
Flux Synthesis of Single Crystal Bismuth Vanadate (BiVO₄) Nanowires and their Visible Light Driven Photocatalytic Water Oxidation Properties

Journal:	<i>Journal of Materials Chemistry A</i>
Manuscript ID	TA-ART-11-2024-008318.R2
Article Type:	Paper
Date Submitted by the Author:	25-Jan-2025
Complete List of Authors:	Xiao, Chengcan; University of California, Department of Chemistry Assavachin, Samutr; University of California, Department of Chemistry Hahn, William; University of California Davis, Department of Materials Science and Engineering Wang, Li; University of California Davis Department of Chemistry van Benthem, Klaus; University of California, Davis, Dept. for chemical Engineering and Materials Science Osterloh, Frank ; University of California Davis, Department of Chemistry

SCHOLARONE™
Manuscripts

Flux Synthesis of Single Crystal Bismuth Vanadate (BiVO_4) Nanowires and their Visible Light Driven Photocatalytic Water Oxidation Properties

Chengcan Xiao,^a Samutr Assavachin,^a William Hahn,^b Li Wang,^a Klaus van Benthem,^b Frank E. Osterloh^{a,*}

^a Department of Chemistry, University of California, Davis, California 95616, United States;
<https://orcid.org/0000-0002-9288-3407>; Email: fosterloh@ucdavis.edu

^b Department of Materials Science and Engineering, University of California, Davis, California 95616, United States

ABSTRACT

Bismuth vanadate (BiVO_4) is a well-known visible light active photocatalyst for the oxygen evolution reaction (OER). In this study, single-crystal BiVO_4 nanowires were synthesized for the first time. The nanowires are obtained by recrystallization of BiVO_4 microparticles from NaVO_3 flux in the $550^\circ\text{C} - 700^\circ\text{C}$ temperature range. They exhibit an average thickness of 433.4 ± 110.6 nm and lengths exceeding $20 \mu\text{m}$. X-ray diffraction and electron microscopy confirm that the nanowires are single crystals of the monoclinic Scheelite structure type with the [010] crystal direction oriented along the principal wire axis. The nanowires have an optical band gap of 2.41 eV and generate a negative surface photovoltage signal under band gap illumination confirming

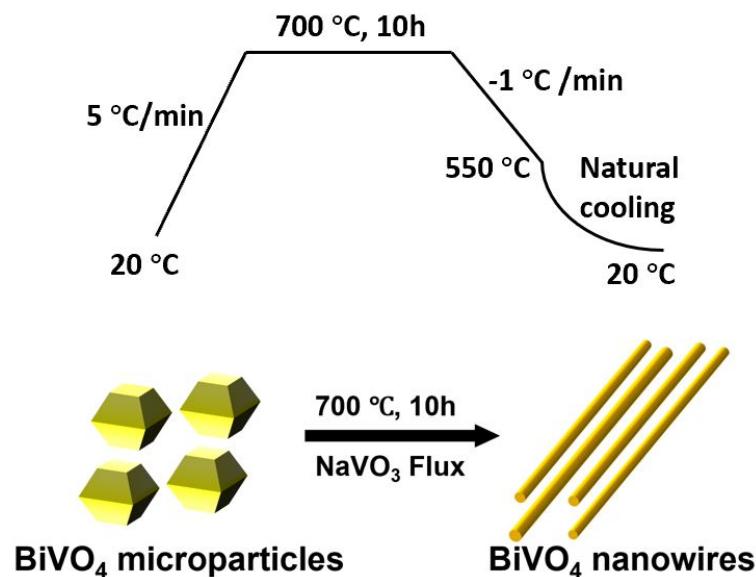
their n-type character. A nanowire suspension in aqueous ferric nitrate solution generates oxygen under visible light (390 mW/cm²) at a rate of 28.75 µmol/h and with an apparent quantum efficiency of 0.44% at 405 nm. The relatively low photocatalytic activity of the nanowires can be explained with the absence of a facet-induced charge separation mechanism. Indeed, photolabeling experiments with silver (+) and manganese (2+) ions demonstrate that both photoholes and electrons are extracted along the cylindrical nanowire surface. The fiber morphology makes the BiVO₄ nanowires uniquely suited for the construction of membranes for solar energy conversion and photocatalysis.

