225 

features of the non-tumoral and the tumoral colon tissues, which permitted construction of digitally stained 226 

images. For the non-tumoral as well as the tumoral tissues, this approach permitted to identify, and to 227 

recover automatically the important histological components in comparison to the adjacent HPS stained 228 

images as shown in the figure 1 (Supplementary Table 1, sample # 1D and 12C). As an example, for the 229 

non-tumoral colon tissue (figure 1A) 8 clusters permitted the observation of the important histological 230 

structures representing the colon tissue organization. They included the colon mucosa constituted by 231 

well-differentiated crypts (cluster 8 - inner part and cluster 6 - outer part); and the lamina propria (cluster 232 

1), the supportive loose connective tissue in which the crypts are organized. The residual mucin (cluster 233 

2) was observed to be localized within the crypt lumen while a small amount was seen secreted outside. 234 

The submucosa, attributed to clusters 4, 5 and 7 was distinguished effectively from the lamina propria by 235 

the clustering method. Finally cluster 3 appeared to represent the blood vessels. On the contrary, in the 236 

typical adenocarcinomatous tissue (figure 1B), the only important histological classes retrieved were the 237 

tumor epithelium (cluster 1) and its associated stroma in the tumor vicinity (cluster 6). Most of the other 238 

clusters represented the fibrous stromal tissue. The corresponding dendrogram showed the close 239 

spectral nature of the tumor associated stroma to its tumor where they are very closely grouped (clusters 240 

1 and 6) while the stroma that is not in direct contact with the tumor epithelium appear more distant. A 241 

total of 11 clusters were required to identify these features. In both cases, considering the overall colon 242 

tissue organization, increasing the number of clusters did not add any further retrievable histological 243 

information. The k-means clustering is an efficient method to identify IR spectral markers specific to 244 

different histological components of non-tumoral and tumoral colon tissues. On the basis of these spectral 245 

signatures, the diagnostic potential of IR spectral imaging has been evaluated using a LDA based 246 

prediction model as schematically represented in Supplementary Figure 2. 247 

 248 

3.2. Optimization of the prediction model - internal validation group:  249 
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The LDA based prediction model developed from 9 samples (6 patients) with 8 different classes 250 

comprising a total of 86802 spectra was trained, and tested in an internal validation. The sensitivity of the 251 

prediction model in the internal validation can be evaluated from the confusion matrix which shows the 252 

agreement between the histopathological class annotation (real class) and the IR spectral prediction 253 

(predicted class) (Table 1). Different spectral regions were tested and the highest sensitivity (average 254 

89.38%) was obtained for the region between
 
1080 cm

-1
 to 1300 cm

-1
. It has to be noted that for the class 255 

tumor epithelium a specificity of 96.4 % was reached, and showed no confusion with the class normal 256 

epithelium (comprising crypt inner and outer parts).  257 

 258 

3.3. Tumor detection and tissue characterization in unknown samples - external validation group: 259 

The external validation was performed on the remaining 68 blind samples involving a large scale spectral 260 

bank of 4 130 879 spectra and showed 100 % sensitivity for the tumor class. Along with tumor class, 261 

other histological classes were also identified with high correlation to the conventional histology.   262 

A representative demonstration of prediction on unknown non-tumoral and tumoral samples is shown in 263 

figure 2 (Supplementary Table 1, sample # 14D and 7C). The figure 2A histologically corresponded to a 264 

non-tumoral colon tissue in which the prediction model correctly identified its characteristic features with 265 

similar morphological attributes to that of the histological image. Counterpart to the normal tissue, 266 

histologically the figure 2B corresponded to a typical moderately differentiated colon adenocarcinoma. In 267 

this, the spectral characteristics of the normal mucosa were absent and the only distinguished ones were 268 

malignant epithelial component with its associated stroma. Additionally, identification of features difficult 269 

to discern using conventional techniques, such as tumor budding was facilitated.  270 

 271 

3.4. Detection and characterization of malignancy associated features: 272 

3.4.1. Tumor budding:  273 

Budding is characterized by small clusters of isolated tumor cells which become detached from the 274 

neoplastic epithelium and migrate into the stroma, and is an indication of high tumor invasiveness in 275 

colorectal cancers. Although this morphological phenomenon is detectable in conventional histopathology 276 

at high power magnification, IHC may be employed for better visualization. The IR prediction model was 277 
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able to clearly identify this tumor particularity even in the presence of abundant stroma as shown in the 278 

figure 3, (Supplementary Table 1, sample # 9B). In the same tumoral sample, along with the malignant 279 

epithelium, there was presence of some normal epithelial component together with normal connective 280 

tissue, and all these features were identified by the prediction model. Importantly, both the malignant and 281 

the non-malignant epithelial cells were selectively stained and discriminated using a specific color-code. 282 

