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10 Abstract: Tissue regeneration after a wound occurs through three main overlapping and 

11 interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The 

12 inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase. 

13 The macrophages in the non-healing wounds remain in the inflammatory loop, but their 

14 phenotypes can be changed via interactions with nanofibre-based scaffolds mimicking the 

15 organisation of native structural support of healthy tissues. However, the organisation of 

16 extracellular matrix (ECM) is highly complex, combining order and disorder, which makes it 

17 difficult to replicate.  The possibility of predicting the desirable biomimetic geometry and 

18 chemistry of these nanofibre scaffolds would streamline the scaffold design process. Fifteen 

19 families of nanofibre scaffolds, electrospun from combinations of polyesters (polylactide, 

20 polyhydroxybutyrate), polysaccharides (polysucrose, carrageenan, cellulose), and polyester ether 

21 (polydioxanone) were investigated and analysed using machine learning (ML). The Random 

22 Forest model had the best performance (92.8%) in predicting inflammatory responses of 
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23 macrophages on the nanoscaffolds using tumour necrosis factor-alpha as the output. CellProfiler 

24 proved to be an effective tool to process scanning electron microscopy (SEM) images of the 

25 macrophages on the scaffolds, successfully extracting various features and measurements related 

26 to cell phenotypes M0, M1, and M2. Deep learning modelling indicated that convolutional neural 

27 network models have the potential to be applied to SEM images to classify macrophage cells 

28 according to their phenotypes. The complex organisation of the nanofibre scaffolds can be 

29 analysed using graph theory (GT), revealing the underlying connectivity patterns of the nanofibres. 

30 Analysis of GT descriptors showed that the electrospun membranes closely mimic the connectivity 

31 patterns of the ECM. We conclude that ML-facilitated, GT-quantified engineering of cellular 

32 scaffolds has the potential to predict cell interactions, streamlining the pipeline for tissue 

33 engineering.

34 Keywords: nanofibre scaffolds, tissue engineering, machine learning, macrophages, 

35 inflammation, graph theory

36 1. INTRODUCTION

37 Polymer-based nanostructured scaffolds have emerged as an effective strategy for tissue 

38 regeneration, serving the dual role of structural supports and molecular platforms. These scaffolds 

39 are engineered to closely replicate the tissue microenvironment, thus facilitating and enhancing 

40 the wound healing process. Effective wound care scaffolds must support the three primary stages 

41 of tissue regeneration and wound healing: inflammation, cell proliferation, and tissue remodelling. 

42 These stages involve several interconnected phases that rely on the synergistic interactions 

43 between cells and the extracellular matrix (ECM).1 In acute wounds, the inflammatory phase 

44 typically lasts from hours to days, whereas in chronic wounds, this phase can extend from weeks 

45 to months. During the inflammatory phase, macrophages play a crucial role in clearing pathogens 
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46 and foreign materials. This phase is accompanied by the migration of neutrophils and monocytes 

47 to the wound site, followed by cytokine production. Monocytes differentiate into macrophages, 

48 which act as primary responders during inflammation. These macrophages phagocytize the 

49 remaining neutrophils, secrete growth factors, and produce cytokines that promote tissue 

50 regeneration and cell migration, allowing the wound to transition to the proliferative phase.2 

51 There are three primary macrophage phenotypes: M0, M1, and M2. The M0 phenotype 

52 represents the tissue-resident inactivated state, while M1 is pro-inflammatory, phagocytic, and 

53 bactericidal. M2 is anti-inflammatory (or pro-reparative), immunosuppressive, and involved in 

54 scar resolution.3,4 For effective wound healing, it is crucial for the predominant macrophage 

55 phenotype to transition from pro-inflammatory (M1) to pro-reparative (M2). A deeper 

56 understanding and prediction of the specific roles of macrophage populations at different stages of 

57 tissue repair will support the development of targeted therapies for both acute and chronic 

58 wounds.3 The M1 phenotype produces cytokines such as tumour necrosis factor-alpha (TNF-α) 

59 and interleukin-6 (IL-6), whereas the M2 phenotype promotes the production of cytokines like 

60 vascular endothelial growth factor (VEGF) and transforming growth factor beta (TGF-β). During 

61 the inflammatory phase, failure of macrophages to transition to a tissue-healing phenotype can 

62 result in persistent inflammatory signals, creating a positive feedback loop that amplifies the M1 

63 response and disrupts cytokine balance. Additionally, the M2 phenotype has been identified as a 

64 key modulator in cancer progression due to its tumour-promoting capabilities, including 

65 immunosuppression, angiogenesis, neovascularization, and stromal activation and remodelling.5 

66 Successful scaffold tissue integration relies on a balance between activated (M1) 

67 macrophages, which clear the wound site, and anti-inflammatory (M2) macrophages, which 

68 promote tissue regeneration and wound healing.6 Therefore, scaffold materials and architecture, 
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69 designed to mimic in vivo structural support with organisation characteristic of the healthy tissues, 

70 should favour the transition of macrophages to the M2 tissue-healing phenotype. However, the 

71 organisation of native structural support, such as the ECM, is very complex. It is based on highly 

72 interconnected network of nanofibres with large amount of disorder, which is difficult to describe 

73 and replicate. A promising pathway to their replication that has emerged over the last few years, 

74 is to learn and predict their organisation using machine learning (ML), which will enable the 

75 selection of appropriate scaffold materials and reduce the trial-and-error process in 

76 electrospinning, minimising the need for recurrent in vitro studies. ML methodology can also be 

77 combined with new approaches to the description of complex nanoscale matter, which can 

78 complement ML tools, making them more efficient and transparent.7,8

79 Classifying macrophages based on their functional phenotype is crucial for predicting their 

80 behaviour as either pro- or anti-inflammatory agents in the immune response. Macrophages are 

81 typically classified into M0, M1, or M2 subsets by quantifying various cell surface markers, 

82 transcription factors, and cytokine profiling. These methods are time-consuming and resource-

83 intensive. Concurrently, different forms of ML have found expansive applications in biology, 

84 ranging from ribonucleic acid (RNA) profiling studies that identify over 50 phenotypes9 to the 

85 basic classification of two distinct cell types within a population.10 ML and, especially, deep 

86 learning (DL) algorithms are particularly well-suited for analysing data related to scaffolds and 

87 cellular interactions due to their efficiency in decoding the complexity of cell responses to 

