
Predicting Inflammatory Response of Biomimetic Nanofiber Scaffolds for Tissue Regeneration Using Machine Learning and Graph Theory

Journal:	<i>Journal of Materials Chemistry B</i>
Manuscript ID	TB-ART-11-2024-002494.R1
Article Type:	Paper
Date Submitted by the Author:	17-Jan-2025
Complete List of Authors:	Sujeeun, Lakshmi; University of Mauritius, Center for Biomedical and Biomaterials Research Chummun Phul, Itisha; University of Mauritius, Centre for Biomedical and Biomaterials Research; Centre for Biomedical and Biomaterials Research, University of Mauritius Goonoo, Nowsheen; University of Mauritius Kotov, Nicholas; University of Michigan, Chemical Engineering Bhaw-Luximon, Archana; University of Mauritius, Center for Biomedical and Biomaterials Research

SCHOLARONE™
Manuscripts

1 **Predicting Inflammatory Response of Biomimetic Nanofibre Scaffolds for Tissue**
2 **Regeneration Using Machine Learning and Graph Theory**

3 Lakshmi Yaneesha Sujeeun^{1,2}, Itisha Chummun Phul¹, Nowsheen Goonoo¹, Nicholas A. Kotov²,
4 Archana Bhaw-Luximon^{1*}

5 ¹*Biomaterials Drug Delivery and Nanotechnology Unit, Centre for Biomedical and Biomaterials*
6 *Research (CBBR), University of Mauritius, Réduit, Mauritius*

7 ²*Center for Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor,*
8 *Michigan 48109*

9 *Corresponding author: a.luximon@uom.ac.mu

10 **Abstract:** Tissue regeneration after a wound occurs through three main overlapping and
11 interrelated stages namely inflammatory, proliferative, and remodelling phases, respectively. The
12 inflammatory phase is key for successful tissue reconstruction and triggers the proliferative phase.
13 The macrophages in the non-healing wounds remain in the inflammatory loop, but their
14 phenotypes can be changed via interactions with nanofibre-based scaffolds mimicking the
15 organisation of native structural support of healthy tissues. However, the organisation of
16 extracellular matrix (ECM) is highly complex, combining order and disorder, which makes it
17 difficult to replicate. The possibility of predicting the desirable biomimetic geometry and
18 chemistry of these nanofibre scaffolds would streamline the scaffold design process. Fifteen
19 families of nanofibre scaffolds, electrospun from combinations of polyesters (polylactide,
20 polyhydroxybutyrate), polysaccharides (polysucrose, carrageenan, cellulose), and polyester ether
21 (polydioxanone) were investigated and analysed using machine learning (ML). The Random
22 Forest model had the best performance (92.8%) in predicting inflammatory responses of

23 macrophages on the nanoscaffolds using tumour necrosis factor-alpha as the output. CellProfiler
24 proved to be an effective tool to process scanning electron microscopy (SEM) images of the
25 macrophages on the scaffolds, successfully extracting various features and measurements related
26 to cell phenotypes M0, M1, and M2. Deep learning modelling indicated that convolutional neural
27 network models have the potential to be applied to SEM images to classify macrophage cells
28 according to their phenotypes. The complex organisation of the nanofibre scaffolds can be
29 analysed using graph theory (GT), revealing the underlying connectivity patterns of the nanofibres.
30 Analysis of GT descriptors showed that the electrospun membranes closely mimic the connectivity
31 patterns of the ECM. We conclude that ML-facilitated, GT-quantified engineering of cellular
32 scaffolds has the potential to predict cell interactions, streamlining the pipeline for tissue
33 engineering.

34 **Keywords:** nanofibre scaffolds, tissue engineering, machine learning, macrophages,
35 inflammation, graph theory

36 1. INTRODUCTION

37 Polymer-based nanostructured scaffolds have emerged as an effective strategy for tissue
38 regeneration, serving the dual role of structural supports and molecular platforms. These scaffolds
39 are engineered to closely replicate the tissue microenvironment, thus facilitating and enhancing
40 the wound healing process. Effective wound care scaffolds must support the three primary stages
41 of tissue regeneration and wound healing: inflammation, cell proliferation, and tissue remodelling.
42 These stages involve several interconnected phases that rely on the synergistic interactions
43 between cells and the extracellular matrix (ECM).¹ In acute wounds, the inflammatory phase
44 typically lasts from hours to days, whereas in chronic wounds, this phase can extend from weeks
45 to months. During the inflammatory phase, macrophages play a crucial role in clearing pathogens

46 and foreign materials. This phase is accompanied by the migration of neutrophils and monocytes
47 to the wound site, followed by cytokine production. Monocytes differentiate into macrophages,
48 which act as primary responders during inflammation. These macrophages phagocytize the
49 remaining neutrophils, secrete growth factors, and produce cytokines that promote tissue
50 regeneration and cell migration, allowing the wound to transition to the proliferative phase.²

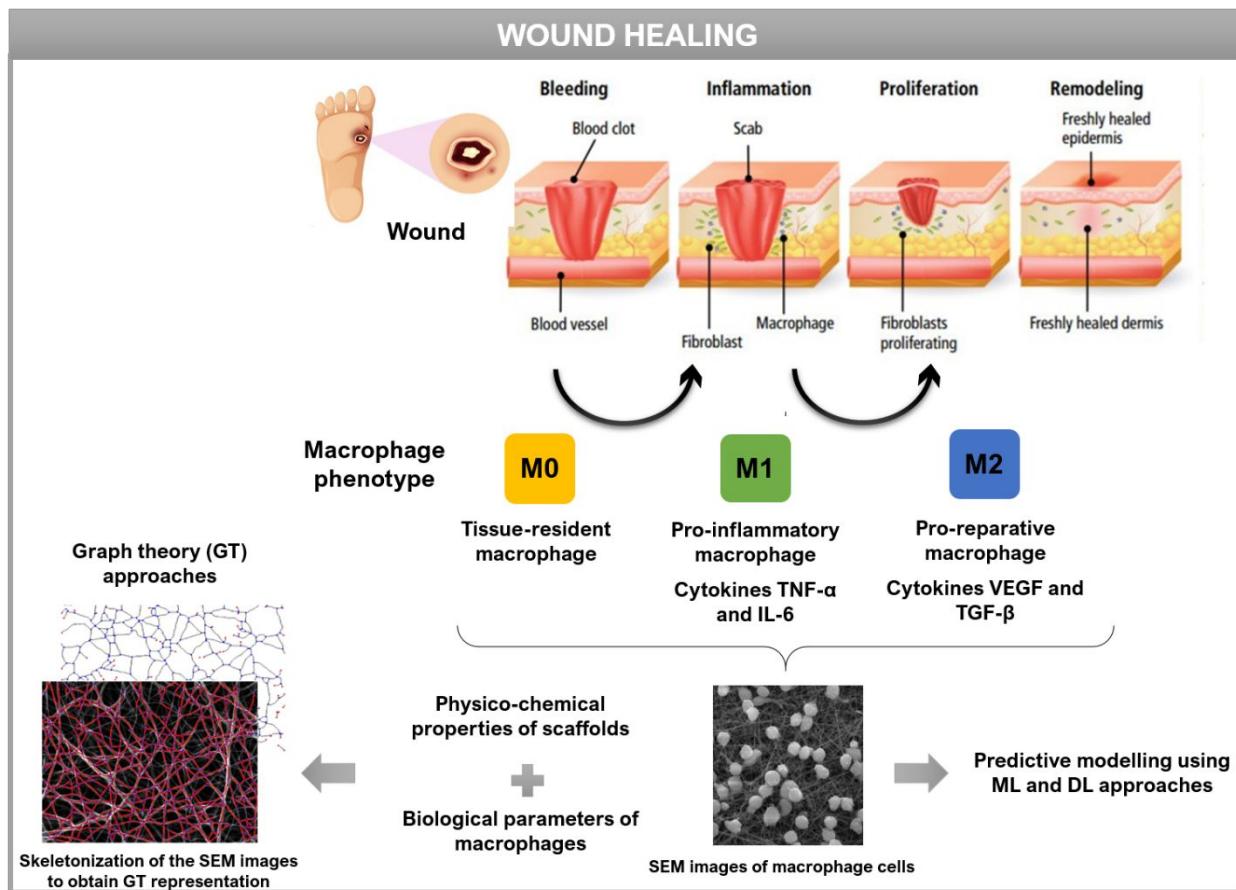
51 There are three primary macrophage phenotypes: M0, M1, and M2. The M0 phenotype
52 represents the tissue-resident inactivated state, while M1 is pro-inflammatory, phagocytic, and
53 bactericidal. M2 is anti-inflammatory (or pro-reparative), immunosuppressive, and involved in
54 scar resolution.^{3,4} For effective wound healing, it is crucial for the predominant macrophage
55 phenotype to transition from pro-inflammatory (M1) to pro-reparative (M2). A deeper
56 understanding and prediction of the specific roles of macrophage populations at different stages of
57 tissue repair will support the development of targeted therapies for both acute and chronic
58 wounds.³ The M1 phenotype produces cytokines such as tumour necrosis factor-alpha (TNF- α)
59 and interleukin-6 (IL-6), whereas the M2 phenotype promotes the production of cytokines like
60 vascular endothelial growth factor (VEGF) and transforming growth factor beta (TGF- β). During
61 the inflammatory phase, failure of macrophages to transition to a tissue-healing phenotype can
62 result in persistent inflammatory signals, creating a positive feedback loop that amplifies the M1
63 response and disrupts cytokine balance. Additionally, the M2 phenotype has been identified as a
64 key modulator in cancer progression due to its tumour-promoting capabilities, including
65 immunosuppression, angiogenesis, neovascularization, and stromal activation and remodelling.⁵

66 Successful scaffold tissue integration relies on a balance between activated (M1)
67 macrophages, which clear the wound site, and anti-inflammatory (M2) macrophages, which
68 promote tissue regeneration and wound healing.⁶ Therefore, scaffold materials and architecture,

69 designed to mimic *in vivo* structural support with organisation characteristic of the healthy tissues,
70 should favour the transition of macrophages to the M2 tissue-healing phenotype. However, the
71 organisation of native structural support, such as the ECM, is very complex. It is based on highly
72 interconnected network of nanofibres with large amount of disorder, which is difficult to describe
73 and replicate. A promising pathway to their replication that has emerged over the last few years,
74 is to learn and predict their organisation using machine learning (ML), which will enable the
75 selection of appropriate scaffold materials and reduce the trial-and-error process in
76 electrospinning, minimising the need for recurrent *in vitro* studies. ML methodology can also be
77 combined with new approaches to the description of complex nanoscale matter, which can
78 complement ML tools, making them more efficient and transparent.^{7,8}

79 Classifying macrophages based on their functional phenotype is crucial for predicting their
80 behaviour as either pro- or anti-inflammatory agents in the immune response. Macrophages are
81 typically classified into M0, M1, or M2 subsets by quantifying various cell surface markers,
82 transcription factors, and cytokine profiling. These methods are time-consuming and resource-
83 intensive. Concurrently, different forms of ML have found expansive applications in biology,
84 ranging from ribonucleic acid (RNA) profiling studies that identify over 50 phenotypes⁹ to the
85 basic classification of two distinct cell types within a population.¹⁰ ML and, especially, deep
86 learning (DL) algorithms are particularly well-suited for analysing data related to scaffolds and
87 cellular interactions due to their efficiency in decoding the complexity of cell responses to
88 hierarchical organisation of nanofibres in the matrix.^{11,12} Initial studies have highlighted the
89 potential of ML in predicting cell-material interactions on scaffolds during the proliferative phase
90 of wound healing¹³, as well as in classifying the miscibility of polymer blends based on their
91 physico-chemical attributes.¹⁴

92 In the current study, the focus is on applying ML methods to model the inflammatory
93 responses of macrophage cells cultured on nanofibre scaffolds with various polymer
94 functionalities, thereby optimising and predicting materials performance (Scheme 1). The study is
95 divided into two main parts. The first part aims to predict the concentration of the pro-
96 inflammatory cytokine TNF- α produced by macrophages (target outcome), using the physico-
97 chemical properties of nanofibre scaffolds (pore diameter, fibre diameter, water contact angle, and
98 Young's modulus) and the biological responses of macrophages (ruffling index and macrophage
99 phenotype) as input data. An ML-based predictive model was developed using seven supervised
100 learning regression algorithms. Eighty percent of the dataset was used for training, while 20% was
101 used for testing. The efficacy of each algorithm was assessed using performance metrics to
102 determine the most accurate model. The second part of this study attempted to classify
103 macrophages according to their phenotype using scanning electron microscopy (SEM) images of
104 macrophages on nanofibres. Two common techniques for image processing and classification were
105 adopted. The first involved the use of CellProfiler to extract cell features from SEM images, which
106 were then fed to classification algorithms in CellProfiler Analyst. The second technique used DL
107 convolutional neural network (CNN) pre-trained models, which were fine-tuned for our specific
108 cell-image classification task. The last section of this study highlights the emerging capabilities of
109 graph theory (GT) for the description of complex biological materials, capturing intricate structural
110 patterns found in native nanofibre-based tissues.^{15,16} A preliminary mapping of the scaffold
111 architecture was conducted to explore correlations between nanofibre arrangement and mechanical
112 properties.