The positive staining of the epithelial cells can be seen in the IHC image (see figure 3, right panel). 283 

Another tissue section obtained from different position (Supplementary Table 1, sample # 9A) of the same 284 

tumor also showed tumor budding in a stroma dominant environment, and each time it was identified by 285 

the prediction model, which was later confirmed by IHC studies (Supplementary Figure 3).  286 

 287 

3.4.2. Tumor stroma association:   288 

The tumor-stroma association was also reported using IR spectral imaging. The confusion matrix (table 1) 289 

highlighted the spectral proximity of tumor and its associated stroma in which, indeed 16.3 % of tumor 290 

associated stroma pixels were classified in the tumor class. Complementarily, in the predicted images 291 

these two classes appeared in geographic proximity (figure 4) (Supplementary Table 1, sample # 11B). In 292 

the same image, distinction between the tumor associated stroma and the normal connective tissue 293 

corresponding to the submucosa was attained, while in the histological stained section, this was 294 

indistinguishable. The above mentioned tumor-stroma features were also observed in the other tumoral 295 

samples (Supplementary Table 1, sample # 11A, 11C, 12A, 13A, and 15A) as shown in Supplementary 296 

Figure 4 including the cases of budding (fig 3).  297 

 298 

3.5. Vibrational analysis of spectroscopic markers:  299 

In this study, the k-means clustering was performed using the IR spectral range of 900 cm
-1

 - 1800 cm
-1 300 

that enabled identification and attribution of the important colon histological classes. For unknown sample 301 

prediction, this zone was narrowed down to 1080 cm
-1

 to 1300 cm
-1

 harboring some of the important 302 

biomolecular vibrational modes implicated in colon cancers, and which showed the best prediction 303 

outcome for all the classes together. As shown in figure 5, the most discriminant wavenumbers within this 304 

zone were identified by the Mann-Whitney U test performed on the individual spectra and represented on 305 
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the average spectra for the following pair-wise comparisons: normal epithelium with malignant epithelium 306 

(adenocarcinoma) for understanding the molecular alterations characteristic of malignancy; 307 

adenocarcinoma with its associated stroma to understand the tumor induced alterations in the stromal 308 

tissue; and the normal connective tissue with the tumor associated stroma. From the discriminant 309 

wavenumbers identified for all comparisons, a tentative correlation of IR vibrations to the biomolecular 310 

information was attempted as shown in Supplementary Table 2. Importantly, comparing the normal 311 

epithelium with the tumoral epithelium, the main differences in the IR peaks were attributed to symmetric 312 

and asymmetric PO2
-
 vibrations of the nucleic acids that demonstrated relatively higher intensities in 313 

normal than the tumoral tissues. Similarly, the C-O stretching vibration corresponding to carbohydrates 314 

was relatively more intense in normal than the tumoral tissues. At the same time the hydrogen bonded C-315 

O groups of proteins in the normal epithelium was observed to be decreased in the tumoral epithelium, 316 

while the opposite tendency was observed for the non-hydrogen bonded C-O groups of proteins. 317 

Secondly, when comparing adenocarcinoma with tumor associated stroma, and tumor associated stroma 318 

with connective tissue, the discriminating spectral features appeared to be contributed principally from 319 

collagen features.   320 

 321 

4. DISCUSSION: 322 

Spectral histopathology based on IR imaging has been carried out to develop an innovative label-free 323 

diagnostic methodology directly on FFPE tissue arrays embedded in an agarose matrix without any 324 

chemical pre-treatments. EMSC that has been initially developed to separate light scattering effects from 325 

light absorbance effects, has also been used for accomplishing neutralization of paraffin contributions in 326 