88 hierarchical organisation of nanofibres in the matrix.11,12 Initial studies have highlighted the 

89 potential of ML in predicting cell-material interactions on scaffolds during the proliferative phase 

90 of wound healing13, as well as in classifying the miscibility of polymer blends based on their 

91 physico-chemical attributes.14
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92 In the current study, the focus is on applying ML methods to model the inflammatory 

93 responses of macrophage cells cultured on nanofibre scaffolds with various polymer 

94 functionalities, thereby optimising and predicting materials performance (Scheme 1). The study is 

95 divided into two main parts. The first part aims to predict the concentration of the pro-

96 inflammatory cytokine TNF-α produced by macrophages (target outcome), using the physico-

97 chemical properties of nanofibre scaffolds (pore diameter, fibre diameter, water contact angle, and 

98 Young’s modulus) and the biological responses of macrophages (ruffling index and macrophage 

99 phenotype) as input data. An ML-based predictive model was developed using seven supervised 

100 learning regression algorithms. Eighty percent of the dataset was used for training, while 20% was 

101 used for testing. The efficacy of each algorithm was assessed using performance metrics to 

102 determine the most accurate model. The second part of this study attempted to classify 

103 macrophages according to their phenotype using scanning electron microscopy (SEM) images of 

104 macrophages on nanofibres. Two common techniques for image processing and classification were 

105 adopted. The first involved the use of CellProfiler to extract cell features from SEM images, which 

106 were then fed to classification algorithms in CellProfiler Analyst. The second technique used DL 

107 convolutional neural network (CNN) pre-trained models, which were fine-tuned for our specific 

108 cell-image classification task. The last section of this study highlights the emerging capabilities of 

109 graph theory (GT) for the description of complex biological materials, capturing intricate structural 

110 patterns found in native nanofibre-based tissues.15,16 A preliminary mapping of the scaffold 

111 architecture was conducted to explore correlations between nanofibre arrangement and mechanical 

112 properties.
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113 Scheme 1. Hypothesis - predicting polarisation of macrophages to a healing phenotype through 

114 cell-material interactions, and exploring graph theory for structural insights into scaffold 

115 complexity-materials correlations.

116 2. MATERIALS AND METHODS

117 2.1. Polymeric blends

118 The present study involved 15 distinct families of 53 nanofibre scaffolds: 

119 polyhydroxybutyrate/kappa-carrageenan (PHB/KCG), poly(hydroxybutyrate-co-valerate) 

120 (PHBV)/KCG, polydioxanone/fucoidan (PDX/FUC), PDX/KCG, PDX/PHBV, PDX/ polysucrose 

121 (PSuc), poly-L-lactide (PLLA)/PSuc, PDX/bagasse-cellulose, PLLA/bagasse-cellulose, 

122 PLLA/ulvan-cellulose, PLLA/bagasse-cellulose acetate (bagasse-CA), PLLA/ulvan-cellulose 
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123 acetate (ulvan-CA), poly(D,L-lactic acid) (PDLLA)/ulvan-cellulose, PDLLA/ulvan-CA, and 

124 PDX/ulvan-CA. Each family of scaffolds included a minimum of four polymer blend 

125 compositions, with results presented in triplicate. The compositions of polymer content varied as 

126 follows: 100% polymer A and 0% polymer B; 0% polymer A and 100% polymer B; 90% polymer 

127 A and 10% polymer B; 80% polymer A and 20% polymer B; 70% polymer A and 30% polymer 

128 B; 60% polymer A and 40% polymer B; and an even blend of 50% polymer A and 50% polymer 

129 B.

130 PHB (Sigma-Aldrich), KCG (Sigma-Aldrich), PHBV (12 mol% HV content, Sigma-

131 Aldrich), PDX (ResomerX 206 S, inherent viscosity (IV) 2.0 g dl-1, Evonik), FUC (Fucoidan from 

132 Fucus vesiculosus ≥95%, Sigma-Aldrich), PSuc, PLLA (PURASORB PL 18, (IV) 1.8 g dl-1, 

133 Purac), and PDLLA (PURASORB PDL 20, (IV) 2.0 g dl-1, Netherlands) were used as purchased. 

134 Bagasse-cellulose was extracted from locally available sugarcane bagasse using a combination of 

135 mercerisation and bleaching techniques17, yielding an average of 40% (±2). Bagasse-CA was 

136 synthesised from sugarcane bagasse-derived cellulose using an optimised acetylation method18, 

137 with an average yield of 62% (±2).19 Ulvan-cellulose was extracted from locally available green 

138 seaweeds of the Ulva family, producing an average yield of 5.23% (±0.2) using a modified 

139 method.20 Ulvan-cellulose was then converted to ulvan-CA using an optimised method,18 

140 achieving an average yield of 78.5% (±0.8).21

141 2.2. Nanofibre scaffold fabrication

142 Scaffolds were engineered using the electrospinning method (bottom-up NE300 laboratory scale 

143 electrospinner, Inovenso Company, Turkey). The electrospinning conditions were adjusted based 

144 on the polymers within they blend and on the blend composition to generate matrices of bead-free 

145 fibres with complex structures and high interconnectedness. PHB/KCG and PHBV/KCG fibres 
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146 were produced as reported by Goonoo et al.22 Electrospinning parameters for PSuc-based and 

147 bagasse-cellulose-based fibres were reported by Chummun et al.23 and Ramphul et al.19, 

148 respectively. The fabrication of PDX/KCG and PDX/FUC was detailed by Goonoo et al.24 The 

149 fabrication of scaffolds from ulvan-cellulose and ulvan-CA in combination with either PDX, 

150 PLLA, or PDLLA was described by Madub et al.21 Most blend solutions were prepared by mixing 

151 two solutions (solution A and solution B) with the exception of PDX/PHBV, PDX/PSuc, and 

152 PLLA/PSuc.23,25

153 2.3. Scaffold characterisation

154 2.3.1. Mechanical properties

155 Tensile measurements for the electrospun mats were conducted at 25 °C using a Universal Instron 

156 Tester 3344 (Instron, USA). Rectangular samples of the mats, sized 4 cm x 1 cm, were clamped 

157 with a gauge length of 1 cm and a width of 10 mm, respectively, and strained at a rate of 10 

158 mm/min using a 100 N load cell until fracture. Six measurements were taken for each sample. 