113 **Scheme 1.** Hypothesis - predicting polarisation of macrophages to a healing phenotype through
 114 cell-material interactions, and exploring graph theory for structural insights into scaffold
 115 complexity-materials correlations.

116 2. MATERIALS AND METHODS

117 2.1. Polymeric blends

118 The present study involved 15 distinct families of 53 nanofibre scaffolds:
 119 polyhydroxybutyrate/kappa-carrageenan (PHB/KCG), poly(hydroxybutyrate-co-valerate)
 120 (PHBV)/KCG, polydioxanone/fucoidan (PDX/FUC), PDX/KCG, PDX/PHBV, PDX/ polysucrose
 121 (PSuc), poly-L-lactide (PLLA)/PSuc, PDX/bagasse-cellulose, PLLA/bagasse-cellulose,
 122 PLLA/ulvan-cellulose, PLLA/bagasse-cellulose acetate (bagasse-CA), PLLA/ulvan-cellulose

123 acetate (ulvan-CA), poly(D,L-lactic acid) (PDLLA)/ulvan-cellulose, PDLLA/ulvan-CA, and
124 PDX/ulvan-CA. Each family of scaffolds included a minimum of four polymer blend
125 compositions, with results presented in triplicate. The compositions of polymer content varied as
126 follows: 100% polymer A and 0% polymer B; 0% polymer A and 100% polymer B; 90% polymer
127 A and 10% polymer B; 80% polymer A and 20% polymer B; 70% polymer A and 30% polymer
128 B; 60% polymer A and 40% polymer B; and an even blend of 50% polymer A and 50% polymer
129 B.

130 PHB (Sigma-Aldrich), KCG (Sigma-Aldrich), PHBV (12 mol% HV content, Sigma-
131 Aldrich), PDX (ResomerX 206 S, inherent viscosity (IV) 2.0 g dl⁻¹, Evonik), FUC (Fucoidan from
132 *Fucus vesiculosus* ≥95%, Sigma-Aldrich), PSuc, PLLA (PURASORB PL 18, (IV) 1.8 g dl⁻¹,
133 Purac), and PDLLA (PURASORB PDL 20, (IV) 2.0 g dl⁻¹, Netherlands) were used as purchased.
134 Bagasse-cellulose was extracted from locally available sugarcane bagasse using a combination of
135 mercerisation and bleaching techniques¹⁷, yielding an average of 40% (±2). Bagasse-CA was
136 synthesised from sugarcane bagasse-derived cellulose using an optimised acetylation method¹⁸,
137 with an average yield of 62% (±2).¹⁹ Ulvan-cellulose was extracted from locally available green
138 seaweeds of the *Ulva* family, producing an average yield of 5.23% (±0.2) using a modified
139 method.²⁰ Ulvan-cellulose was then converted to ulvan-CA using an optimised method,¹⁸
140 achieving an average yield of 78.5% (±0.8).²¹

141 **2.2. Nanofibre scaffold fabrication**

142 Scaffolds were engineered using the electrospinning method (bottom-up NE300 laboratory scale
143 electrospinner, Inovenso Company, Turkey). The electrospinning conditions were adjusted based
144 on the polymers within they blend and on the blend composition to generate matrices of bead-free
145 fibres with complex structures and high interconnectedness. PHB/KCG and PHBV/KCG fibres

146 were produced as reported by Goonoo *et al.*²² Electrospinning parameters for PSuc-based and
147 bagasse-cellulose-based fibres were reported by Chummun *et al.*²³ and Ramphul *et al.*¹⁹,
148 respectively. The fabrication of PDX/KCG and PDX/FUC was detailed by Goonoo *et al.*²⁴ The
149 fabrication of scaffolds from ulvan-cellulose and ulvan-CA in combination with either PDX,
150 PLLA, or PDLLA was described by Madub *et al.*²¹ Most blend solutions were prepared by mixing
151 two solutions (solution A and solution B) with the exception of PDX/PHBV, PDX/PSuc, and
152 PLLA/PSuc.^{23,25}

153 **2.3. Scaffold characterisation**

154 **2.3.1. Mechanical properties**

155 Tensile measurements for the electrospun mats were conducted at 25 °C using a Universal Instron
156 Tester 3344 (Instron, USA). Rectangular samples of the mats, sized 4 cm x 1 cm, were clamped
157 with a gauge length of 1 cm and a width of 10 mm, respectively, and strained at a rate of 10
158 mm/min using a 100 N load cell until fracture. Six measurements were taken for each sample.
159 Tensile stress at break and Young's modulus were then calculated by Bluehill testing software.

160 **2.3.2. Wettability properties**

161 The static water contact angles for each electrospun mat were determined through a Krüss drop
162 shape analyser DSA 25 (Advanced Lab GmbH, Germany), with Milli-Q water as probe liquid.
163 The mats were taped onto glass slides and gripped on the sample holder. Static contact angle
164 readings, based on the sessile drop method, were obtained immediately after deposition of a 2 µl
165 water droplet on a minimum of three different positions for each sample. The results were then
166 presented as the arithmetic mean ± standard deviation (SD) of these measurements.

167 **2.4. Biological compatibility assessment**

168

2.4.1. *In vitro* inflammation studies

169 *In vitro* inflammation studies were carried out with the RAW 264.7 mouse macrophage cell line
170 (ECACC certified) from Sigma-Aldrich. All cell culture reagents were sterile, filtered, suitable for
171 cell culture, and obtained from Sigma-Aldrich. The culture medium of RAW 264.7 macrophages
172 consisted of RPMI 1640 supplemented with 10% FBS and 1% penicillin/streptomycin, 0.5 µg ml⁻¹
173 amphotericin B, 1 mM sodium pyruvate, and 2 mM L-glutamine. Cells were seeded on the
174 scaffolds in a 96-well plate at a density of 2.5×10^4 cells per well. After three days of culture, an
175 ELISA kit (Sigma-Aldrich) was used to measure the level of TNF- α in the cell culture supernatant
176 according to the manufacturer's instructions. Cell-seeded scaffolds were then fixed for SEM
177 analysis by immersion in a 3% (v/v) glutaraldehyde solution for 30 minutes followed by
178 dehydration with 30%, 50%, 70%, 90%, and 100% ethanol solutions and washings with a 1/1 v/v
179 mixture of 100% ethanol/ hexamethyldisilazane (HMDS), and finally with pure HMDS.

180

2.4.2. Scanning electron microscopy (SEM) image acquisition and analysis

181 The surface morphology of the nanofibres and cell morphology for each sample were examined
182 with a Tescan Vega 3 LMU electron microscope with an accelerating voltage of 30 kV. Prior to
183 SEM imaging, the samples were sputter-coated with a gold-palladium mix for 120 seconds, using
184 a Quorum SC7620 sputter coater. Nanofibre diameters were quantified using the SEM's Atlas
185 software, and results were reported as arithmetic mean \pm SD, based on 50 measurements. The
186 DiameterJ plugin of the ImageJ software was then employed to assess the pore diameters for each
187 mat, with results also reported as arithmetic mean \pm SD (n = 50). The extent of F-actin-rich
188 membrane protrusions (ruffling index) was scored on a scale of 0-3, where 0 = no protrusion, 1 =
189 protrusions in one area of the cell, 2 = protrusions in two distinct areas of the cell, and 3 =

190 protrusions in more than two distinct areas of the cell. The ruffling index was calculated as the
191 average of protrusion scores of at least 50 cells, as described by Goonoo *et al.*²⁶

192 **2.4.3. Atomic Force Microscopy (AFM)**

193 Acoustic (tapping) mode atomic force microscopy (AFM) imaging was performed on as-prepared
194 PLLA/PSuc 70/30 nanofibre sample on a WITec alpha300 R confocal Raman microscope
195 (WITec, GmbH, Germany) as a preliminary trial to analyse surface topography. AFM images
196 were recorded using a force modulation silicon cantilever with resonance frequencies in the range
197 of 65–85 kHz, a spring constant of $k = 2.8$ N/m, and resolution of 512 lines per image. Data were
198 processed off-line with the WITec Project software (version 6.2).

199 **2.5. Computational studies**

200 **2.5.1. Data exploration, feature selection, and predictive modelling**

201 ML regression techniques were initially applied to a dataset comprising of 159 samples, which
202 included six key physico-chemical scaffold parameters: pore diameter, fibre diameter, water
203 contact angle, Young's modulus, and macrophage characteristics (ruffling index and phenotype).
204 The target variable for the ML models was the concentration of the pro-inflammatory cytokine
205 TNF- α (pg/ml) produced by the macrophages. The dataset used for developing the ML models has
206 been previously published (STable 1).¹³ The preparation of the dataset involved collecting,
207 cleaning, and formatting the raw data to ensure it was suitable for ML analysis. The "macrophage
208 phenotype" variable, which consisted of categorical data (M0, M1, M2), was transformed into
209 numerical format to meet the requirements of the ML algorithms. Numerical values were assigned
210 to each phenotype category (0 for M0, 1 for M1, and 2 for M2). Additionally, the input features
211 were normalised using the MinMaxScaler algorithm to standardise the data for optimal ML model

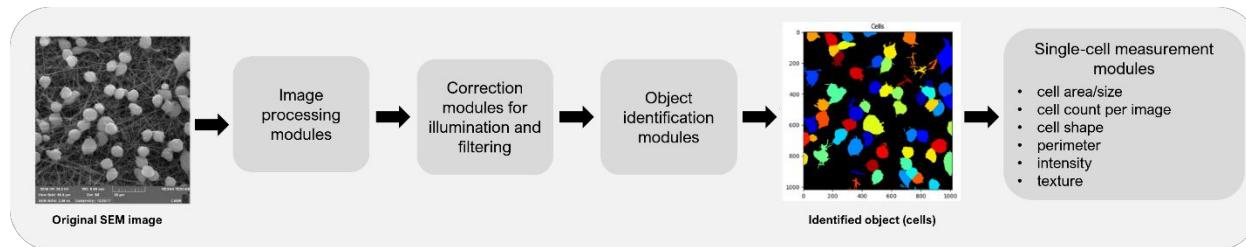
212 performance. A high-correlation filter using the Pearson correlation matrix was applied to assess
213 correlations between the independent variables, as reported by Sujeeun *et al.*¹³ Seven regression
214 algorithms – namely linear regression (LinR), support vector regression (SVR), random forest
215 (RF) regression, Lasso regression, Ridge regression, decision tree (DT) regression and k-nearest
216 neighbours (k-NN) regression – were trained on the training dataset and tested on the test dataset.
217 The predictive performance of the models was compared to identify the one yielding the best
218 results. Hyperparameter tuning was performed for each model to optimise training phase and
219 improve accuracy. All code was implemented in Python 3.8.3 using the Seaborn and Scikit-learn
220 libraries. Regression metrics, including the accuracies on the training and testing sets, as well as
221 mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE),
222 root mean squared error (RMSE); and R-squared (R²) were computed to evaluate each model's
223 performance.