IR spectral analysis.
9,27,33-35

 In this study, both paraffin and agarose interferences on the IR spectral 327 

images have been neutralized digitally without the use of any chemicals, using an improved EMSC 328 

algorithm. One of the important advantages of using of paraffinized tissues stabilized in an agarose matrix 329 

is that the scattering effects such as Mie scattering due to the differences in the refractive indices of the 330 

media are reduced by index matching. Additionally, resonant Mie-scattering that is related to a physical 331 

phenomenon and which can cause peak shape distortion and peak shift (e.g., the amide I peak), resulting 332 

in unreliable chemical interpretation is also reduced.
36

 333 
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4.1. Clustering:  334 

K-means clustering provided a rapid way to classify the IR spectral images into their constituent 335 

histological classes in comparison to the chemically stained conventional images. While the non-tumoral 336 

colon tissues were characterized by well-differentiated architecture with both inner and the outer cryptal 337 

parts clearly distinguishable together with the connective tissue, the malignant tissues which were all of 338 

the advanced colon cancer types, were characterized by the loss of differentiation of the normal colon 339 

glands with no visible lumen; and presence of stromal tissue. The digital staining of each k-means cluster 340 

formed the basis for spectral marker assignment comprising the malignant colon characteristics, along 341 

with the normal tissue features, at different organizational levels of the colon wall. Based on this spectral 342 

database from as little as 12 % of the samples, a prediction model was trained for automatic detection of 343 

malignancy in unknown specimens independently of conventional histopathology.  344 

 345 

4.2. Prediction:  346 

Some of the earlier IR imaging studies have tested prediction algorithms on different tissue types.
25,26

 347 

However, the number of spectra used for constructing the model was limited compromising the 348 

robustness of the model. In our study, the relatively high resolution image acquisition parameters applied 349 

to tissue arrays (3 mm diameter) constituted a huge bank of 86 802 spectra in the prediction model, 350 

representative of the biochemical signatures of distinct colon structures, making it highly robust. Only one 351 

such IR imaging study on prostate tissues has used such a robust model for prediction on unknown 352 

tissues.
37

 In this study, 8 classes were included that described the colon tissue organization in non-353 

tumoral and tumoral samples. Even with a high sensitivity of the model (such as in the case of tumor 354 

budding), some of these histological structures may share certain similar molecular constituents with 355 

other histological classes present in the model (tumor and tumor associated stroma), or not present in the 356 

model (muscularis mucosa and tumor associated stroma). The spectral proximity arising from this leads 357 

to misclassification between such classes as shown in the Supplementary Figure 5, concerning the 358 

muscularis mucosa (visible in the HPS image) which is identified as tumor associated stroma 359 

(Supplementary Table 1, sample # 27). It has to be noted that there was no class for the muscularis 360 

mucosa in the model. This attribution can be presumed to have arisen from the residual normal 361 
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muscularis mucosa signatures present in the tumor associated stroma from which the corresponding 362 

class was constructed in the prediction model. This prediction error appeared predominantly in non-363 

tumoral samples where there is an intact muscularis mucosa. Despite these misclassifications, an overall 364 

high correlation between the predicted spectral classes and the corresponding histological structures is 365 

observed in the confusion matrix.   366 

 367 

4.3. External validation:  368 

The remaining 88 % of IR spectral images were identified by the prediction model without any a priori 369 

knowledge on their histopathology (external validation). These blind samples constituted a huge number 370 

of 4 130 879 spectra that were scanned and annotated by the automated computer trained prediction 371 

algorithm. The diagnosis was confirmed by an expert pathologist by using the conventional histological 372 

images based on which a 100 % accuracy of the prediction model was obtained for tumor diagnosis. This 373 

high sensitivity after scanning such a huge number of unknown spectra signifies the potential of the 374 

current methodology as a diagnostic tool. The prediction analysis also facilitated simultaneously some 375 

important malignancy associated features. 376 

  377 

4.4. Tumor budding:  378 

The phenomenon of tumor budding is of crucial clinical importance in colorectal cancers since it has been 379 

shown to be a strong adverse prognostic marker.
38

 As such, studies have correlated its occurrence with 380 

aggressiveness and lymph node metastasis.
39

 In this study, the prediction model facilitated the 381 

identification of tumor budding in a stroma-dominant environment in an automated manner. This rapid 382 

and selective detection of small clusters of isolated tumor cells in an abundant stroma environment 383 

demonstrates the sensitivity and the applicability of the methodology avoiding the need of any histological 384 

or immunological markers. This envisages an important prospect since the tumor de-differentiation in the 385 

form of budding is being acknowledged as a key component in the metastatic process even in well- and 386 

moderately differentiated tumors.
40,41

 At the same time, the color code based selective staining of the 387 

epithelial counter parts in the same tissue shows the discriminatory ability and the biomolecular specificity 388 

of this methodology. 389 
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4.5. Spectral Analysis:  390 