159 Tensile stress at break and Young’s modulus were then calculated by Bluehill testing software.

160 2.3.2. Wettability properties

161 The static water contact angles for each electrospun mat were determined through a Krüss drop 

162 shape analyser DSA 25 (Advanced Lab GmbH, Germany), with Milli-Q water as probe liquid.  

163 The mats were taped onto glass slides and gripped on the sample holder. Static contact angle 

164 readings, based on the sessile drop method, were obtained immediately after deposition of a 2 µl 

165 water droplet on a minimum of three different positions for each sample. The results were then 

166 presented as the arithmetic mean ± standard deviation (SD) of these measurements.

167 2.4. Biological compatibility assessment
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168 2.4.1. In vitro inflammation studies

169 In vitro inflammation studies were carried out with the RAW 264.7 mouse macrophage cell line 

170 (ECACC certified) from Sigma-Aldrich. All cell culture reagents were sterile, filtered, suitable for 

171 cell culture, and obtained from Sigma-Aldrich. The culture medium of RAW 264.7 macrophages 

172 consisted of RPMI 1640 supplemented with 10% FBS and 1% penicillin/streptomycin, 0.5 μg ml-

173 1 amphotericin B, 1 mM sodium pyruvate, and 2 mM L-glutamine. Cells were seeded on the 

174 scaffolds in a 96-well plate at a density of 2.5 × 104 cells per well. After three days of culture, an 

175 ELISA kit (Sigma-Aldrich) was used to measure the level of TNF-α in the cell culture supernatant 

176 according to the manufacturer’s instructions. Cell-seeded scaffolds were then fixed for SEM 

177 analysis by immersion in a 3% (v/v) glutaraldehyde solution for 30 minutes followed by 

178 dehydration with 30%, 50%, 70%, 90%, and 100% ethanol solutions and washings with a 1/1 v/v 

179 mixture of 100% ethanol/ hexamethyldisilazane (HMDS), and finally with pure HMDS.

180 2.4.2. Scanning electron microscopy (SEM) image acquisition and analysis

181 The surface morphology of the nanofibres and cell morphology for each sample were examined 

182 with a Tescan Vega 3 LMU electron microscope with an accelerating voltage of 30 kV. Prior to 

183 SEM imaging, the samples were sputter-coated with a gold-palladium mix for 120 seconds, using 

184 a Quorum SC7620 sputter coater. Nanofibre diameters were quantified using the SEM’s Atlas 

185 software, and results were reported as arithmetic mean ± SD, based on 50 measurements. The 

186 DiameterJ plugin of the ImageJ software was then employed to assess the pore diameters for each 

187 mat, with results also reported as arithmetic mean ± SD (n = 50). The extent of F-actin-rich 

188 membrane protrusions (ruffling index) was scored on a scale of 0-3, where 0 = no protrusion, 1 = 

189 protrusions in one area of the cell, 2 = protrusions in two distinct areas of the cell, and 3 = 
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190 protrusions in more than two distinct areas of the cell. The ruffling index was calculated as the 

191 average of protrusion scores of at least 50 cells, as described by Goonoo et al.26 

192 2.4.3. Atomic Force Microscopy (AFM)

193 Acoustic (tapping) mode atomic force microscopy (AFM) imaging was performed on as-prepared 

194 PLLA/PSuc 70/30 nanofibre sample on a WITec alpha300 R confocal Raman microscope 

195 (WITech, GmbH, Germany) as a preliminary trial to analyse surface topography. AFM images 

196 were recorded using a force modulation silicon cantilever with resonance frequencies in the range 

197 of 65−85 kHz, a spring constant of k = 2.8 N/m, and resolution of 512 lines per image. Data were 

198 processed off-line with the WITec Project software (version 6.2).

199 2.5. Computational studies

200 2.5.1. Data exploration, feature selection, and predictive modelling

201 ML regression techniques were initially applied to a dataset comprising of 159 samples, which 

202 included six key physico-chemical scaffold parameters: pore diameter, fibre diameter, water 

203 contact angle, Young’s modulus, and macrophage characteristics (ruffling index and phenotype). 

204 The target variable for the ML models was the concentration of the pro-inflammatory cytokine 

205 TNF-α (pg/ml) produced by the macrophages. The dataset used for developing the ML models has 

206 been previously published (STable 1).13 The preparation of the dataset involved collecting, 

207 cleaning, and formatting the raw data to ensure it was suitable for ML analysis. The "macrophage 

208 phenotype" variable, which consisted of categorical data (M0, M1, M2), was transformed into 

209 numerical format to meet the requirements of the ML algorithms. Numerical values were assigned 

210 to each phenotype category (0 for M0, 1 for M1, and 2 for M2). Additionally, the input features 

211 were normalised using the MinMaxScaler algorithm to standardise the data for optimal ML model 
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212 performance. A high-correlation filter using the Pearson correlation matrix was applied to assess 

213 correlations between the independent variables, as reported by Sujeeun et al.13 Seven regression 

214 algorithms – namely linear regression (LinR), support vector regression (SVR), random forest 

215 (RF) regression, Lasso regression, Ridge regression, decision tree (DT) regression and k-nearest 

216 neighbours (k-NN) regression – were trained on the training dataset and tested on the test dataset. 

217 The predictive performance of the models was compared to identify the one yielding the best 

218 results. Hyperparameter tuning was performed for each model to optimise training phase and 

219 improve accuracy. All code was implemented in Python 3.8.3 using the Seaborn and Scikit-learn 

220 libraries. Regression metrics, including the accuracies on the training and testing sets, as well as 

221 mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), 

222 root mean squared error (RMSE); and R-squared (R2) were computed to evaluate each model’s 

223 performance.

224 2.5.2. SEM-based macrophage image analysis using CellProfiler

225 CellProfiler (version 4.2.1)27 is an open-source software for image analysis, implemented in 

226 Python. It contains already-developed methods for a diverse range of cell types and assays to 

227 process cell images. The aim of this part of the study was to assess whether CellProfiler could be 

228 used to process macrophage SEM images to extract more features related to the cells, such as 

229 number of cells in an image and single-cell measurements (e.g., dimension, morphology, intensity, 

230 and texture). 