224 **2.5.2. SEM-based macrophage image analysis using CellProfiler**

225 CellProfiler (version 4.2.1)²⁷ is an open-source software for image analysis, implemented in
226 Python. It contains already-developed methods for a diverse range of cell types and assays to
227 process cell images. The aim of this part of the study was to assess whether CellProfiler could be
228 used to process macrophage SEM images to extract more features related to the cells, such as
229 number of cells in an image and single-cell measurements (e.g., dimension, morphology, intensity,
230 and texture).

231 For each new cell type or assay, the software employs a pipeline composed of discrete
232 modules, with each module uniquely processing the image according to a defined procedure. The
233 pipeline consists of the following steps in sequential order: (i) image processing, (ii) object
234 identification, and (iii) object measurements. Most of the modules are automated but CellProfiler

235 also supports interactive modules. For example, a user can select or outline manually an area of
236 interest in each image. To start an analysis, each macrophage SEM image was loaded into
237 CellProfiler and processed by each module in order (Fig. 1).



238 **Fig. 1** Image processing with a CellProfiler pipeline.

239 **2.6. Deep learning (DL) models for macrophage cell classification**

240 Transfer Learning (TL) is a common approach for applying pre-trained DL models to small image
241 datasets. Pre-trained models are networks that have already been trained on a large set of image
242 data, typically on a large-scale image classification task. CNNs are a specific type of artificial
243 neural networks (ANNs) inspired by the visual cortex of a human brain, where each individual
244 neuron detects only signals from a small sub-region of the visual field, called a receptive field.
245 Each ‘neuron’ in CNN performs a convolution of a kernel with an input image and produces a
246 filtered output image often called feature map. The input image can consist of several channels,
247 and each layer in the neural network holds as many channels of feature maps as we have neurons
248 in this particular layer. The feature maps in the last layer can be interpreted as the final features
249 learned by the network and are used for classification. The critical difference from traditional
250 feature-based classification methods is that for CNN, no features, including the weights of the
251 kernels, are predefined, but the algorithm learns them by itself.²⁸

252 We attempted to implement two pre-trained models: VGG-16²⁹ and ResNet50³⁰, both
253 available in the Keras Applications library. Both models are among the commonly used CNN

254 models pre-trained on ImageNet for TL³¹ and have been reported to perform exceptionally well.³²
255 VGG16 has 13 convolutional layers and three fully connected layers, for a total of 16 layers,
256 whereas ResNet50 has a deeper network structure with a total of 50 layers. The aim was to apply
257 transfer learning approaches to use these pre-trained models and train them on our custom
258 macrophage images. Two macrophage phenotypes M1 and M0 were selected for modelling
259 purposes as the majority of the dataset were images with either M1 or M0 phenotype, or a mixture
260 of both M1 and M0. Since the purpose of this part was to only explore these models, a small dataset
261 was manually prepared and customized: 200 macrophage images with M0 phenotype and 200
262 macrophage images with M1 phenotype. After the data preparation step, two pre-trained models
263 VGG16 and ResNet50 were applied on the dataset. ImageNet dataset contains RGB (Red Green
264 Blue) colour images (three channels) and SEM images are grayscale images (single channel).
265 Thus, for this preliminary study, one approach was to convert the grayscale images to RGB images,
266 i.e. to make the images “appear” to be RGB by repeating the image array three time on a new
267 dimension in *numpy*. Data augmentation was used to generate additional images in the training set
268 by rotating, mirroring and flipping the images using the ImageDataGenerator class in Keras. For
269 VGG16, the training and validation sets were configured in batches of 20. As this study is a binary
270 classification problem, the basic model was loaded, with changes made only to the final layer and
271 all the other layers were set as “non-trainable” (i.e. frozen). The last fully-connected layer was
272 created using basic settings, and the final model was built and fitted based on the training and
273 validation sets created above, with 10 epochs. Similarly, for ResNet50, the base model was
274 imported with the layers frozen and last layer modifiable. The model was built, compiled and fitted
275 with 10 epochs.

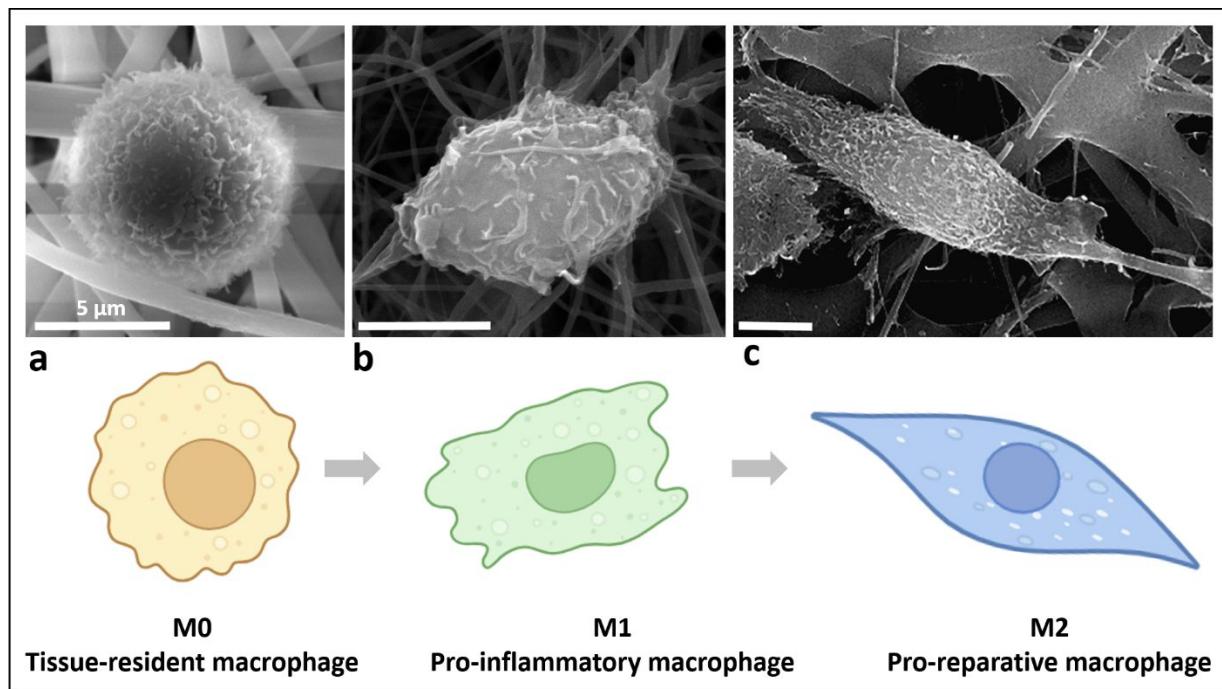
276 **2.7. Graph theory (GT) analysis of nanofibre networks**

277 A preliminary analysis was conducted to explore the relationship between the complex
278 organisation of three families of nanofibre scaffolds – PDX/KCG, PLLA/PSuc, and PHB/KCG –
279 and the structural characteristics captured by GT descriptors. The goal was to establish an
280 understanding of how variations in materials might influence the complex organisation of
281 biomimetic scaffolds potentially affecting their biological performance. StructuralGT, a Python
282 program for automated structural analysis was used to perform GT analysis on the SEM images.
283 Details of the calculation of each GT parameter is described in the StructuralGT publication and
284 on its Github page: <https://github.com/drewvecchio/StructuralGT>.¹⁶ Three SEM images were
285 analysed for each polymer blend to provide exploratory insights. The SEM images were not
286 enhanced or modified using additional image processing software. In the resulting graphs,
287 dangling edges were removed to achieve a more accurate measure of connectivity.

288 **3. RESULTS AND DISCUSSION**

289 **3.1. Macrophage inflammatory responses**

290 This study aimed to establish a relationship between the physico-chemical properties of nanofibre
291 scaffolds and biological responses of macrophages, specifically the ruffling index and macrophage
292 polarisation phenotype (Scheme 2). A wound that fails to transition effectively from the pro-
293 inflammatory to the anti-inflammatory phase is at risk of becoming chronic. Therefore,
294 understanding macrophage behaviour in response to scaffold material is essential for tissue
295 engineering (TE), as it guides the selection of suitable scaffold materials that promote desirable
296 healing outcomes.



297 **Scheme 2.** (a) M0, (b) M1, and (c) M2 phenotypes (SEM images from CBBR) and their
298 representations (designed with BioRender.com).

299 Fifteen families of nanofibre scaffolds were constructed using various blends of polymers
300 (Table 1 & STable 1). The physico-chemical parameters namely pore diameter, fibre diameter,
301 water contact angle, and Young's modulus were determined for 53 scaffolds. Macrophages (RAW
302 264.7) were seeded on the scaffolds (Table 1). TNF- α levels were measured after three days to
303 gauge the extent of inflammation induced by macrophages in response to the scaffolds, while SEM
304 imaging provided a detailed assessment of macrophage phenotypes and ruffling index. In
305 PDX/PHBV mats, a decreased in the concentration of TNF- α was observed with PHBV content
306 above 20 wt%. The addition of KCG to PHBV led to an increase in TNF- α levels, whereas in the
307 PHB/KCG blends, the addition of KCG slightly decreased TNF- α production. PDX/PHBV mats
308 caused lower inflammatory reactions in RAW 264.7 cells than the PHB/KCG and PHBV/KCG
309 mats. The addition of PHBV to PDX also promoted macrophage polarisation to the pro-healing
310 phenotype when PHBV formed the shell of the fibres.²⁵

311 In the presence of PSuc, a large number of round-shaped cells – M0 phenotype – dispersed
312 among elongated spindle-like shaped macrophages (M2-like phenotype) visible on PLLA-PSuc
313 mats. As for PDX 100, the cells formed flattened colonies compared to PDX-PSuc 70-30, onto
314 which round-shaped cells were widely dispersed. Spindle-like macrophages on PLLA-PSuc mats
315 are associated to M2 phenotype, indicative of induced *in vitro* biocompatibility of PLLA-PSuc
316 blends. For PDX-PSuc electrospun mats, significant increase in TNF- α concentration was
317 observed in the presence of PSuc.³³ For bagasse-cellulose mats, as the amount of cellulose in the
318 mats increased, the amount of adherent cells decreased, thus indicating its positive effect on
319 reducing inflammatory response. The density of macrophages on the surface of PLLA 100% was
320 also more prominent than on the blends. Bagasse-cellulose 100% mats displayed the lowest density
321 of macrophage cells, thus indicating its positive effect towards inhibition of inflammation response
322 due to its highly hydrophilic nature.³⁴

323 On all the ulvan-cellulose and PDX-based scaffolds, large population of round-shaped
324 macrophages exhibiting higher spreading and surface membrane activities were observed. While
325 macrophages on 100% CA, ulvan-CA/PLLA, and PDLLA scaffolds displayed rather smooth
326 surfaces, the presence of significant cell surface protrusions, i.e. surface ruffles, were noted on all
327 ulvan-cellulose and PDX-based nanofibrous mats. Addition of PDX to CA and ulvan-cellulose to
328 PLLA and PDLLA greatly enhanced the cells' ability to undergo F actin-enriched membrane
329 protrusions on their surfaces. Ulvan-cellulose and PDX-based scaffolds triggered higher release of
330 TNF- α compared to the ulvan-CA/PLLA and PDLLA nanofibrous mats. Overall, these findings
331 indicated that macrophage activity and thus, level of TNF- α are directly influenced by the surface
332 chemistry of the biomaterial. Surface properties, hydrophilicity, and functional groups influence
333 cell mechano-sensing and determine cell-material interactions.