INTRODUCTION

Monoclinic bismuth vanadate (BiVO₄) is a popular visible light active photocatalyst for water oxidation. The material benefits from high chemical stability in neutral or acidic solution and a band gap of 2.4 – 2.5 eV^{1–4} that enables it to absorb over 10% of the solar spectrum.

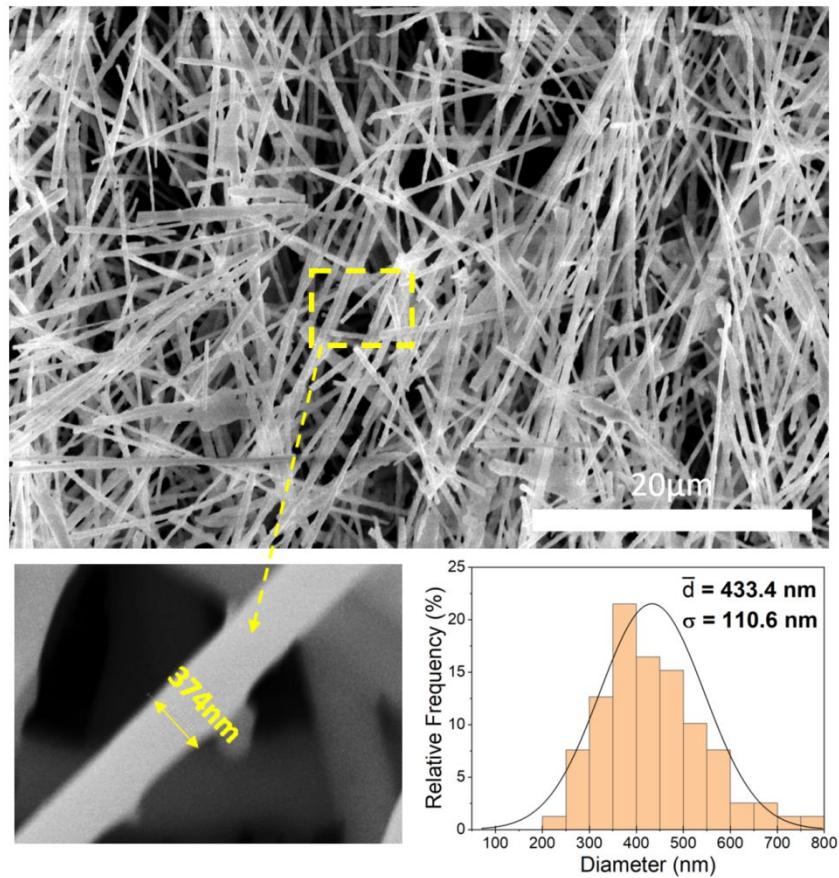
Photoelectrochemical water oxidation is enabled by a valence band maximum (VBM) of 2.83 V vs RHE⁵ and photocarrier lifetimes of around 40 ns.^{6–10} However, because the hole diffusion length is only ~70 nm,¹ and the water oxidation kinetics are slow,⁹ nanostructuring of the material and the addition of oxygen evolution cocatalysts are required to achieve performance.¹¹ For example, a NiFe/BiVO₄/SnO₂ photoanode recently achieved a remarkable photocurrent density of 5.61 mA/cm² at 1.23 V vs. RHE and an IPCE exceeding 90%, as reported by Yang et al in 2021.¹² In 2023, the highest photocurrent density of 6.29 mA/cm² at 1.23 V vs. RHE for photoelectrochemical (PEC) water oxidation and a near unity incident-photon-to-current efficiency (IPCE) of 95.8% was attained from a BiVO₄/VO_x photoanode reported by Liu et al.¹³

These PEC devices are all based on BiVO_4 films, which allow electron extraction through ohmic contacts and applied potentials. On the contrary, solar energy conversion with BiVO_4 particles is much less efficient.¹⁴⁻²² For example, Okunaka et al. reported in 2016, that BiVO_4 nanoparticles (~ 80 nm) supported with tartaric acid ligands allowed O_2 evolution with a quantum efficiency of 1.2% with Fe^{3+} as electron acceptor.¹⁴ Zhao et al. demonstrated an impressive 71% apparent quantum efficiency (AQE) at 365 nm for photocatalytic water oxidation with decahedral BiVO_4 crystals in the presence of Fe^{3+} .²⁰ Here, charge separation is improved by the electron and hole selective $\{010\}$ and $\{110\}$ facets of the crystals. After loading with Ir and FeCoO_x co-catalysts these crystals achieved a solar-to-hydrogen conversion efficiency of 0.6% (AQE of 12.3% at 420 nm) when employed as a Z-scheme photocatalyst with ZrO_2/TaON as the hydrogen evolving particles.¹⁸