231 For each new cell type or assay, the software employs a pipeline composed of discrete 

232 modules, with each module uniquely processing the image according to a defined procedure. The 

233 pipeline consists of the following steps in sequential order: (i) image processing, (ii) object 

234 identification, and (iii) object measurements. Most of the modules are automated but CellProfiler 
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235 also supports interactive modules. For example, a user can select or outline manually an area of 

236 interest in each image. To start an analysis, each macrophage SEM image was loaded into 

237 CellProfiler and processed by each module in order (Fig. 1).

238 Fig. 1 Image processing with a CellProfiler pipeline.

239 2.6. Deep learning (DL) models for macrophage cell classification

240 Transfer Learning (TL) is a common approach for applying pre-trained DL models to small image 

241 datasets. Pre-trained models are networks that have already been trained on a large set of image 

242 data, typically on a large-scale image classification task. CNNs are a specific type of artificial 

243 neural networks (ANNs) inspired by the visual cortex of a human brain, where each individual 

244 neuron detects only signals from a small sub-region of the visual field, called a receptive field. 

245 Each ‘neuron’ in CNN performs a convolution of a kernel with an input image and produces a 

246 filtered output image often called feature map. The input image can consist of several channels, 

247 and each layer in the neural network holds as many channels of feature maps as we have neurons 

248 in this particular layer. The feature maps in the last layer can be interpreted as the final features 

249 learned by the network and are used for classification. The critical difference from traditional 

250 feature-based classification methods is that for CNN, no features, including the weights of the 

251 kernels, are predefined, but the algorithm learns them by itself.28

252 We attempted to implement two pre-trained models: VGG-1629 and ResNet5030, both 

253 available in the Keras Applications library. Both models are among the commonly used CNN 
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254 models pre-trained on ImageNet for TL31 and have been reported to perform exceptionally well.32 

255 VGG16 has 13 convolutional layers and three fully connected layers, for a total of 16 layers, 

256 whereas ResNet50 has a deeper network structure with a total of 50 layers. The aim was to apply 

257 transfer learning approaches to use these pre-trained models and train them on our custom 

258 macrophage images. Two macrophage phenotypes M1 and M0 were selected for modelling 

259 purposes as the majority of the dataset were images with either M1 or M0 phenotype, or a mixture 

260 of both M1 and M0. Since the purpose of this part was to only explore these models, a small dataset 

261 was manually prepared and customized: 200 macrophage images with M0 phenotype and 200 

262 macrophage images with M1 phenotype. After the data preparation step, two pre-trained models 

263 VGG16 and ResNet50 were applied on the dataset. ImageNet dataset contains RGB (Red Green 

264 Blue) colour images (three channels) and SEM images are grayscale images (single channel). 

265 Thus, for this preliminary study, one approach was to convert the grayscale images to RGB images, 

266 i.e. to make the images “appear” to be RGB by repeating the image array three time on a new 

267 dimension in numpy. Data augmentation was used to generate additional images in the training set 

268 by rotating, mirroring and flipping the images using the ImageDataGenerator class in Keras. For 

269 VGG16, the training and validation sets were configured in batches of 20. As this study is a binary 

270 classification problem, the basic model was loaded, with changes made only to the final layer and 

271 all the other layers were set as “non-trainable” (i.e. frozen). The last fully-connected layer was 

272 created using basic settings, and the final model was built and fitted based on the training and 

273 validation sets created above, with 10 epochs. Similarly, for ResNet50, the base model was 

274 imported with the layers frozen and last layer modifiable. The model was built, compiled and fitted 

275 with 10 epochs.

276 2.7. Graph theory (GT) analysis of nanofibre networks
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277 A preliminary analysis was conducted to explore the relationship between the complex 

278 organisation of three families of nanofibre scaffolds – PDX/KCG, PLLA/PSuc, and PHB/KCG – 

279 and the structural characteristics captured by GT descriptors. The goal was to establish an 

280 understanding of how variations in materials might influence the complex organisation of 

281 biomimetic scaffolds potentially affecting their biological performance. StructuralGT, a Python 

282 program for automated structural analysis was used to perform GT analysis on the SEM images. 

283 Details of the calculation of each GT parameter is described in the StructuralGT publication and 

284 on its Github page: https://github.com/drewvecchio/StructuralGT.16 Three SEM images were 

285 analysed for each polymer blend to provide exploratory insights. The SEM images were not 

286 enhanced or modified using additional image processing software. In the resulting graphs, 

287 dangling edges were removed to achieve a more accurate measure of connectivity.

288 3. RESULTS AND DISCUSSION

289 3.1. Macrophage inflammatory responses

290 This study aimed to establish a relationship between the physico-chemical properties of nanofibre 

291 scaffolds and biological responses of macrophages, specifically the ruffling index and macrophage 

292 polarisation phenotype (Scheme 2). A wound that fails to transition effectively from the pro-

293 inflammatory to the anti-inflammatory phase is at risk of becoming chronic. Therefore, 

294 understanding macrophage behaviour in response to scaffold material is essential for tissue 

295 engineering (TE), as it guides the selection of suitable scaffold materials that promote desirable 

296 healing outcomes.
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297 Scheme 2. (a) M0, (b) M1, and (c) M2 phenotypes (SEM images from CBBR) and their 

298 representations (designed with BioRender.com).

299 Fifteen families of nanofibre scaffolds were constructed using various blends of polymers 

300 (Table 1 & STable 1). The physico-chemical parameters namely pore diameter, fibre diameter, 

301 water contact angle, and Young’s modulus were determined for 53 scaffolds. Macrophages (RAW 

302 264.7) were seeded on the scaffolds (Table 1). TNF-α levels were measured after three days to 

303 gauge the extent of inflammation induced by macrophages in response to the scaffolds, while SEM 

304 imaging provided a detailed assessment of macrophage phenotypes and ruffling index. In 

305 PDX/PHBV mats, a decreased in the concentration of TNF-α was observed with PHBV content 

306 above 20 wt%. The addition of KCG to PHBV led to an increase in TNF-α levels, whereas in the 

307 PHB/KCG blends, the addition of KCG slightly decreased TNF-α production. PDX/PHBV mats 

308 caused lower inflammatory reactions in RAW 264.7 cells than the PHB/KCG and PHBV/KCG 

309 mats. The addition of PHBV to PDX also promoted macrophage polarisation to the pro-healing 

310 phenotype when PHBV formed the shell of the fibres.25 
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311 In the presence of PSuc, a large number of round-shaped cells – M0 phenotype – dispersed 

312 among elongated spindle-like shaped macrophages (M2-like phenotype) visible on PLLA-PSuc 

313 mats. As for PDX 100, the cells formed flattened colonies compared to PDX-PSuc 70-30, onto 

314 which round-shaped cells were widely dispersed. Spindle-like macrophages on PLLA-PSuc mats 