334

Table 1. Levels of TNF- α measured after three days, ruffling index, and main phenotypes

335

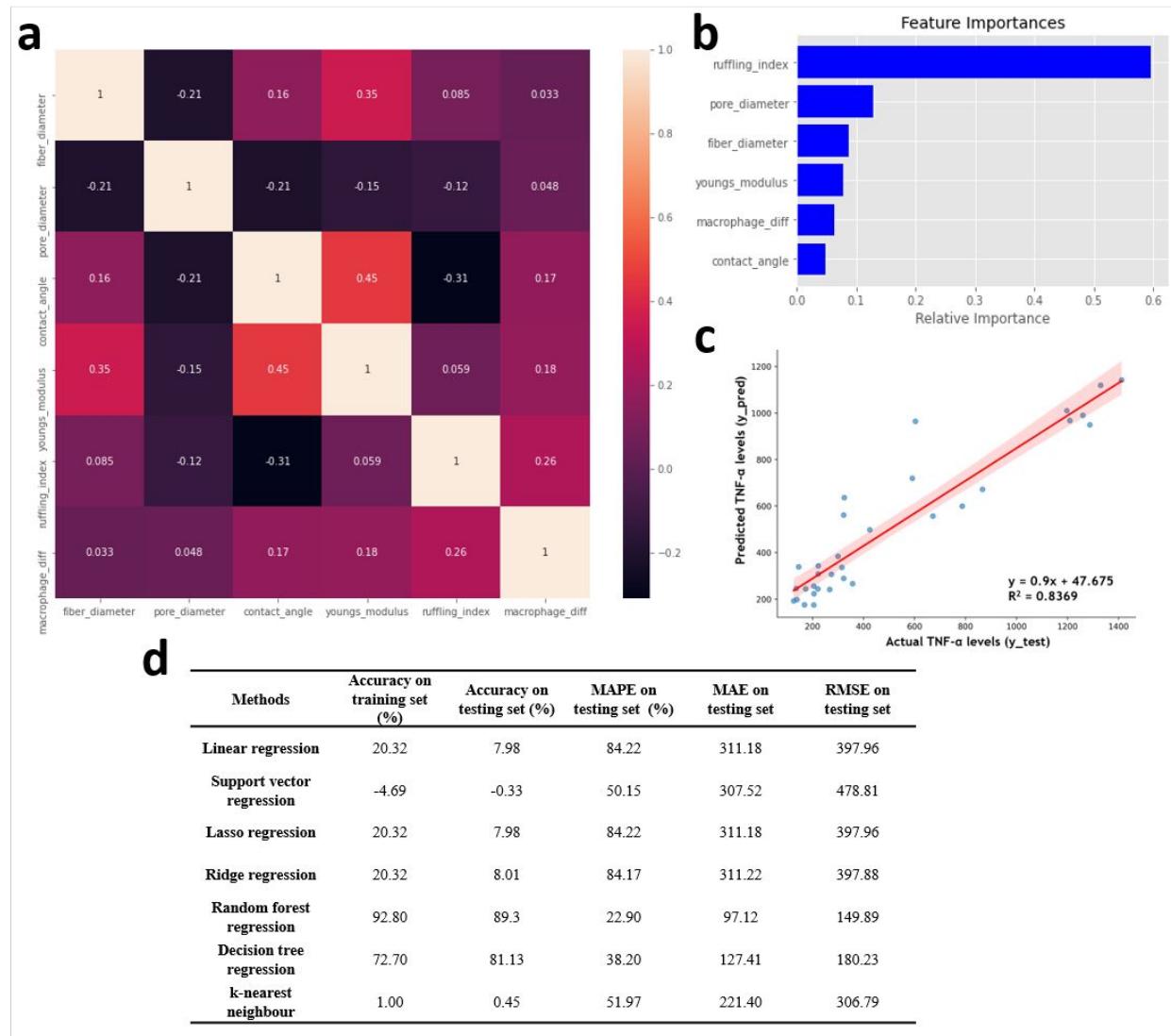
observed of macrophages for 15 families of scaffolds.

Scaffolds	Concentration of TNF- α / (pg/ml)	Ruffling index	Main phenotypes observed
Polyhydroxybutyrate (PHB)/kappa-carrageenan (KCG)			
100/0	803.9 \pm 56.4	2.8 \pm 0.1	M1
90/10	1123.7 \pm 36.9	1.9 \pm 0.3	M1
80/20	947.0 \pm 141.7	2.1 \pm 0.2	M1
70/30	631.2 \pm 151.2	2.6 \pm 0.2	M1
Poly(hydroxybutyrate-<i>co</i>-valerate (PHBV)/KCG			
100/0	784.6 \pm 58.8	2.6 \pm 0.1	M1
90/10	1345.5 \pm 63.6	0.2 \pm 0.1	M1
80/20	1293.0 \pm 67.8	0.2 \pm 0.1	M1
70/30	865.6 \pm 35.3	0.2 \pm 0.1	M0
Polydioxanone (PDX)/fucoidan (FUC)			
100/0	261.1 \pm 57.9	2.9 \pm 0.1	M1
90/10	854.5 \pm 47.9	1.7 \pm 0.1	M1
80/20	644.8 \pm 67.5	0.9 \pm 0.1	M1
70/30	1079.6 \pm 2.1	1.2 \pm 0.2	M1
PDX/KCG			
100/0	537.0 \pm 125.2	2.5 \pm 0.1	M1
90/10	376.7 \pm 76.6	3.0 \pm 0.0	M1
80/20	258.9 \pm 49.9	1.2 \pm 0.5	M0
70/30	504.5 \pm 62.1	0.3 \pm 0.2	M0
PDX/PHBV			
100/0	196.5 \pm 16.7	1.6 \pm 0.3	M1
90/10	722.3 \pm 37.3	1.6 \pm 0.7	M1
80/20	1210.5 \pm 61.8	0.2 \pm 0.1	M1
70/30	675.2 \pm 63.8	2.4 \pm 0.2	M0
PDX/polysucrose (PSuc)			
100/0	219.4 \pm 49.7	2.9 \pm 0.1	M0
90/10	296.1 \pm 90.0	3.0 \pm 0.1	M1
80/20	230.1 \pm 88.1	2.8 \pm 0.1	M1
70/30	202.6 \pm 41.6	2.9 \pm 0.0	M1
60/40	151.2 \pm 11.8	3.0 \pm 0.0	M1
50/50	226.9 \pm 57.9	2.9 \pm 0.0	M1
Poly-L-lactide(PLLA)/ PSuc			
100/0	163.7 \pm 29.9	2.0 \pm 0.0	M2
90/10	149.0 \pm 24.8	2.8 \pm 0.0	M2
80/20	168.7 \pm 36.3	2.4 \pm 0.1	M1
70/30	173.1 \pm 15.9	2.4 \pm 0.3	M1
60/40	245.6 \pm 55.6	2.4 \pm 0.7	M1
50/50	240.3 \pm 61.0	1.3 \pm 0.1	M1

PLLA/cellulose acetate (CA)			
0/100	180.9 ± 26.9	0.4 ± 0.0	M1
100/0	163.7 ± 29.9	2.0 ± 0.0	M1
30/70	140.7 ± 12.8	1.0 ± 0.0	M1
50/50	170.7 ± 3.3	1.8 ± 0.0	M1
PLLA/cellulose			
0/100	280.3 ± 7.0	2.8 ± 0.0	M1
30/70	330.7 ± 27.2	2.9 ± 0.0	M1
50/50	338.0 ± 102.0	2.9 ± 0.0	M1
PDX/CA			
100/0	239.4 ± 61.9	2.6 ± 0.0	M1
30/70	300.0 ± 28.1	2.3 ± 0.0	M1
50/50	298.9 ± 15.8	2.8 ± 0.0	M1
Poly(D,L-lactic acid) PDLLA/CA			
70/30	197.4 ± 9.9	1.0 ± 0.0	M1
50/50	270.7 ± 30.2	1.0 ± 0.0	M0
PDLLA/cellulose			
0/100	280.3 ± 7.0	2.8 ± 0.0	M1
30/70	350.9 ± 104.7	3.0 ± 0.0	M1
50/50	346.8 ± 61.9	2.9 ± 0.0	M1

336 3.2. ML Models to correlate physico-chemical properties with biological response

337 Data from the physico-chemical characterization of scaffolds and the biological parameters of
 338 macrophages were selected to develop a ML model to correlate *in vitro* inflammatory responses
 339 data with the properties of scaffolds. Data was collected, rearranged and pre-processed for
 340 exploratory analysis and feature selection. A high correlation filter calculated the correlation
 341 between scaled, independent numerical variables. The Pearson correlation matrix shown in Fig. 2a
 342 displayed correlation coefficients between -0.21 to 0.45, indicating no strong correlation among
 343 variables.



344 **Fig. 2** (a) Pearson correlation matrix performed on six physico-chemical and biological features
 345 characterising the scaffolds – fibre diameter, pore diameter water contact angle, Young's modulus,
 346 ruffling index, and macrophage phenotype. (b) Feature importance graph ranking the six physico-
 347 chemical and biological features based on their relative importance. (c) Model performance after
 348 performing hyperparameter tuning. (d) Actual versus predicted plot representing the actual targets
 349 from the test dataset (y_{test}) against the predicted data by the RF regression model (y_{pred}).

350 Feature selection using the RF regressor identified the most predictive features based on their
351 importance scores (Fig. 2b). Ruffling index ranked as the top feature (0.59), followed by pore
352 diameter (0.13) and fibre diameter (0.09). Less influential features included Young's modulus
353 (0.08), macrophage phenotype (0.06), and water contact angle (0.04). These findings were
354 consistent with our previous results, where ML methods were applied to predict fibroblasts
355 proliferation on nanofibre mats, with fibre diameter and pore size being the most influential
356 properties.¹³ Since cellular responses are cell-specific and cannot be generalised, it was essential
357 to re-investigate the scaffold properties influencing macrophage polarisation in this study. Ruffles
358 are temporarily erected in response to stimuli and during cell migration and macrophages ruffling
359 is enhanced in cells activated by pathogens.³⁵ The key predictors identified in this study can help
360 minimise trial and error in the development of nanofibre scaffolds. Parameters such as fibre
361 diameter and pore size in electrospun scaffolds can be determined and utilised to predict the level
362 of TNF- α expressed by macrophages. As a result, electrospinning parameters can be adjusted to
363 fabricate scaffolds with optimised physico-chemical properties that elicit a lower immune
364 response, thereby reducing the need of repeated *in vitro* experiments.