The IR spectral region from 1000 cm
-1

 to 1300 cm
-1

 has been reported to carry important biochemical 391 

vibrations implicated in colon cancers and have been used for differentiating the malignant tissues from 392 

their normal counterparts.
42,43

 In this study, the most discriminant spectral wavenumbers were associated 393 

with relatively decreased intensities of symmetric and asymmetric PO2
-
 vibrations of the nucleic acids in 394 

the tumoral epithelium when compared to the non-tumoral tissues. On contrary to the expected increased 395 

nucleic acid intensities as shown in several studies, these spectral changes corresponding to the 396 

biochemical alterations corroborate with some of the previous studies on colon cancers where the nucleic 397 

acid intensities were shown to be reduced in malignant conditions.
32,44

 It may be likely that the spectral 398 

changes involving nucleic acids are small in moderately differentiated tumors when compared to normal 399 

colon epithelial cells which themselves are highly proliferative in nature. One study has stated that 400 

decreased phosphate content in malignant colon tissues may be due to decrease in carbohydrate 401 

content,
45 

which in our study was also indicated by the relatively less intense C-O stretching vibration 402 

corresponding to carbohydrates in the tumoral tissue than the normal. At the same time, the relative 403 

intensities of H-bonded C-O vibrations of proteins were observed to be more pronounced in the normal 404 

epithelium than the tumoral, while the non-H-bonded C-O bond vibrations were more pronounced in the 405 

tumor. These changes may be indicative of the molecular alterations associated with the amino acid side 406 

chains concerning tyrosine, serine and threonine.
2,32,45,46

 The molecular changes involving 407 

adenocarcinoma and tumor-associated stroma, and tumor associated stroma with connective tissue 408 

appear principally due to collagen features. 409 

 410 

4.6. Tissue inflammation influences the model specificity:  411 

In 12 out of 29 samples histologically described as non-tumoral (Supplementary Table 1, sample # LF); 412 

tumoral characteristics (over 4 % of pixels) were observed either regionally clustered or dispersed in the 413 

lamina propria, showing a specificity of 59%. The HPS images gave insight into the regionally clustered 414 

tumor pixels as corresponding to lymphoid follicles in the colon tissue. These structures showed spectral 415 

signatures close to the tumor group relative to the other classes. However, the tumor pixels dispersed in 416 

the lamina propria could not be accounted for as no visible correspondence between them and any 417 
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histological feature could be found in the HPS images. Since these tissues showed high inflammatory 418 

infiltration, immuno-staining for T-lymphocytes (CD 3), B-lymphocytes (CD 20) and macrophages (KP 1) 419 

was performed to verify if the dispersed pixels corresponded to the inflammatory cells. The positive 420 

staining indicated that these pixels indeed corresponded mainly to interstitial T-lymphocytes as 421 

representatively shown in the figure 6A (Supplementary Table 1, sample # 32). In parallel, the B-422 

lymphocytes were seen assembled in lymph follicles. Non-tumoral tissues without any marked 423 

inflammation as confirmed by the IHC showed no tumor pixels in the IR spectral images (figure 6B) 424 

(Supplementary Table 1, sample # 31). Since the model did not take into account inflammatory conditions 425 

(because of the tissue complexity arising from polymorphisms of the inflammatory infiltrates in colon 426 

cancers: polymorph predominant, mononuclear predominant, mixed or rich in lymphoid follicles, and the 427 

difficulty to have a representative spectral signature), these features were attributed to the spectrally 428 

nearest class which turned out to be the tumor class.  429 

A recent IR imaging study on cervical cancer tissues also quoted the influence of inflammatory signatures 430 

on the prediction model sensitivity and specificity.
23

 To have a broader insight into this aspect, we further 431 

looked at the spectral class attribution threshold for the tumor class. It turned out that for the attribution of 432 

spectra to tumor class, majority of the spectra corresponding to the inflammatory signatures have lesser 433 

threshold values compared to the tumor in which the majority of the spectra have the highest posterior 434 

probability values (Supplementary Figure 6). Altogether, the IR signatures from the inflammatory regions 435 

appeared to class spectrally closer to tumor than other classes of the prediction model indicating an 436 

intermediate stage between normal and malignant condition, as was shown in an earlier study.
47