315 are associated to M2 phenotype, indicative of induced in vitro biocompatibility of PLLA-PSuc 

316 blends. For PDX-PSuc electrospun mats, significant increase in TNF-α concentration was 

317 observed in the presence of PSuc.33 For bagasse-cellulose mats, as the amount of cellulose in the 

318 mats increased, the amount of adherent cells decreased, thus indicating its positive effect on 

319 reducing inflammatory response. The density of macrophages on the surface of PLLA 100% was 

320 also more prominent than on the blends. Bagasse-cellulose 100% mats displayed the lowest density 

321 of macrophage cells, thus indicating its positive effect towards inhibition of inflammation response 

322 due to its highly hydrophilic nature.34 

323 On all the ulvan-cellulose and PDX-based scaffolds, large population of round-shaped 

324 macrophages exhibiting higher spreading and surface membrane activities were observed. While 

325 macrophages on 100% CA, ulvan-CA/PLLA, and PDLLA scaffolds displayed rather smooth 

326 surfaces, the presence of significant cell surface protrusions, i.e. surface ruffles, were noted on all 

327 ulvan-cellulose and PDX-based nanofibrous mats. Addition of PDX to CA and ulvan-cellulose to 

328 PLLA and PDLLA greatly enhanced the cells’ ability to undergo F actin-enriched membrane 

329 protrusions on their surfaces. Ulvan-cellulose and PDX-based scaffolds triggered higher release of 

330 TNF-α compared to the ulvan-CA/PLLA and PDLLA nanofibrous mats. Overall, these findings 

331 indicated that macrophage activity and thus, level of TNF-α are directly influenced by the surface 

332 chemistry of the biomaterial. Surface properties, hydrophilicity, and functional groups influence 

333 cell mechano-sensing and determine cell-material interactions. 
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334 Table 1. Levels of TNF-α measured after three days, ruffling index, and main phenotypes 

335 observed of macrophages for 15 families of scaffolds.

Scaffolds Concentration of TNF-α/
(pg/ml) Ruffling index Main phenotypes 

observed
Polyhydroxybutyrate (PHB)/kappa-carrageenan (KCG)

100/0 803.9 ± 56.4 2.8 ± 0.1 M1
90/10 1123.7 ± 36.9 1.9 ± 0.3 M1
80/20 947.0 ± 141.7 2.1 ± 0.2 M1
70/30 631.2 ± 151.2 2.6 ± 0.2 M1

Poly(hydroxybutyrate-co-valerate (PHBV)/KCG
100/0 784.6 ± 58.8 2.6 ± 0.1 M1
90/10 1345.5 ± 63.6 0.2 ± 0.1 M1
80/20 1293.0 ± 67.8 0.2 ± 0.1 M1
70/30 865.6 ± 35.3 0.2 ± 0.1 M0

Polydioxanone (PDX)/fucoidan (FUC)
100/0 261.1 ± 57.9 2.9 ± 0.1 M1
90/10 854.5 ± 47.9 1.7 ± 0.1 M1
80/20 644.8 ± 67.5 0.9 ± 0.1 M1
70/30 1079.6 ± 2.1 1.2 ± 0.2 M1

PDX/KCG
100/0 537.0 ± 125.2 2.5 ± 0.1 M1
90/10 376.7 ± 76.6 3.0 ± 0.0 M1
80/20 258.9 ± 49.9 1.2 ± 0.5 M0
70/30 504.5 ± 62.1 0.3 ± 0.2 M0

PDX/PHBV
100/0 196.5 ± 16.7 1.6 ± 0.3 M1
90/10 722.3 ± 37.3 1.6 ± 0.7 M1
80/20 1210.5 ± 61.8 0.2 ± 0.1 M1
70/30 675.2 ± 63.8 2.4 ± 0.2 M0

PDX/polysucrose (PSuc)
100/0 219.4 ± 49.7 2.9 ± 0.1 M0
90/10 296.1 ± 90.0 3.0 ± 0.1 M1
80/20 230.1 ± 88.1 2.8 ± 0.1 M1
70/30 202.6 ± 41.6 2.9 ± 0.0 M1
60/40 151.2 ± 11.8 3.0 ± 0.0 M1
50/50 226.9 ± 57.9 2.9 ± 0.0 M1

Poly-L-lactide(PLLA)/ PSuc
100/0 163.7 ± 29.9 2.0 ± 0.0 M2
90/10 149.0 ± 24.8 2.8 ± 0.0 M2
80/20 168.7 ± 36.3 2.4 ± 0.1 M1
70/30 173.1 ± 15.9 2.4 ± 0..3 M1
60/40 245.6 ± 55.6 2.4 ± 0.7 M1
50/50 240.3 ± 61.0 1.3 ± 0.1 M1
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PLLA/cellulose acetate (CA)
0/100 180.9 ± 26.9 0.4 ± 0.0 M1
100/0 163.7 ± 29.9 2.0 ± 0.0 M1
30/70 140.7 ± 12.8 1.0 ± 0.0 M1
50/50 170.7 ± 3.3 1.8 ± 0.0 M1

PLLA/cellulose
0/100 280.3 ± 7.0 2.8 ± 0.0 M1
30/70 330.7 ± 27.2 2.9 ± 0.0 M1
50/50 338.0 ± 102.0 2.9 ± 0.0 M1

PDX/CA
100/0 239.4 ± 61.9 2.6 ± 0.0 M1
30/70 300.0 ± 28.1 2.3 ± 0.0 M1
50/50 298.9 ± 15.8 2.8 ± 0.0 M1

Poly(D,L-lactic acid) PDLLA/CA
70/30 197.4 ± 9.9 1.0 ± 0.0 M1
50/50 270.7 ± 30.2 1.0 ± 0.0 M0

PDLLA/cellulose
0/100 280.3 ± 7.0 2.8 ± 0.0 M1
30/70 350.9 ± 104.7 3.0 ± 0.0 M1
50/50 346.8 ± 61.9 2.9 ± 0.0 M1

336 3.2. ML Models to correlate physico-chemical properties with biological response

337 Data from the physico-chemical characterization of scaffolds and the biological parameters of 

338 macrophages were selected to develop a ML model to correlate in vitro inflammatory responses 

339 data with the properties of scaffolds. Data was collected, rearranged and pre-processed for 

340 exploratory analysis and feature selection. A high correlation filter calculated the correlation 