365 Seven supervised learning regression algorithms were trained with 80% of the data, and
366 the remaining 20% was used for testing. After hyperparameter tuning, model performance of each
367 model was evaluated using regression metrics (accuracy scores on the training and testing sets,
368 MAPE, MAE, RMSE) (Fig. 2c & STable 2). The RF regression model achieved an accuracy of
369 92.8% on the training set and 89.3% on the testing, coupled with a MAPE score of 22.9%, an MAE
370 of 97.12, and an RMSE of 149.89, demonstrating strong predictive performance and robustness.
371 This highlighted the RF regression model's accuracy and suitability for capturing the complexities
372 of both physico-chemical and biological data, as well as our predictive targets. In our previous

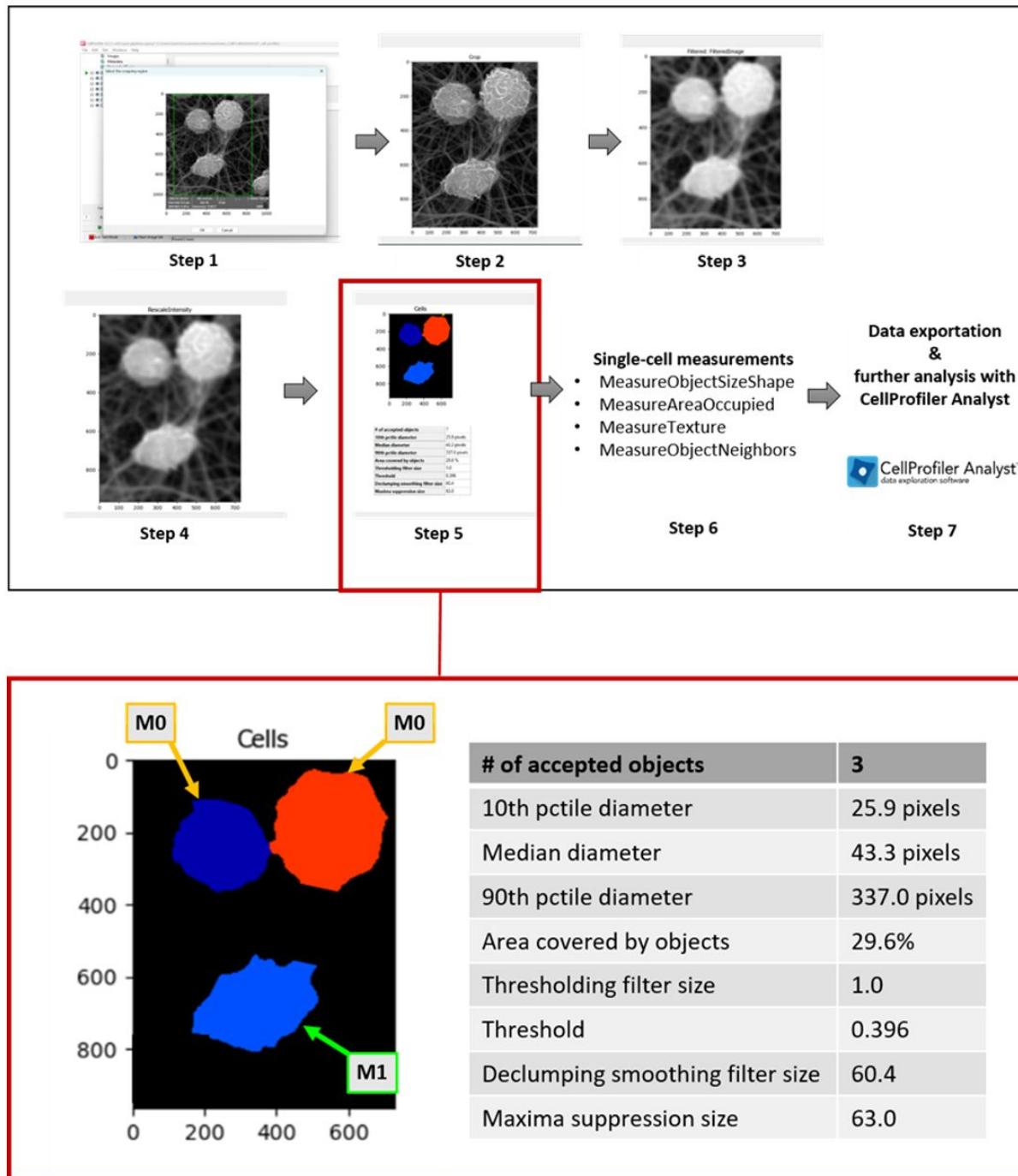
373 studies, the RF regressor and classifier consistently outperformed other algorithms.^{13,14} This
374 suggested that RF models are particularly adept at managing non-linear relationships between
375 variables, which is crucial in this study, where the correlation between TNF- α levels and various
376 predictors was not robust. Actual data from the testing set was compared against predicted data
377 from the testing set of the RF model through a regression plot. The analysis indicated a statistically
378 significant fit (p-value < 4.27 x 10-5) that could potentially be improved with more representative
379 samples in the testing set and additional data points closer to the regression line. The high
380 proportion of the variance explained by the model ($R^2 = 0.89$) suggested that the RF regression
381 model closely fitted the actual dataset (Fig. 2d).

382 **3.3. Identification of macrophage phenotypes from SEM images using CellProfiler**

383 The pipeline for human HT29 cells available in CellProfiler was selected for preliminary
384 macrophage SEM image analysis. This pipeline integrates modules to identify cells and measure
385 cellular parameters such as morphology, count, intensity, and texture. The first step of image
386 processing in CellProfiler included cropping the input image to select the area of interest (Fig. 3,
387 steps 1-2), followed by applying illumination correction and filtering methods, as raw images
388 degrade intensity measurements (Fig. 3, steps 3-4). This degradation may generate inaccurate cell
389 identification/segmentation and adversely affect all types of measurements, from intensity to area
390 and shape measurements. Object identification/segmentation is the most challenging step in image
391 analysis, and its accuracy determines the reliability of the resulting cell measurements (Fig. 3, step
392 5). Similar to most biological images, SEM images of macrophages included cells in close
393 proximity, often touching each other. In CellProfiler, clumped cells were detected as single objects,
394 which were then separated by identifying dividing lines between them. Some resulting objects
395 were subsequently merged together or discarded from the analysis. After primary object detection

396 of the cells, CellProfiler computed feature measurements for each identified cell. These included
397 standard features such as area or intensity, and also complex measurements like Zernike shape
398 features, Haralick and Gabor texture features (Fig. 3, step 6). The data were exported in a tab-
399 delimited spreadsheet format for further analysis (Fig. 3, step 7) (STable 3).

400 Image-based profiling is a powerful quantitative method to measure cellular and sub-
401 cellular features. Single-cell measurements are features that enrich biological dataset and increase
402 robustness of statistical modelling. In this study, objects representing cells were detected by
403 manually adjusting parameters of different modules for each image (Fig. 3). A full dataset of 41
404 SEM images (view field 10 – 20 μm) were analysed. Each cell was then assessed for a broad range
405 of descriptors such as area, orientation, extent, shape, intensity, etc. A total of 225 measurements
406 were acquired for each cell, and a dataset representing the full experiment/analysis was established
407 for further phenotype classification analysis (STable 3).



408 **Fig. 3** Image processing steps with CellProfiler to extract features related to macrophage
409 phenotypes.

410 Detection of cellular features in images from automated software tools still requires
411 optimisation due to the variability between cell phenotypes of different cell lines. The advantage

412 of using CellProfiler remains its adaptability: a user can customise an image analysis pipeline from
413 existing available pipelines or create a new one, tune segmentation parameters to perform well and
414 detect cell phenotypes. The major hindrance would be analysing large datasets containing
415 numerous phenotypes within a single image, which can complicate accurate segmentation and
416 classification. For instance, it is extremely time-consuming to verify all the segmentation
417 parameters while processing each image to ensure that it reliably segments images of all M0 and
418 M1 phenotypes present in the dataset. CellProfiler enables batch processing of images once a
419 pipeline has been established. However, due to particular cell morphology in our study, this option
420 has not been considered. To be able to correct some automated object identification errors, manual
421 object editing modules were used to select the objects and modify them accordingly. The main
422 challenge in cell segmentation is to devise reliable features that will be able to identify cell
423 boundaries with a high accuracy.

424 Our findings indicated that among the 15 different families of scaffolds, the M0 and M1
425 phenotypes were the most frequently observed using SEM image visual analysis (Table 2). Overall
426 good agreement between CellProfiler image analysis and SEM image visual analysis was found.
427 A more advanced analysis model would probably be required to differentiate and quantify between
428 different phenotypes.

429 **Table 2.** Predominant phenotypes observed visually using SEM image versus phenotypes resulting
430 from CellProfiler image analysis for nanoscaffolds.

Nanoscaffolds	Main phenotypes observed by SEM	Main phenotypes identified by CellProfiler image analysis	Main phenotypes identified by CNN
^a M0	-	M0	M0
^b M1	-	M1	M1
^c M2	-	M1 and M2	NA

PHB/KCG	M1	M0 and M1	M0 and M1
PHBV/KCG	M0 and M1	M0 and M1	M0 and M1
PDX/FUC	M1	M0 and M1	M0 and M1
PDX/KCG	M0 and M1	M0 and M1	M0 and M1
PDX/PHBV	M0 and M1	M0 and M1	M0 and M1
PDX/PSuc	M0 and M1	M0 and M1	M0 and M1
PLLA/PSuc	M1 and M2	M0 and M1	M0 and M1
PDX/bagasse-CA	M1	M0 and M1	M0 and M1
PLLA/bagasse-cellulose	M1	M0 and M1	M1
PLLA/ulvan-cellulose	M1	M0 and M1	M0 and M1
PLLA/bagasse-CA	M1	M0 and M1	M0 and M1
PLLA/ulvan-CA	M1	M0 and M1	M0 and M1
PDLLA/ulvan-cellulose	M1	M0 and M1	M0 and M1
PDLLA/ulvan-CA	M0 and M1	M0 and M1	M0 and M1
PDX/ulvan-CA	M1	M0 and M1	M1

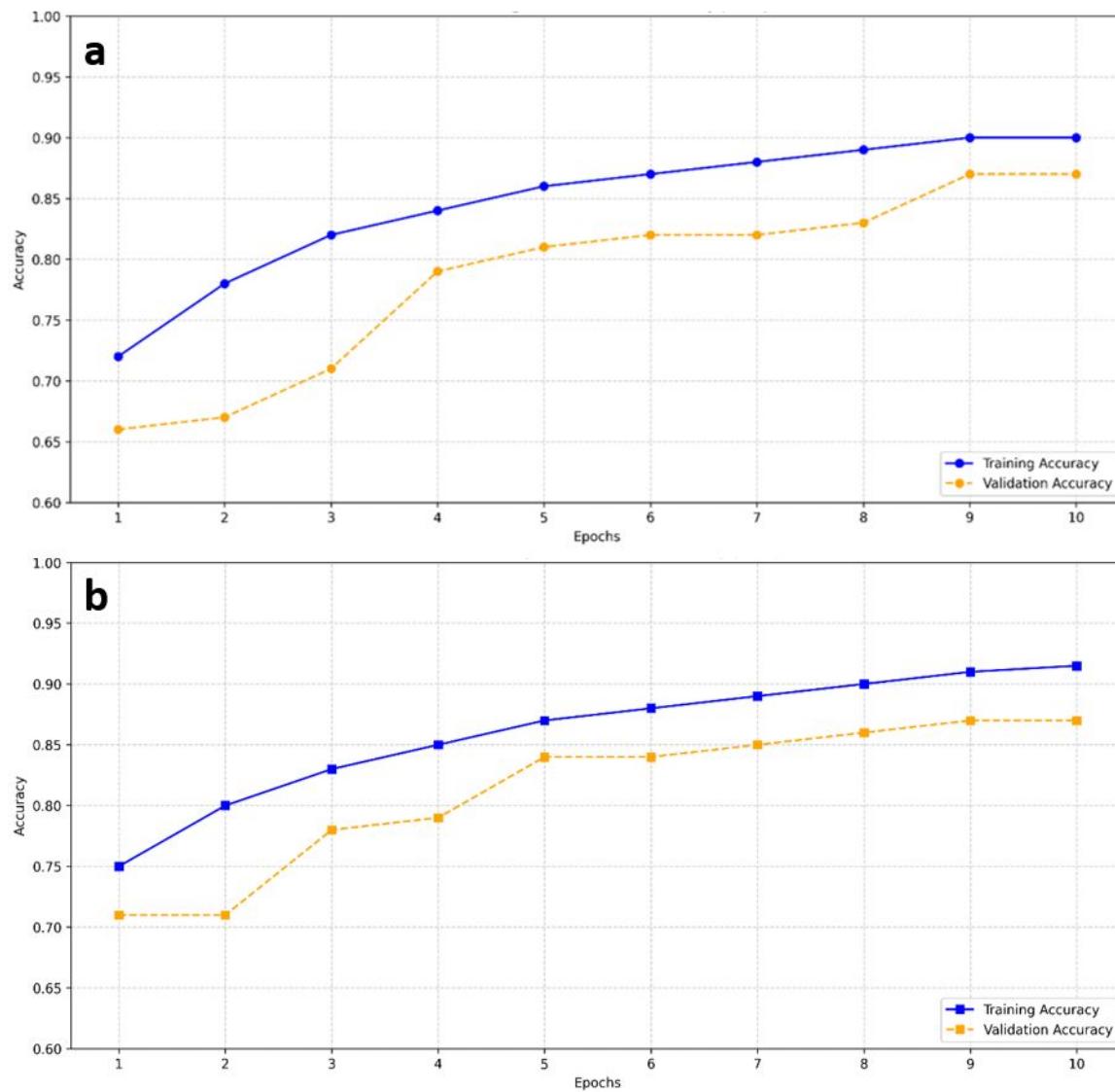
431 ^{a,b,c} reported SEM images from literature were used to test the trained models.^{36,37}