   437 

The current work of IR spectral imaging on colon tissues provides automated diagnosis of malignancy on 438 

unknown samples. Various diagnostic features associated with malignancy which provides 439 

complementary information are also characterized. Important features such as tumor budding, tumor-440 

stroma association are dealt with in a non-destructive and label-free manner. The analysis of such a large 441 

spectral database makes the study all the more representative. All these features have never been dealt 442 

together in colon cancer diagnosis using IR spectral imaging of paraffinized tissues in any of the previous 443 

studies. IR spectral imaging presents an optimistic overture for cancer knowledge in modern 444 

histopathology.  445 
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The current prediction model representing the important histological features of a colon tissue certainly 446 

holds aspects for amelioration. The spectral attribution identified the inflammatory signatures classed 447 

close to the tumor. Since these specific biochemical signatures were picked up by the model, the 448 

inflammatory infiltration, which pose risk of developing into cancers, could be incorporated into the model 449 

for an automated evaluation and direct diagnostic approach for inflammatory diseases. In the same 450 

manner, classes’ specific to early neoplastic condition such as dysplasia could be incorporated into the 451 

model and their spectral attribution thresholds compared to that of adenocarcinoma and normal 452 

epithelium. This can potentially provide insights, into spectral alterations in early neoplastic conditions and 453 

therefore, for early diagnosis of cancers. Aspects like genotype specific tumoral signatures and their 454 

treatment response sensibility unknown till now could open a new additional classification. Further, an 455 

automated quantification can be achieved for features like amount of tumor presence, or the amount of 456 

tumor budding, only limit being the use of adjacent tissue sections which may present slight variations 457 

from the reference tissue.  458 

 459 

5. CONCLUSIONS: 460 

The IR spectral imaging combined with multivariate statistical analyses appears as an optimistic 461 

diagnostic approach for colon cancers in complement to conventional histopathology. This innovative 462 

imaging approach enabled direct analysis of paraffinized tissue arrays and, via the employment of 463 

mathematical deparaffinization the need for chemical pretreatments was reduced. The prediction model 464 

permitted identification of unknown samples with a very high sensitivity, while the false positive prediction 465 

in the non-tumoral samples has put forth the influence of the inflammatory component. This very large 466 

scale spectral data base analyzed both in terms of training and validation shows the potentials of the IR 467 

spectral imaging methodology for automated diagnostic purposes. Moreover, it eliminated the need for 468 

sample staining and a priori knowledge of the sample to be analyzed. These optimistic results open a 469 

new way for developing spectral biomarkers and libraries which could be used, in complement to 470 

conventional histopathology, for early diagnosis, and also potentially for prognosis and theranostics of 471 

cancers.   472 

 473 

Page 18 of 30Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



18     

ACKNOWLEDGEMENTS:  474 

This study was supported by a grant of Institut National du Cancer (INCa) and Canceropôle Grand Est. 475 

We would like to thank Ligue contre le Cancer, Conférence de Coordination Interrégionale du Grand-Est, 476 

and CNRS Projets Exploratoires Pluridisciplinaires, for financial support. Plateforme IBiSA “Imagerie 477 

Cellulaire et Tissulaire”, and the Tumorotheque, Champagne-Ardenne is also acknowledged. NJ is a 478 