341 between scaled, independent numerical variables. The Pearson correlation matrix shown in Fig. 2a 

342 displayed correlation coefficients between -0.21 to 0.45, indicating no strong correlation among 

343 variables.
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344 Fig. 2 (a) Pearson correlation matrix performed on six physico-chemical and biological features 

345 characterising the scaffolds – fibre diameter, pore diameter water contact angle, Young’s modulus, 

346 ruffling index, and macrophage phenotype. (b) Feature importance graph ranking the six physico-

347 chemical and biological features based on their relative importance. (c) Model performance after 

348 performing hyperparameter tuning. (d) Actual versus predicted plot representing the actual targets 

349 from the test dataset (y_test) against the predicted data by the RF regression model (y_pred).
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350 Feature selection using the RF regressor identified the most predictive features based on their 

351 importance scores (Fig. 2b). Ruffling index ranked as the top feature (0.59), followed by pore 

352 diameter (0.13) and fibre diameter (0.09). Less influential features included Young’s modulus 

353 (0.08), macrophage phenotype (0.06), and water contact angle (0.04). These findings were 

354 consistent with our previous results, where ML methods were applied to predict fibroblasts 

355 proliferation on nanofibre mats, with fibre diameter and pore size being the most influential 

356 properties.13 Since cellular responses are cell-specific and cannot be generalised, it was essential 

357 to re-investigate the scaffold properties influencing macrophage polarisation in this study. Ruffles 

358 are temporarily erected in response to stimuli and during cell migration and macrophages ruffling 

359 is enhanced in cells activated by pathogens.35 The key predictors identified in this study can help 

360 minimise trial and error in the development of nanofibre scaffolds. Parameters such as fibre 

361 diameter and pore size in electrospun scaffolds can be determined and utilised to predict the level 

362 of TNF-α expressed by macrophages. As a result, electrospinning parameters can be adjusted to 

363 fabricate scaffolds with optimised physico-chemical properties that elicit a lower immune 

364 response, thereby reducing the need of repeated in vitro experiments.

365 Seven supervised learning regression algorithms were trained with 80% of the data, and 

366 the remaining 20% was used for testing. After hyperparameter tuning, model performance of each 

367 model was evaluated using regression metrics (accuracy scores on the training and testing sets, 

368 MAPE, MAE, RMSE) (Fig. 2c & STable 2). The RF regression model achieved an accuracy of 

369 92.8% on the training set and 89.3% on the testing, coupled with a MAPE score of 22.9%, an MAE 

370 of 97.12, and an RMSE of 149.89, demonstrating strong predictive performance and robustness. 

371 This highlighted the RF regression model’s accuracy and suitability for capturing the complexities 

372 of both physico-chemical and biological data, as well as our predictive targets. In our previous 
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373 studies, the RF regressor and classifier consistently outperformed other algorithms.13,14 This 

374 suggested that RF models are particularly adept at managing non-linear relationships between 

375 variables, which is crucial in this study, where the correlation between TNF-α levels and various 

376 predictors was not robust. Actual data from the testing set was compared against predicted data 

377 from the testing set of the RF model through a regression plot. The analysis indicated a statistically 

378 significant fit (p-value < 4.27 x 10-5) that could potentially be improved with more representative 

379 samples in the testing set and additional data points closer to the regression line. The high 

380 proportion of the variance explained by the model (R2 = 0.89) suggested that the RF regression 

381 model closely fitted the actual dataset (Fig. 2d).

382 3.3. Identification of macrophage phenotypes from SEM images using CellProfiler

383 The pipeline for human HT29 cells available in CellProfiler was selected for preliminary 

384 macrophage SEM image analysis. This pipeline integrates modules to identify cells and measure 

385 cellular parameters such as morphology, count, intensity, and texture. The first step of image 

386 processing in CellProfiler included cropping the input image to select the area of interest (Fig. 3, 

387 steps 1-2), followed by applying illumination correction and filtering methods, as raw images 

388 degrade intensity measurements (Fig. 3, steps 3-4). This degradation may generate inaccurate cell 

389 identification/segmentation and adversely affect all types of measurements, from intensity to area 

390 and shape measurements. Object identification/segmentation is the most challenging step in image 

391 analysis, and its accuracy determines the reliability of the resulting cell measurements (Fig. 3, step 

392 5). Similar to most biological images, SEM images of macrophages included cells in close 

393 proximity, often touching each other. In CellProfiler, clumped cells were detected as single objects, 

394 which were then separated by identifying dividing lines between them. Some resulting objects 

395 were subsequently merged together or discarded from the analysis. After primary object detection 
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396 of the cells, CellProfiler computed feature measurements for each identified cell. These included 

397 standard features such as area or intensity, and also complex measurements like Zernike shape 

398 features, Haralick and Gabor texture features (Fig. 3, step 6). The data were exported in a tab-

399 delimited spreadsheet format for further analysis (Fig. 3, step 7) (STable 3). 

400 Image-based profiling is a powerful quantitative method to measure cellular and sub-

401 cellular features. Single-cell measurements are features that enrich biological dataset and increase 

402 robustness of statistical modelling. In this study, objects representing cells were detected by 

403 manually adjusting parameters of different modules for each image (Fig. 3). A full dataset of 41 

404 SEM images (view field 10 – 20 μm) were analysed. Each cell was then assessed for a broad range 

405 of descriptors such as area, orientation, extent, shape, intensity, etc. A total of 225 measurements 

406 were acquired for each cell, and a dataset representing the full experiment/analysis was established 

407 for further phenotype classification analysis (STable 3).
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408 Fig. 3 Image processing steps with CellProfiler to extract features related to macrophage 

409 phenotypes.

410 Detection of cellular features in images from automated software tools still requires 

411 optimisation due to the variability between cell phenotypes of different cell lines. The advantage 
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412 of using CellProfiler remains its adaptability: a user can customise an image analysis pipeline from 

413 existing available pipelines or create a new one, tune segmentation parameters to perform well and 

414 detect cell phenotypes. The major hindrance would be analysing large datasets containing 

415 numerous phenotypes within a single image, which can complicate accurate segmentation and 

416 classification. For instance, it is extremely time-consuming to verify all the segmentation 

417 parameters while processing each image to ensure that it reliably segments images of all M0 and 

418 M1 phenotypes present in the dataset. CellProfiler enables batch processing of images once a 

419 pipeline has been established. However, due to particular cell morphology in our study, this option 

420 has not been considered. To be able to correct some automated object identification errors, manual 

421 object editing modules were used to select the objects and modify them accordingly. The main 

422 challenge in cell segmentation is to devise reliable features that will be able to identify cell 

423 boundaries with a high accuracy.