432 Thus processing SEM images and classification of macrophages can be performed with
 433 CellProfiler as an effective tool. However, to carry out statistically relevant image analysis by
 434 SEM, it is required to collect very large datasets. Processing such large image data is not possible
 435 in a time-efficient manner, thus the need to use DL models to address these limitations and
 436 facilitate the process.

437 **3.4. Evaluation of CNN models for macrophage classification**

438 Training a CNN model can be very complex and time-consuming, but the advantage of using pre-
 439 trained CNN models for image classification speeds up the training time. In general, the pre-
 440 training is performed with general images that come from outside the direct classification task
 441 domain. CNNs can learn appropriate features directly from the image data without the need for a
 442 predefined feature extraction process. Traditional methods would require cell features extracted

443 from the images beforehand, such as in CellProfiler, whereas CNNs use the raw image data as
444 input, providing better performance and more flexibility compared to traditional methods. Our aim
445 was to assess the potential of applying CNN approaches to classify images of individual cells into
446 two main phenotypes, M0 and M1. For the CNN models to learn from SEM images of cell
447 phenotypes, the cells must be present in the image at an appropriate size so that their characteristic
448 morphologies can be detected as objects. In our case, SEM images with 20 μm magnification were
449 selected. An epoch is considered as a hyperparameter that defines the number of times that the
450 learning algorithm will work through the entire training dataset. With 10 epochs, the VGG16 and
451 ResNet50 models generated validation accuracies of 90.3% and 91.4% respectively, without any
452 major changes to the models (Fig. 4, Table 2). This indicated the ability of the CNN models to
453 classify phenotypes of macrophage cells on the scaffolds independently of any other physico-
454 chemical parameters.



455 **Fig. 4** Graph of the accuracy at each epoch for both training and validation datasets for (a) VGG16
456 and (b) ResNet50.

457 **3.5. Preliminary correlation of complex nanofibrous architecture with scaffold materials and**
458 **physico-chemical properties using graph theory**

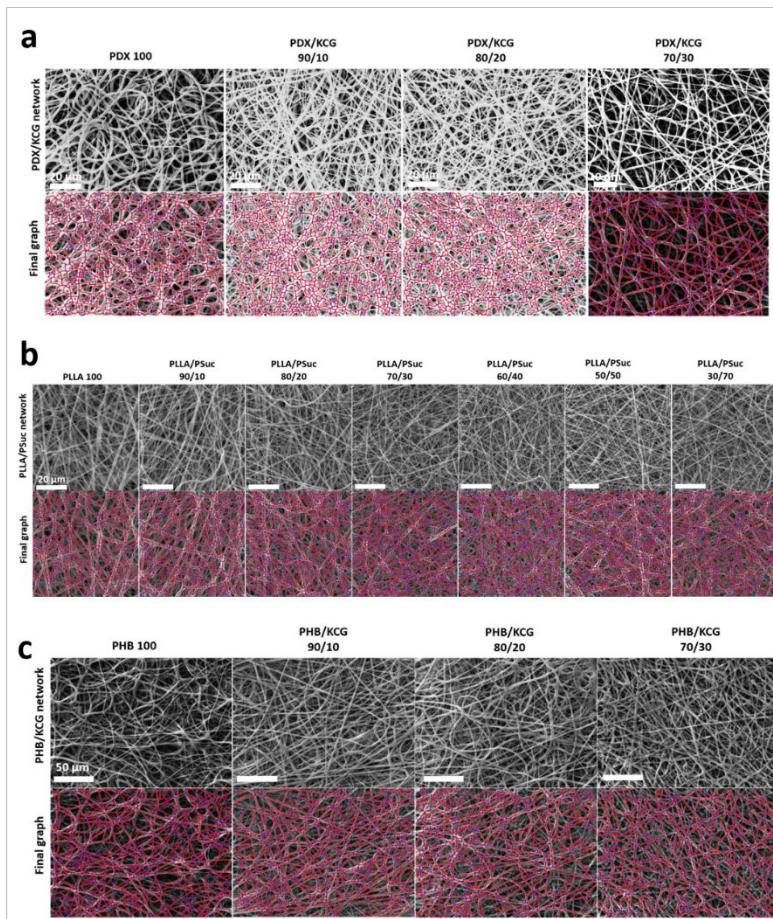
459 The SEM images of the scaffolds used in this study showed a complex arrangement of the
460 nanofibres giving rise to a biomimetic organisation of the scaffolds, replicating the ECM (Fig. 5a-
461 c). Can the geometrical patterns of such complex systems be correlated with scaffold materials and

462 predicted based on material compositions? This fundamental hypothesis was investigated using
463 GT, known for its application to complex systems analysis.^{16,38} In this case, GT was applied to
464 explore potential relationships between fibre network structures and the material composition of
465 the PDX/KCG, PLLA/PSuc, and PHB/KCG families of nanofibre scaffolds. These polymer blends
466 were selected based on the origin and chemical characteristics of the polymers. PDX is a semi-
467 crystalline synthetic polyester ether with a low glass transition temperature (T_g). KCG is a natural
468 polysaccharide with negative sulphate groups and a helical structure. PSuc is a synthetic
469 polysaccharide, PHB is a natural polyester with high crystallinity, and PLLA is a synthetic
470 polyester with high crystallinity. All these materials, when blended, are used in various medical
471 applications.

472 GT analysis of the polymer blend networks - PDX/KCG, PLLA/PSuc, and PHB/KCG -
473 revealed distinct trends in the scaffold architecture. Scaffolds with higher node and edge densities
474 corresponded to more interconnected fibre networks. Node connectivity measures how well-
475 connected each node is within the network, and clustering coefficient measures the local
476 interconnectedness of the network. Pure polymers exhibited higher average degree (i.e., more
477 connections per node) and node connectivity compared to the blends (Fig. 5d). Overall, as the
478 proportion of the second component in the blend increased, a decrease in network connectivity
479 was observed, with lower average degree and node connectivity. This suggested a more porous
480 network and potentially increased immiscibility between the polymers in the blend, regardless of
481 the specific polymer types.

482 There was no clear trend between crystallinity and structural density across the different
483 material combinations. However, within the PLLA/PSuc family where a full spectrum of data for
484 blend composition was available, a clear trend emerged: node density increased as blend

485 crystallinity decreased, with a reversal of this behaviour when the amorphous PSuc became the
486 predominant component (Fig. 5d & SFig. 1). The variations in network topology should correlate
487 with the mechanical properties of the scaffolds as denser networks are associated with smaller
488 fibre and pore diameters, which influenced the mechanical performance. Indeed, the mechanical
489 characterisation showed that the Young's modulus for the 70/30 PDX/KCG was 38.2 ± 5.5 MPa,
490 while for PHB/KCG it was 90.6 ± 10.9 MPa (STable 1). In terms of hydrophilicity, PSuc has
491 higher water solubility than KCG at room temperature. It is assumed that the blend of PSuc
492 (hydrophilic) with PLLA (hydrophobic) has more immiscible characteristics; thus making it more
493 hydrophobic compared to the KCG blends with PHB (hydrophobic) or PDX (hydrophobic). The
494 water contact angles for the 70/30 PDX/KCG, PHB/KCG, and PLLA/PSuc were 32.1 ± 0.0 , 104
495 ± 0.9 , and 126.3 ± 4.7 , respectively (STable 1).



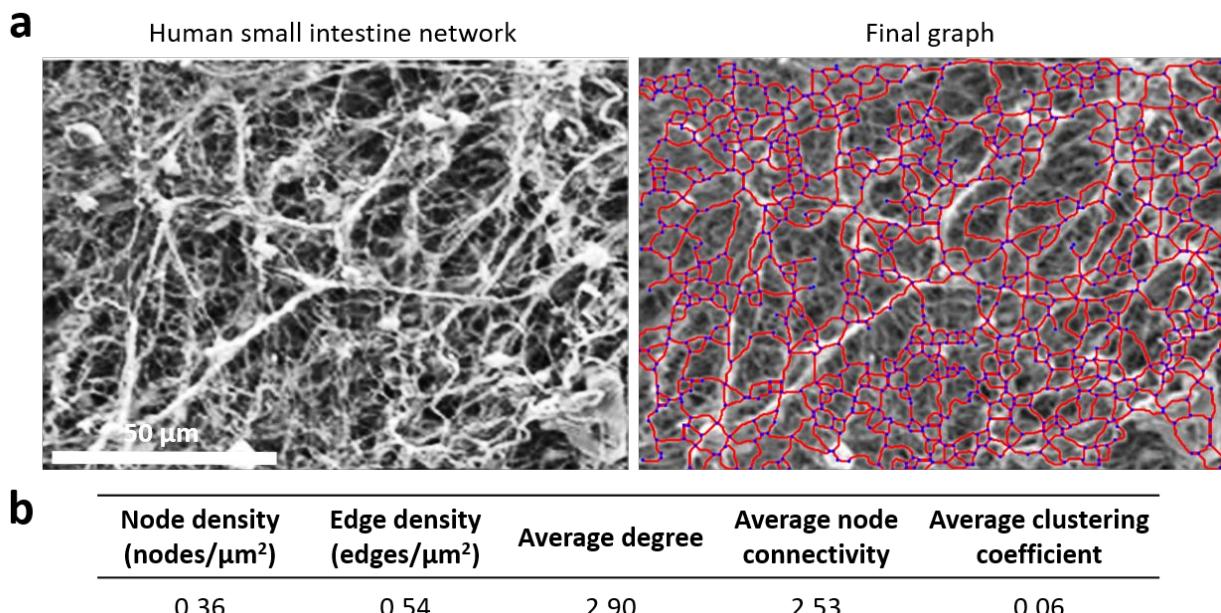
Scaffolds	Composition	Crystallinity of blend (%)	Node density (nodes/ μm^2)	Edge density (edges/ μm^2)	Average degree	Average node connectivity	Average clustering coefficient
PDX	100	47.2	1.66 ± 0.02	2.54 ± 0.03	3.07 ± 0.07	2.87 ± 0.01	0.06 ± 0.01
	90/10	41.7	1.60 ± 0.01	2.34 ± 0.01	2.93 ± 0.09	2.53 ± 0.01	0.07 ± 0.01
PDX/KCG	80/20	53.8	1.56 ± 0.04	2.31 ± 0.02	2.96 ± 0.04	2.64 ± 0.02	0.07 ± 0.01
	70/30	46.1	3.17 ± 1.65	4.80 ± 0.04	3.03 ± 0.01	2.68 ± 0.04	0.08 ± 0.01
PLLA	100	48.06	0.69 ± 0.02	1.02 ± 0.02	2.93 ± 0.01	2.66 ± 0.02	0.06 ± 0.01
	90/10	43.46	0.94 ± 0.05	1.38 ± 0.03	2.94 ± 0.01	2.66 ± 0.01	0.06 ± 0.01
	80/20	32.87	1.04 ± 0.02	1.53 ± 0.03	2.93 ± 0.01	2.57 ± 0.05	0.06 ± 0.01
	70/30	35.10	1.12 ± 0.02	1.63 ± 0.02	2.90 ± 0.02	2.48 ± 0.02	0.06 ± 0.01
PLLA/PSuc	60/40	26.97	1.19 ± 0.03	1.73 ± 0.04	2.88 ± 0.02	2.45 ± 0.01	0.07 ± 0.01
	50/50	25.97	1.23 ± 0.01	1.78 ± 0.02	2.69 ± 0.01	2.04 ± 0.01	0.05 ± 0.01
	30/70	16.9	1.05 ± 0.02	1.52 ± 0.05	2.89 ± 0.01	2.51 ± 0.02	0.06 ± 0.01
	100	55.8	0.10 ± 0.02	0.15 ± 0.03	2.97 ± 0.01	2.59 ± 0.04	0.06 ± 0.01
PHB	90/10	50.3	0.09 ± 0.01	0.13 ± 0.02	2.96 ± 0.03	2.57 ± 0.01	0.06 ± 0.02
	80/20	47.1	0.09 ± 0.02	0.13 ± 0.01	2.94 ± 0.07	2.55 ± 0.03	0.06 ± 0.01
PHB/KCG	70/30	45.0	0.08 ± 0.01	0.12 ± 0.02	2.79 ± 0.03	2.36 ± 0.01	0.07 ± 0.02