recipient of doctoral fellowship from the Région Champagne-Ardenne.  479 

 480 

REFERENCES: 481 

 482 

1. J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers and D. M. Parkin, Int. J. Cancer, 2010, 127, 483 

2893-2917.  484 

 485 

2. C. Conti, P. Ferraris, E. Giorgini, C. Rubini, S. Sabbatini, G. Tosi, J. Anastassopoulou, P. Arapantoni, 486 

E. Boukaki, S. Konstadoudakis, T. Theophanides and C. Valavanis, J. Mol. Struct, 2008, 881, 46-51.  487 

 488 

3. H. Miyoshi, M. Oka, K. Sugi, O. Saitoh, K. Katsu and K. Uchida, Intern. Med, 2000, 39, 701-706.  489 

 490 

4. T. J. Zuber, Am. Fam. Physician, 2001, 63, 1375-1380. 491 

 492 

5. D. K. Rex, Colon tumors and colonoscopy, 2000, 32, 874-883. 493 

 494 

6. A. Tfayli, O. Piot, A. Durlach, P. Bernard and M. Manfait, Biochim. Biophys. Acta, 2005, 1724, 262-269. 495 

 496 

7. H. Fabian, N. A. Thi, M. Eiden, P. Lasch, J. Schmitt and D. Naumann, Biochim. Biophys. Acta, 2006, 497 

1758, 874-882. 498 

 499 

Page 19 of 30 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



19     

8. W. Steller, J. Einenkel, L. C. Horn, U. D. Braumann, H. Binder, R. Salzer and C. Krafft, Anal. Bioanal. 500 

Che, 2006, 384, 45-154.  501 

 502 

9. A. Travo, O. Piot, R. Wolthuis, C. Gobinet, M. Manfait, J. Bara, M. E. Forgue-Lafitte and P. 503 

Jeannesson, Histopathology, 2010, 56, 921-931. 504 

 505 

10. M. J. Nasse, M. J. Walsh, E. C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava 506 

and C. Hirschmugl, Nat. Methods, 2011, 8, 413-416.   507 

 508 

11. M. J. German, A. Hammiche, N. Ragavan, M. Tobin, L. J. Cooper, S. S. Matanhelia, A. C. Hindley, C. 509 

M. Nicholson, N. J. Fullwood, H. M. Pollock and F. L. Martin, Biophys. J, 2006, 90, 3783-3795.  510 

 511 

12. K. Yano, S. Ohoshima, Y. Gotou, K. Kumaido, T. Moriguchi and H. Katayama, Anal. Biochem, 2000, 512 

287, 218-225.  513 

 514 

13. T. D. Wang, G. Triadafilopoulos, J. M. Crawford, L. R. Dixon, T. Bhandari, P. Sahbaie, S. Friedland, 515 

R. Soetikno and C. H. Contag, Proc. Natl. Acad. Sci. USA, 2007, 104, 15864-15869. 516 

 517 

14. X. Zhang, Y. Xu, Y. Zhang, L. Wang, C. Hou, X. Zhou, X. Ling and Z. Xu, J. Surg. Res, 2011, 171, 518 

650-6.  519 

 520 

15. C. Krafft, S. B. Sobottka, K. D. Geiger, G. Schackert and R. Salzer, Anal. Bioanal. Chem, 2007, 387, 521 

1669-1677.  522 

 523 

16. J. Nallala, O Piot, M. D. Diebold, C. Gobinet, O. Bouche´, M. Manfait and G. D. Sockalingum, 524 

Cytometry Part A, 2013, 83, 294-300. 525 

 526 

17. J. T. Kwak, S. M. Hewitt, S. Sinha, R. Bhargava, BMC Cancer, 2011, 11, 62. 527 

Page 20 of 30Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



20     

18. Rohit Bhargava. Anal Bioanal Chem, 2007, 389, 1155-1169. 528 

 529 

19. B. Bird, M. Miljkovic, S. Remiszewski, A. Akalin, M. Kon and M. Diem, Lab. Invest, 2012, 1-16.  530 

 531 

20. J. Nallala, C. Gobinet, M. D. Diebold, V. Untereiner, O. Bouché, M. Manfait, G. D. Sockalingum and 532 

O. Piot, J. Biomed. Opt, 2012, 17, 1-12.  533 

 534 

21. M. J. Walsh, S. E. Holtona, A. Kajdacsy-Ballab and R. Bhargava, Vibrational Spectroscopy, 2012, 60, 535 

23-28.  536 

 537 

22. J. D. Pallua, C. Pezzei, B. Zelger, G. Schaefer, L.K. Bittner, V. A. Huck-Pezzei, S. A. 538 

Schoenbichler, H. Hahn, A. Kloss-Brandstaetter, F. Kloss, G. K. Bonn and C. W. Huck, Analyst, 2012, 539 

137, 3965-3974.   540 

 541 

23. J. Einenkel, U. D. Braumann, W. Steller, H. Binder and L. Horn, J. Histopathology, 2012, 60, 1084-542 

1098. 543 

 544 

24. J. Kononen, L. Bubendorf, A. Kallionimeni, M. Bärlund, P. Schraml, S. Leighton, J. Torhorst, M. 545 

Mihatsch, G. Sauter and O. Kallioniemi, Nat. Med, 1998, 4, 844-847.  546 

 547 

25. M. Khanmohammadi, A. B. Garmarudi, K. Ghasemi, H. K. Jaliseh and A. Kaviani, Med. Oncol, 2009, 548 

26, 292-297.  549 

 550 

26. M. Khanmohammadi, A. B. Garmarudi, S. Samani, K. Ghasemi and A. Ashuri, Pathol. Oncol. Res, 551 

2010, 17, 435-441.  552 

 553 

27. E. Ly, O. Piot, R. Wolthuis, A. Durlach, P. Bernard and M. Manfait, Analyst, 2008, 133, 197-205. 554 

 555 

Page 21 of 30 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



21     

28. A. Kohler, N. K. Afseth and H. Martens, in Applications of Vibrational Spectroscopy in Food Science, 556 

ed. E. Li-Chan, P. R. Griffiths and J. M. Chalmers, John Wiley & Sons, Ltd. 2010, vol. 1, pp. 89-97. 557 