424 Our findings indicated that among the 15 different families of scaffolds, the M0 and M1 

425 phenotypes were the most frequently observed using SEM image visual analysis (Table 2). Overall 

426 good agreement between CellProfiler image analysis and SEM image visual analysis was found. 

427 A more advanced analysis model would probably be required to differentiate and quantify between 

428 different phenotypes.

429 Table 2. Predominant phenotypes observed visually using SEM image versus phenotypes resulting 

430 from CellProfiler image analysis for nanoscaffolds. 

Nanoscaffolds Main phenotypes 
observed by SEM

Main phenotypes 
identified by CellProfiler 

image analysis

Main phenotypes 
identified by CNN

aM0 - M0 M0
bM1 - M1 M1
cM2 - M1 and M2 NA
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PHB/KCG M1 M0 and M1 M0 and M1
PHBV/KCG M0 and M1 M0 and M1 M0 and M1
PDX/FUC M1 M0 and M1 M0 and M1
PDX/KCG M0 and M1 M0 and M1 M0 and M1

PDX/PHBV M0 and M1 M0 and M1 M0 and M1
PDX/PSuc M0 and M1 M0 and M1 M0 and M1
PLLA/PSuc M1 and M2 M0 and M1 M0 and M1

PDX/bagasse-CA M1 M0 and M1 M0 and M1
PLLA/bagasse-

cellulose M1 M0 and M1 M1

PLLA/ulvan-
cellulose M1 M0 and M1 M0 and M1

PLLA/bagasse-CA M1 M0 and M1 M0 and M1
PLLA/ulvan-CA M1 M0 and M1 M0 and M1
PDLLA/ulvan-

cellulose M1 M0 and M1 M0 and M1

PDLLA/ulvan-CA M0 and M1 M0 and M1 M0 and M1
PDX/ulvan-CA M1 M0 and M1 M1

431 a,b,c reported SEM images from literature were used to test the trained models.36,37

432 Thus processing SEM images and classification of macrophages can be performed with 

433 CellProfiler as an effective tool. However, to carry out statistically relevant image analysis by 

434 SEM, it is required to collect very large datasets. Processing such large image data is not possible 

435 in a time-efficient manner, thus the need to use DL models to address these limitations and 

436 facilitate the process.

437 3.4. Evaluation of CNN models for macrophage classification

438 Training a CNN model can be very complex and time-consuming, but the advantage of using pre-

439 trained CNN models for image classification speeds up the training time. In general, the pre-

440 training is performed with general images that come from outside the direct classification task 

441 domain. CNNs can learn appropriate features directly from the image data without the need for a 

442 predefined feature extraction process. Traditional methods would require cell features extracted 
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443 from the images beforehand, such as in CellProfiler, whereas CNNs use the raw image data as 

444 input, providing better performance and more flexibility compared to traditional methods. Our aim 

445 was to assess the potential of applying CNN approaches to classify images of individual cells into 

446 two main phenotypes, M0 and M1. For the CNN models to learn from SEM images of cell 

447 phenotypes, the cells must be present in the image at an appropriate size so that their characteristic 

448 morphologies can be detected as objects. In our case, SEM images with 20 μm magnification were 

449 selected.  An epoch is considered as a hyperparameter that defines the number of times that the 

450 learning algorithm will work through the entire training dataset. With 10 epochs, the VGG16 and 

451 ResNet50 models generated validation accuracies of 90.3% and 91.4% respectively, without any 

452 major changes to the models (Fig. 4, Table 2). This indicated the ability of the CNN models to 

453 classify phenotypes of macrophage cells on the scaffolds independently of any other physico-

454 chemical parameters.
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455 Fig. 4 Graph of the accuracy at each epoch for both training and validation datasets for (a) VGG16 

456 and (b) ResNet50.

457 3.5. Preliminary correlation of complex nanofibrous architecture with scaffold materials and 

458 physico-chemical properties using graph theory

459 The SEM images of the scaffolds used in this study showed a complex arrangement of the 

460 nanofibres giving rise to a biomimetic organisation of the scaffolds, replicating the ECM (Fig. 5a-

461 c). Can the geometrical patterns of such complex systems be correlated with scaffold materials and 
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462 predicted based on material compositions? This fundamental hypothesis was investigated using 

463 GT, known for its application to complex systems analysis.16,38 In this case, GT was applied to 

464 explore potential relationships between fibre network structures and the material composition of 

465 the PDX/KCG, PLLA/PSuc, and PHB/KCG families of nanofibre scaffolds. These polymer blends 

466 were selected based on the origin and chemical characteristics of the polymers. PDX is a semi-

467 crystalline synthetic polyester ether with a low glass transition temperature (Tg). KCG is a natural 

468 polysaccharide with negative sulphate groups and a helical structure. PSuc is a synthetic 

469 polysaccharide, PHB is a natural polyester with high crystallinity, and PLLA is a synthetic 

470 polyester with high crystallinity. All these materials, when blended, are used in various medical 

471 applications.

472 GT analysis of the polymer blend networks - PDX/KCG, PLLA/PSuc, and PHB/KCG - 

473 revealed distinct trends in the scaffold architecture. Scaffolds with higher node and edge densities 

474 corresponded to more interconnected fibre networks. Node connectivity measures how well-

475 connected each node is within the network, and clustering coefficient measures the local 

476 interconnectedness of the network. Pure polymers exhibited higher average degree (i.e., more 

477 connections per node) and node connectivity compared to the blends (Fig. 5d). Overall, as the 

478 proportion of the second component in the blend increased, a decrease in network connectivity 

479 was observed, with lower average degree and node connectivity. This suggested a more porous 

480 network and potentially increased immiscibility between the polymers in the blend, regardless of 

481 the specific polymer types.