496 **Fig. 5** SEM images of (a) PDX/KCG, (b) PLLA/PSuc, and (c) PHB/KCG networks converted into graphs for 100/0 to 70/30, 100/0 to 30/70,
497 and 100/0 to 70/30, respectively. Red lines represent edges, along continuous fibre segments. Blue dots represent nodes, lying at the intersections
498 between fibre segments. (d) Summary of selected GT parameters for PDX/KCG, PLLA/PSuc, and PHB/KCG blends.

499 *GT analysis of biomimetic organisation of nanofibrous networks*

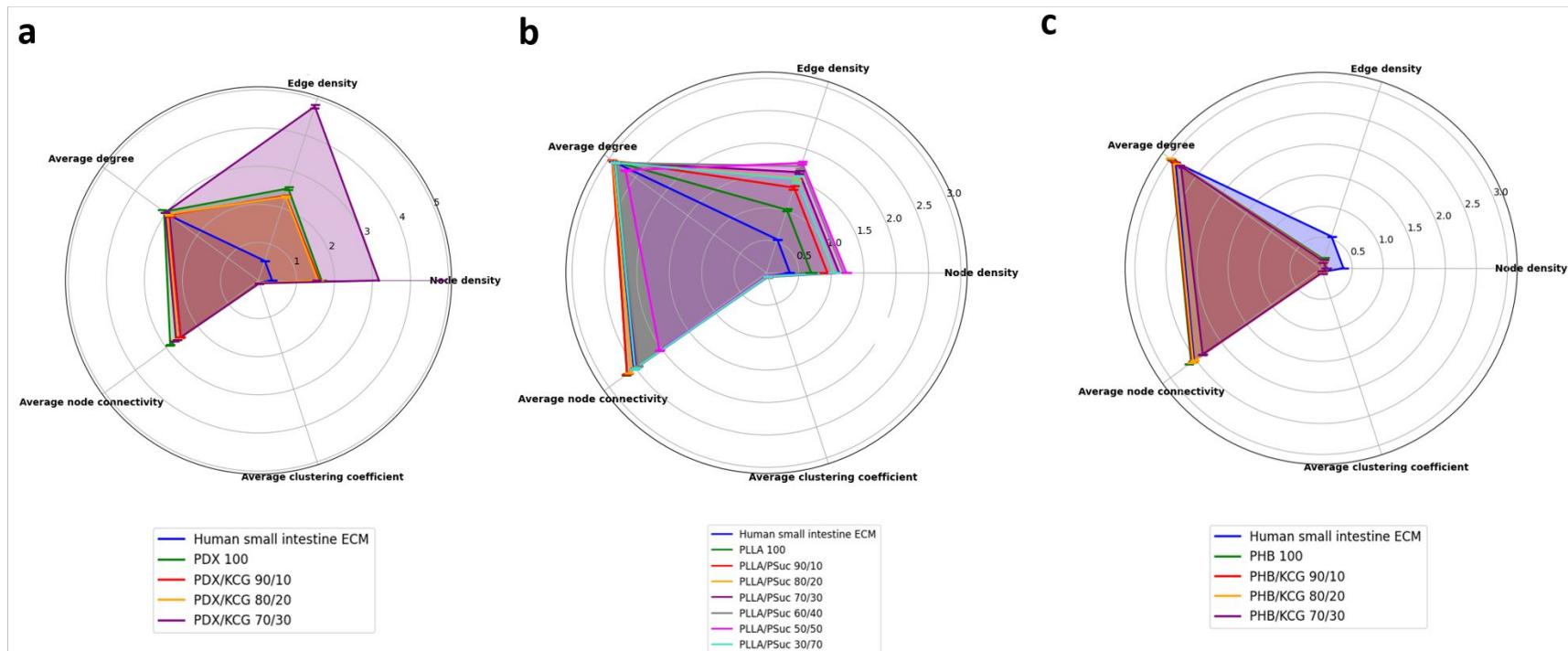
500 A critical question in TE is whether electrospun biomaterial nanofibres can effectively replicate
501 human ECM. In order to quantify the structural similarity of natural ECM and the man-made
502 scaffolds, one has to develop new toolbox that enables structural assessment of the materials
503 without familiar crystalline organisation that incorporate a large degree of disorder. GT analysis
504 makes it possible because it enables identical approach to extraction of GT structural descriptors
505 from microscopy images of complex arrangements of nanoscale fibres (Fig. 6).

506 The biomimetic structural characteristics of polymer nanofibre scaffolds were compared with
507 those of the human small intestine³⁹ following the methodology of comparative connectivity
508 assessment (Fig. 7) described in our previous study.¹⁵ The overall trend indicated that the scaffolds
509 exhibited network characteristics within the range of the natural ECM. For instance, PLLA/PSuc
510 scaffolds demonstrated similar average node connectivity and clustering coefficients compared to
511 the human ECM, reinforcing their biomimetic potential. PDX/KCG scaffolds exhibited higher
512 edge and node densities, suggesting denser network structures, while PHB/KCG scaffolds showed
513 lower edge densities but more balanced clustering, similar to the ECM. Our findings clearly
514 showed that the complex structure of nanofibrous scaffolds have key parameters within the same
515 range, further confirming their potential as biomimetic scaffolds for TE applications. These
516 similarities highlight the promise of these nanofibrous networks in replicating essential features of
517 the ECM, which could have important implications for cell behaviour and tissue regeneration.



518 **Fig. 6** (a) SEM image of human small intestine grafts network converted into graph and (b)

519 summary of GT parameters. (Licensed under CC-BY).³⁹



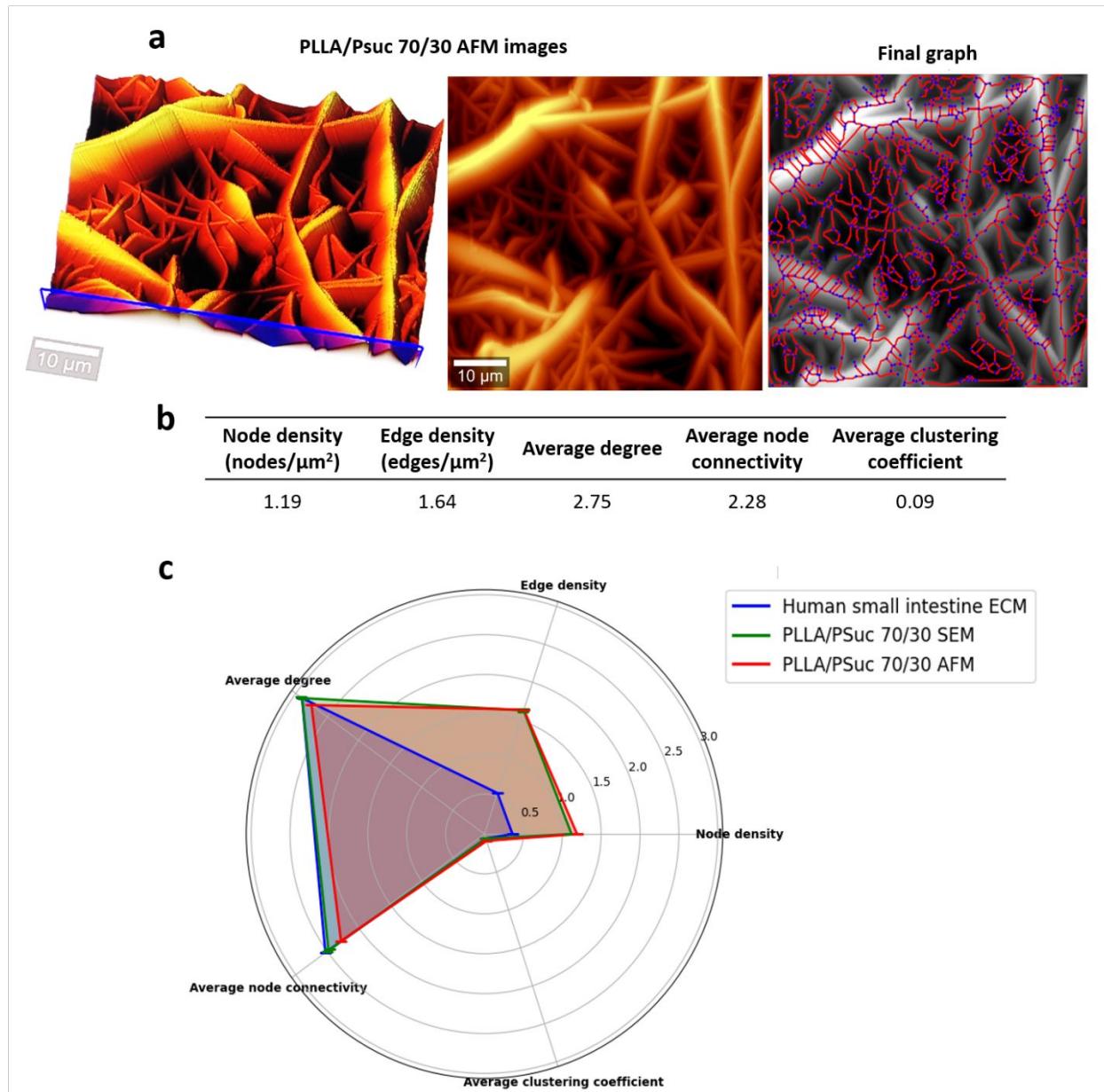
520 **Fig. 7.** Spider plots comparing human small intestine grafts network with (a) PDX/KCG, (b) PLLA/PSuc, and (c) PHB/KCG

521 nanofibre networks based on graph theory metrics.