 558 

29. N. K Afseth and A. Kohler. Chemometrics and Intelligent Laboratory Systems, 2012, 117, 92-97.  559 

 560 

30. M. Khanmohammadi, M. A. Ansari, A. B. Garmarudi, G. Hassanzadeh and G. Garoosi, Cancer. 561 

Invest, 2007, 25, 397-404.   562 

 563 

31. E. Gazi, M. Baker, J. Dwyer, N. P. Lockyer, P. Gardner, J. H. Shanks, R. S. Reeve, C. A. Hart, N. W. 564 

Clarke and M. D. Brown, Eur. J. Urol, 2006, 50, 750-761. 565 

 566 

32. P. Lasch, W. Haensch, D. Naumann and M. Diem, Biochim. Biophys. Acta, 2004, 1688, 76-186.  567 

 568 

33. H. Martens, J. P. Nielsen and S. B. Engelsen, Anal. Chem, 2003, 75, 394-404.  569 

 570 

34. A. Kohler, C. Kirschner and A. Oust, H. Martens, Appl. Spectrosc, 2005, 59, 707-716.  571 

 572 

35. D. Sebiskveradze, V. Vrabie, C. Gobinet, A. Durlach, P. Bernard, E. Ly, M. Manfait, P. Jeannesson 573 

and O. Piot, Lab. Invest, 2011, 91, 799-811.  574 

 575 

36. P. Bassan, A. Sachdeva, A. Kohler, C. Hughes, A. Henderson, J. Boyle, J. H. Shanks, M. Brown, N. 576 

W. Clarke and P. Gardner. Analyst, 2012, 137, 1370-1377.  577 

 578 

37. D. C. Fernandez, R. Bhargava, S. M. Hewitt and I. W. Levin, Nat. Biotechnol, 2005, 23, 469-474.  579 

 580 

38. L. M. Wang, D. Kevans, H. Mulcahy, J.O. Sullivan, D. Fennelly, J. Hyland, D. Donoghue and K. 581 

Sheahan, Am. J. Surg. Pathol, 2009, 33, 134-141.  582 

 583 

Page 22 of 30Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



22     

39. H. Kanazawa, H. Mitomi, Y. Nishiyama, I. Kishimoto, N. Fukui, T. Nakamura and M. Watanabe, 584 

Colorectal. Dis, 2008, 10, 41-47. 585 

 586 

40. F. Prall, Histopathology, 2007, 50, 151-162.  587 

 588 

41. H. Gabbert, Cancer. Metastasis. Rev, 1985, 4, 293-309.    589 

 590 

42. R. K. Sahu, S. Argov, S. Walfisch, E. Bogomolny, R. Moreh and S. Mordechai, Analyst, 2010, 135, 591 

538-544.  592 

 593 

43. V. K. Katukuri, J. Hargrove, S. J. Miller, K. Rahal, J. Y. Kao, R. Wolters, E. M. Zimmermann and T. D. 594 

Wang, Biomed. Opt. Express, 2010, 1, 1014-1025.  595 

 596 

44. B. Rigas, S. Morgello, I. S. Goldman and P. T. Wong, Proc. Natl. Acad. Sci. USA, 1990, 87, 8140-597 

8144.  598 

45. S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman and S. J. Mordechai, J. 599 

Biomed. Opt, 2002, 7, 1-7.  600 

 601 

46. P. Wong and H. M. Yazdi, Appl. Spectrosc, 1993, 44, 1830-1836.  602 

 603 

47. S. Argov, R. K. Sahu, E. Bernshtain, A. Salman, G. Shohat, U. Zelig and S. Mordechai, Biopolymers, 604 

2004, 75, 384-392.  605 

 606 

48. S. L. Patrick, T. T. Wong and H. M. Yazdi, Appl. Spectrosc, 1993, 47, 1830-1836.  607 

 608 

49. L. Chen, H. Y. N. Holman, H. Zhao, H. A. Bechtel, M. C. Martin, C. Wu and S. Chu, Anal. Chem, 2012, 84, 609 

4118-4125.  610 

Page 23 of 30 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t



23     

Figures: 611 

 612 

 613 

Figure 1: K-means clustering and digital staining of FTIR spectral images with random pseudo-colors. 614 

Left panel: HPS stained colon tissues (Supplementary Table S1, sample # 1D and 12C); Middle panel: K-615 

means clustering and digital staining of FTIR spectral images with random pseudo-colors; Right panel: 616 