482 There was no clear trend between crystallinity and structural density across the different 

483 material combinations. However, within the PLLA/PSuc family where a full spectrum of data for 

484 blend composition was available, a clear trend emerged: node density increased as blend 
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485 crystallinity decreased, with a reversal of this behaviour when the amorphous PSuc became the 

486 predominant component (Fig. 5d & SFig. 1). The variations in network topology should correlate 

487 with the mechanical properties of the scaffolds as denser networks are associated with smaller 

488 fibre and pore diameters, which influenced the mechanical performance. Indeed, the mechanical 

489 characterisation showed that the Young’s modulus for the 70/30 PDX/KCG was 38.2 ± 5.5 MPa, 

490 while for PHB/KCG it was 90.6 ± 10.9 MPa (STable 1). In terms of hydrophilicity, PSuc has 

491 higher water solubility than KCG at room temperature. It is assumed that the blend of PSuc 

492 (hydrophilic) with PLLA (hydrophobic) has more immiscible characteristics; thus making it more 

493 hydrophobic compared to the KCG blends with PHB (hydrophobic) or PDX (hydrophobic). The 

494 water contact angles for the 70/30 PDX/KCG, PHB/KCG, and PLLA/PSuc were 32.1 ± 0.0, 104 

495 ± 0.9, and 126.3 ± 4.7, respectively (STable 1).
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496 Fig. 5 SEM images of (a) PDX/KCG, (b) PLLA/PSuc, and (c) PHB/KCG networks converted into graphs for 100/0 to 70/30, 100/0 to 30/70, 

497 and 100/0 to 70/30, respectively. Red lines represent edges, along continuous fibre segments. Blue dots represent nodes, lying at the intersections 

498 between fibre segments. (d) Summary of selected GT parameters for PDX/KCG, PLLA/PSuc, and PHB/KCG blends.
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499 GT analysis of biomimetic organisation of nanofibrous networks 

500 A critical question in TE is whether electrospun biomaterial nanofibres can effectively replicate 

501 human ECM.  In order to quantify the structural similarity of natural ECM and the man-made 

502 scaffolds, one has to develop new toolbox that enables structural assessment of the materials 

503 without familiar crystalline organisation that incorporate a large degree of disorder.  GT analysis 

504 makes it possible because it enables identical approach to extraction of GT structural descriptors 

505 from microscopy images of complex arrangements of nanoscale fibres (Fig. 6).

506 The biomimetic structural characteristics of polymer nanofibre scaffolds were compared with 

507 those of the human small intestine39 following the methodology of comparative connectivity 

508 assessment (Fig. 7) described in our previous study.15  The overall trend indicated that the scaffolds 

509 exhibited network characteristics within the range of the natural ECM. For instance, PLLA/PSuc 

510 scaffolds demonstrated similar average node connectivity and clustering coefficients compared to 

511 the human ECM, reinforcing their biomimetic potential. PDX/KCG scaffolds exhibited higher 

512 edge and node densities, suggesting denser network structures, while PHB/KCG scaffolds showed 

513 lower edge densities but more balanced clustering, similar to the ECM. Our findings clearly 

514 showed that the complex structure of nanofibrous scaffolds have key parameters within the same 

515 range, further confirming their potential as biomimetic scaffolds for TE applications. These 

516 similarities highlight the promise of these nanofibrous networks in replicating essential features of 

517 the ECM, which could have important implications for cell behaviour and tissue regeneration.

Page 31 of 41 Journal of Materials Chemistry B



32

518 Fig. 6 (a) SEM image of human small intestine grafts network converted into graph and (b) 

519 summary of GT parameters. (Licensed under CC-BY).39
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520 Fig. 7. Spider plots comparing human small intestine grafts network with (a) PDX/KCG, (b) PLLA/PSuc, and (c) PHB/KCG 

521 nanofibre networks based on graph theory metrics. 

Page 33 of 41 Journal of Materials Chemistry B



34

522 GT analysis of the SEM and AFM images of the scaffolds

523 GT was applied to SEM and AFM images of PLLA/PSuc 70/30 nanofibre scaffold, and compared 

524 to SEM image of the human ECM to assess the similarity in structural organisation (Fig. 8). 

525 PLLA/PSuc 70/30 was used as it presented the best biomimetic structure of nanofibre 

526 arrangements. AFM provides three-dimensional surface topography at nanometre lateral and sub-

527 angstrom vertical resolution. Spider plots of GT parameters – including node connectivity, average 

528 degree distribution, and clustering coefficients - showed a strong overlap between the PLLA/PSuc 

529 70/30 scaffold and the human ECM (Fig. 8b-c).  

530 The similarity in GT metrics for SEM and AFM data suggested that the scaffold’s structural 

531 characteristics remain consistent across imaging techniques and within layers of nanofibre being 

532 independent of the image acquisition technique. This consistency also indicated that the scaffold 

533 maintained a uniform structural complexity in the different layers of nanofibres, which is 

534 particularly advantageous for TE applications, where ECM-like architecture is critical for 

535 promoting cell adhesion, migration, and differentiation. Performing GT analysis of both SEM and 

536 AFM images not only confirmed the scaffold’s ECM-like architecture but also validated the use 

537 of GT as an analytical method for material characterization.
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538 Fig. 8 (a) AFM image of PLLA/Psuc 70/30 network converted into graph and (b) summary of GT 

539 parameters. (c) Spider plot comparing the complex structure of the human small intestine grafts 

540 ECM with and those of PLLA/PSuc 70/30 SEM and AFM data based on GT metrics. 

541 4. CONCLUSIONS

542 The focus of this study was to develop computational models to predict inflammatory responses, 

543 i.e. TNF-α levels in macrophages, on nanostructured electrospun scaffold, based on physico-
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544 chemical properties of nanofibres and complex geometry of the scaffolds. Among seven ML 

545 algorithms tested, the RF model outperformed the rest. Ruffling index, pore diameter, and fibre 

546 diameter emerged as the most important parameters influencing the concentration of TNF-α. These 

547 preliminary findings provided insights into cellular behaviour in the context of the tissue repair 

548 process, contributing to the improvement of material performance with evidence-based data. The 

549 second part of this study successfully demonstrated that CellProfiler is an effective tool in 

550 processing SEM images to extract diverse features and measurements related to cell phenotypes. 

551 Results from DL modelling indicated that CNN models are adept at classifying macrophage cells 

552 from SEM image based on their phenotypes. GT showed that it is possible to predict the correlation 

553 between materials and complex nanofibre arrangement thus providing a method to move further 

554 ahead of the scaffold development pipeline for tissue engineering. This study paves the way 

555 towards ML-facilitated GT-quantified scaffold development, with the potential to extend from 

556 material choice to nanofibre arrangements to in vitro-material interactions and finally in vivo-

557 material interactions, thereby reducing the timeline and cost for translating scaffolds into clinical 

558 applications.
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