522 ***GT analysis of the SEM and AFM images of the scaffolds***

523 GT was applied to SEM and AFM images of PLLA/PSuc 70/30 nanofibre scaffold, and compared
524 to SEM image of the human ECM to assess the similarity in structural organisation (Fig. 8).
525 PLLA/PSuc 70/30 was used as it presented the best biomimetic structure of nanofibre
526 arrangements. AFM provides three-dimensional surface topography at nanometre lateral and sub-
527 angstrom vertical resolution. Spider plots of GT parameters – including node connectivity, average
528 degree distribution, and clustering coefficients - showed a strong overlap between the PLLA/PSuc
529 70/30 scaffold and the human ECM (Fig. 8b-c).

530 The similarity in GT metrics for SEM and AFM data suggested that the scaffold's structural
531 characteristics remain consistent across imaging techniques and within layers of nanofibre being
532 independent of the image acquisition technique. This consistency also indicated that the scaffold
533 maintained a uniform structural complexity in the different layers of nanofibres, which is
534 particularly advantageous for TE applications, where ECM-like architecture is critical for
535 promoting cell adhesion, migration, and differentiation. Performing GT analysis of both SEM and
536 AFM images not only confirmed the scaffold's ECM-like architecture but also validated the use
537 of GT as an analytical method for material characterization.



538 **Fig. 8** (a) AFM image of PLLA/PSuc 70/30 network converted into graph and (b) summary of GT
 539 parameters. (c) Spider plot comparing the complex structure of the human small intestine grafts
 540 ECM with and those of PLLA/PSuc 70/30 SEM and AFM data based on GT metrics.

541 4. CONCLUSIONS

542 The focus of this study was to develop computational models to predict inflammatory responses,
 543 i.e. TNF- α levels in macrophages, on nanostructured electrospun scaffold, based on physico-

544 chemical properties of nanofibres and complex geometry of the scaffolds. Among seven ML
545 algorithms tested, the RF model outperformed the rest. Ruffling index, pore diameter, and fibre
546 diameter emerged as the most important parameters influencing the concentration of TNF- α . These
547 preliminary findings provided insights into cellular behaviour in the context of the tissue repair
548 process, contributing to the improvement of material performance with evidence-based data. The
549 second part of this study successfully demonstrated that CellProfiler is an effective tool in
550 processing SEM images to extract diverse features and measurements related to cell phenotypes.
551 Results from DL modelling indicated that CNN models are adept at classifying macrophage cells
552 from SEM image based on their phenotypes. GT showed that it is possible to predict the correlation
553 between materials and complex nanofibre arrangement thus providing a method to move further
554 ahead of the scaffold development pipeline for tissue engineering. This study paves the way
555 towards ML-facilitated GT-quantified scaffold development, with the potential to extend from
556 material choice to nanofibre arrangements to *in vitro*-material interactions and finally *in vivo*-
557 material interactions, thereby reducing the timeline and cost for translating scaffolds into clinical
558 applications.

559 **Conflicts of interest:** There are no conflicts to declare.

560 **Acknowledgements:** LYS is thankful to the Higher Education Commission (HEC) for a PhD
561 fellowship. ABL would like to thank RT Knits Ltd for funding to the Biomaterials, Drug Delivery
562 and Nanotechnology Unit, CBBR under project vote KB027. The authors are grateful for the
563 support from the National Science Foundation (NSF), grant # 2243104, Centre for Complex
564 Particle Systems (COMPASS). LYS and ABL thank the COMPASS-CERA Fellowship Program
565 and Professor Martin Thuo, Deputy Director of COMPASS and Mrs. Valerie Wehiong-Batta for

566 great assistance in the fellowship organisation. N.A.K. also acknowledges additional support from
567 NSF, grant # 2317423; Lock-And-Key Interactions Between Chiral Nanoparticles And Proteins.

568 **Author contribution:** LYS: formal analysis, investigation (computational studies and
569 mathematical modelling), methodology, writing – original draft & editing; ICP: investigation
570 (experimental data), , writing – original draft; NG: investigation (experimental data), , writing –
571 original draft;; NAK: conceptualization of complex nanofibre systems, supervision of graph theory
572 modelling and training, resources, NSF funding acquisition and fellowship organisation; ABL:
573 conceptualization, resources, writing – original draft, review & editing, supervision, project
574 administration, funding acquisition.

REFERENCES

1. V. A. Solarte David, V. R. Güiza-Argüello, M. L. Arango-Rodríguez, C. L. Sossa, and S. M. Becerra-Bayona, *Front. Bioeng. Biotechnol.*, 2022, **10**, 821852.
2. Y. Yu, Z. Yue, M. Xu, M. Zhang, X. Shen, Z. Ma, J. Li, and X. Xie, *PeerJ*, 2022, **10**, e14053.
3. K. S. Smigiel and W. C. Parks, *Curr Rheumatol Rep*, 2018, **20**, 17.
4. A. Kishore and M. Petrek, *Front. Immunol.*, 2021, **12**, 678457.
5. J. Liu, X. Geng, J. Hou, and G. Wu, *Cancer Cell Int.*, 2021, **21**, 389.
6. J. Huang, J. Wei, X. Xia, S. Xiao, S. Jin, Q. Zou, Y. Zuo, Y. Li, and J. Li, *Mater. Today Bio*, 2024, **26**, 101063.
7. L. Yang, H. Wang, D. Leng, S. Fang, Y. Yang, and Y. Du, *Chemical Engineering Journal*, 2024, 156687.
8. K. A. Brown, S. Britzman, N. Maccaferri, D. Jariwala, and U. Celano, *Nano Lett.*, 2020, **20**, 2–10.
9. T. R. Jones, A. E. Carpenter, M. R. Lamprecht, J. Moffat, S. J. Silver, J. K. Grenier, A. B. Castoreno, U. S. Eggert, D. E. Root, P. Golland, and D. M. Sabatini, *Proc. Natl. Acad. Sci. USA*, 2009, **106**, 1826–1831.
10. H. M. Rostam, P. M. Reynolds, M. R. Alexander, N. Gadegaard, and A. M. Ghaemmaghami, *Sci. Rep.*, 2017, **7**, 3521.
11. E. Ahmed, P. Mulay, C. Ramirez, G. Tirado-Mansilla, E. Cheong, and A. J. Gormley, *Tissue Eng. Part A*, 2024, **30**, 662–680.
12. S. M. McDonald, E. K. Augustine, Q. Lanners, C. Rudin, L. Catherine Brinson, and M. L. Becker, *Nat. Commun.*, 2023, **14**, 4838.
13. L. Y. Sujeeun, N. Goonoo, H. Ramphul, I. Chummun, F. Gimé, S. Baichoo, and A. Bhaw-Luximon, *R. Soc. Open Sci.*, 2020, **7**, 201293.
14. L. Y. Sujeeun, N. Goonoo, K. M. Moutou, S. Baichoo, and A. Bhaw-Luximon, *Macromol. Res.*, 2023.
15. H. Zhang, D. Vecchio, A. Emre, S. Rahmani, C. Cheng, J. Zhu, A. C. Misra, J. Lahann, and N. A. Kotov, *MRS Bull.*, 2021, **46**, 576–587.
16. D. A. Vecchio, S. H. Mahler, M. D. Hammig, and N. A. Kotov, *ACS Nano*, 2021, **15**, 12847–12859.
17. M. F. Rosa, E. S. Medeiros, J. A. Malmonge, K. S. Gregorski, D. F. Wood, L. H. C. Mattoso, G. Glenn, W. J. Orts, and S. H. Imam, *Carbohydr. Polym.*, 2010, **81**, 83–92.
18. D. A. Cerqueira, G. R. Filho, and C. da S. Meireles, *Carbohydr. Polym.*, 2007, **69**, 579–582.

19. H. Ramphul, A. Bhaw-Luximon, and D. Jhurry, *Carbohydr. Polym.*, 2017, **178**, 238–250.
20. A. Mihranyan, A. P. Llagostera, R. Karmhag, M. Strømme, and R. Ek, *Int. J. Pharm.*, 2004, **269**, 433–442.
21. K. Madub, N. Goonoo, F. Gimé, I. Ait Arsa, H. Schönherr, and A. Bhaw-Luximon, *Carbohydr. Polym.*, 2021, **251**, 117025.
22. N. Goonoo, A. Bhaw-Luximon, P. Passanha, S. Esteves, H. Schönherr, and D. Jhurry, *Mater. Sci. Eng. C*, 2017, **76**, 13–24.
23. I. Chummun, A. Bhaw-Luximon, and D. Jhurry, *J. Biomed. Mater. Res. A*, 2018, **106**, 3275–3291.
24. N. Goonoo, A. Bhaw-Luximon, U. Jonas, D. Jhurry, and H. Schönherr, *ACS Biomater. Sci. Eng.*, 2017, **3**, 3447–3458.
25. N. Goonoo, F. Gimé, I. Ait-Arsa, C. Cordonin, J. Andries, D. Jhurry, and A. Bhaw-Luximon, *Biomater. Sci.*, 2021, **9**, 5259–5274.
26. N. Goonoo, A. Fahmi, U. Jonas, F. Gimé, I. A. Arsa, S. Bénard, H. Schönherr, and A. Bhaw-Luximon, *ACS Appl. Mater. Interfaces*, 2019, **11**, 5834–5850.
27. A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, P. Golland, and D. M. Sabatini, *Genome Biol.*, 2006, **7**, R100.
28. O. Dürr and B. Sick, *J. Biomol. Screen.*, 2016, **21**, 998–1003.
29. K. Simonyan and A. Zisserman, *arXiv*, 2014.
30. K. He, X. Zhang, S. Ren, and J. Sun, *arXiv*, 2015.
31. M. A. Morid, A. Borjali, and G. Del Fiol, *Comput Biol Med*, 2021, **128**, 104115.
32. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, *Int J Comput Vis*, 2015, **115**, 211–252.
33. I. Chummun, F. Gimé, N. Goonoo, I. A. Arsa, C. Cordonin, D. Jhurry, and A. Bhaw-Luximon, *Mater. Sci. Eng. C Mater. Biol. Appl.*, 2022, **135**, 112694.
34. H. Ramphul, F. Gimé, J. Andries, D. Jhurry, and A. Bhaw-Luximon, *Int. J. Biol. Macromol.*, 2020, **157**, 296–310.
35. N. D. Condon, J. L. Stow, and A. A. Wall, *Bio Protoc.*, 2020, **10**, e3494.
36. F. Heinrich, A. Lehmbecker, B. B. Raddatz, K. Kegler, A. Tipold, V. M. Stein, A. Kalkuhl, U. Deschl, W. Baumgärtner, R. Ulrich, and I. Spitzbarth, *PLoS One*, 2017, **12**, e0183572.
37. A. R. B. Ribeiro, E. C. O. Silva, P. M. C. Araújo, S. T. Souza, E. J. da S. Fonseca, and E. Barreto, *Spectrochim. Acta A Mol. Biomol. Spectrosc.*, 2022, **265**, 120328.

38. D. A. Vecchio, M. D. Hammig, X. Xiao, A. Saha, P. Bogdan, and N. A. Kotov, *Adv. Mater. Weinheim*, 2022, **34**, e2201313.
39. A. C. Oliveira, I. Garzón, A. M. Ionescu, V. Carriel, J. de la C. Cardona, M. González-Andrades, M. del M. Pérez, M. Alaminos, and A. Campos, *PLoS One*, 2013, **8**, e66538.

The data supporting this article have been included as part of the Supplementary Information.