Dendrograms corresponding to the respective cluster images. A is a non-tumoral colonic tissue 617 

partitioned using 8 clusters representing the major normal colonic tissue features. The cluster 618 

representation is as follows:  Cluster 1 - lamina propria, cluster 2 - mucous, clusters 4, 5 and 7 - 619 

submucosa, cluster 6 - crypt (outer part-OP), cluster 8 - crypt (inner part IP) and cluster 3 - undefined 620 

tissue. B is a moderately differentiated colonic adenocarcinoma partitioned using 11 clusters. The 621 

important histological classes are cluster 1 - tumor, clusters 6, 7, and 11 - tumor-associated stroma. 622 

Remaining clusters were attributed to the fibrous stroma. The HPS images are at 5X magnification. 623 

 624 

 625 
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 626 

 627 

Figure 2: Performance of the prediction model: Identification of unknown colonic tissues by spectral 628 

histopathology. Left panel: HPS stained colon tissues (Supplementary Table S1, sample # 14D and 7C); 629 

Right panel: Infrared spectral predicted images. A is a non-tumoral colonic tissue section in which all the 630 

important normal colonic histological features are well-identified by the model. The important histological 631 

classes such as normal epithelium (crypt-IP and crypt-OP), connective tissue, blood vessels, etc are 632 

represented by a specific color-code. B is a moderately differentiated colon adenocarcinoma in which the 633 

tumor epithelium is together with its associated stroma are represented by the specific color-code. Note 634 

that there is a complete absence of normal epithelium. The HPS images are at 5X magnification.   635 

 636 
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 637 

 638 

 639 

Figure 3: Identification of tumor budding in an unknown colonic tissue. Left panel: HPS stained colonic 640 

tissue (Supplementary Table S1, sample # 9B); Middle panel: Infrared spectral predicted image; Right 641 

panel: KL 1 immuno-stained image. The sample is a moderately differentiated colon adenocarcinoma in 642 

which the cancerous glands are identified along with the tumor-associated stroma. Small isolated tumor 643 

clusters representing tumor-budding are identified branching out into the stroma. The tumor-stromal 644 

boundary is also well-identified and clearly demarcated from the normal connective tissue (muscularis 645 

propria). In the same sample, few normal colonic glands are seen in the top-right position identified by 646 

presence of normal epithelium. The HPS and the IHC images are at 5X magnification. 647 

 648 

 649 

 650 

 651 
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 652 

 653 

 654 

Figure 4: Tumor stroma geographical proximity. The sample is a moderately differentiated colonic 655 

adenocarcinoma with its associated stroma (Supplementary Table S1, sample # 11B). Along with the 656 

highly-correlated prediction, the nature of the connective tissue into which the tumor has infiltrated is also 657 

identified. The HPS image is at 5X magnification.   658 

 659 
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 660 

 661 

Figure 5: Most discriminant infrared spectral vibrations identified by the Mann-Whitney U test. The test 662 

was performed for A: Tumor epithelium versus normal epithelium (p<0.005), B: Tumor epithelium versus 663 

tumor associated stroma (p<0.01), and C: Connective tissue versus tumor associated stroma (p<0.1). For 664 

each class in the figure, the mean spectrum (+/-) the standard deviation is represented. 665 

 666 

 667 
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 668 

Figure 6: Influence of tissue inflammation on the prediction model. Left to right: 1. HPS stained colon 669 

tissues (Supplementary Table S1, sample # 32 and 31); 2. Infrared spectral predicted images; 3. 670 

Immuno-stained images for CD3 marker and; 4. Immuno-stained images for CD20 marker. A is a non-671 

tumoral colonic tissue with typical normal glands. The mucosa is partially populated by lymphoid follicle as 672 

seen in the HPS image. The prediction model identified these regions in the mucosa as tumor. Immuno-673 

staining for CD3 and CD 20 markers revealed that the tumor class in the predicted images actually 674 

corresponded to inflammatory signatures. B is another non-tumoral tissue with insignificant tumor pixels in 675 

the predicted image. Immuno-staining is negative for CD 3 and CD 20 indicating absence of inflammatory 676 

signature. The HPS and the IHC images are at 5X magnification.  677 
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Tables: 679 

 680 

Table 1: The confusion matrix.  681 

The confusion matrix representing the sensitivity of the infrared spectral imaging based prediction model, 682 

developed using 8 classes, to the gold standard histopathological attribution, in the spectral range of 1080 683 

cm
-1 

to 1300 cm
-1

. The table shows an average sensitivity of 89. 49 %. 684 
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