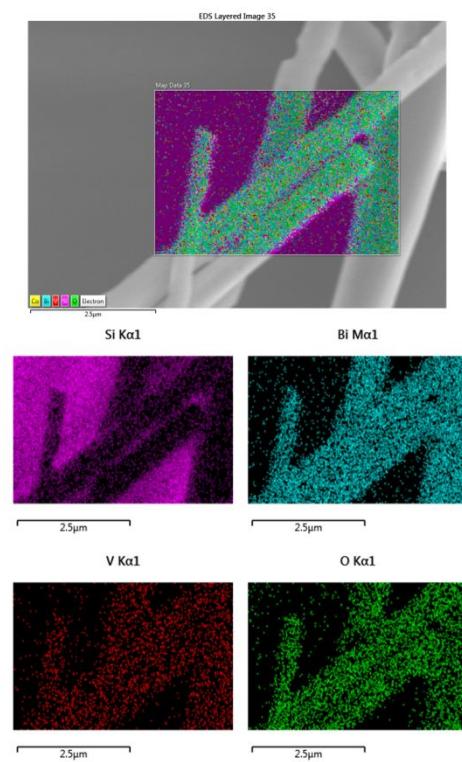

In contrast to other particle shapes,¹⁴⁻²⁴ one-dimensional nanostructures (nanowires) are distinguished because charge transport is improved along the nanowire direction, which offers advantages for integration into devices.²⁵ However, achieving a BiVO_4 nanowire morphology synthetically has proven difficult, and usually requires the use of structure templates,^{26,27} or special techniques, such as electrospinning.²⁸⁻³³ Spontaneous one-dimensional growth is rarely achieved. In one example, Su, J., et al. reported the fabrication of 1 μm tall BiVO_4 pyramid arrays on FTO substrates using seed-mediated growth.³⁴ In a separate instance, BiVO_4 nanowires on titanium foil were obtained by hydrothermal reaction of ammonium vanadate, $\text{Bi}(\text{NO}_3)_3 \cdot 5\text{H}_2\text{O}$ in the presence of oxalic acid and hexamethylenetetramine.^{35,36} However, the nanowires were contaminated with residual V_2O_5 .

Here we demonstrate the first flux synthesis of single crystal BiVO₄ nanowires (BiVO₄ NWs) in the monoclinic Scheelite phase. The nanowires are obtained by recrystallization of monoclinic BiVO₄ microcrystals in NaVO₃ flux at 700-550°C. Their structure and morphology are observed with powder X-ray diffraction (XRD) and electron microscopy and their optical and semiconducting properties with UV/vis and Surface Photovoltage Spectroscopy. We further describe the photocatalytic oxygen evolution properties of the nanowires under visible light and the photolabeling results to observe electron and hole collecting sites. Overall, this study describes a new method to obtain single crystalline BiVO₄ nanowires and potential uses in sustainable energy applications.

RESULTS AND DISCUSSION


The synthesis of BiVO₄ nanowires (BiVO₄ NWs) was performed in a NaVO₃ flux using BiVO₄ microparticles as the reagent (1:10 molar ratio of BiVO₄ :NaVO₃). The choice of NaVO₃ as the solvent was inspired by W. Eigermann et al., who reported in 1978 the synthesis of elongated yttrium vanadate (YVO₄) microcrystals from NaVO₃ melts.³⁷ NaVO₃ has a melting point of 630°C, while BiVO₄ has a 940°C melting point, but is known to soften at ~700°C.³⁸ Therefore, a temperature of 700°C was selected to completely dissolve the BiVO₄ precursors in the NaVO₃ flux. The initial BiVO₄ microparticles were obtained by reaction of Bi₂O₃ and V₂O₅ in 0.5 M HNO₃ as described in the experimental section. The particles are faceted crystals with dimensions in the 0.2 – 1.0 μm regime (SEM in **Figure S1**). The nanowire synthesis is shown in **Figure 1**. First, the BiVO₄ was ground together with solid NaVO₃ in 1:10 molar ratio and

transferred to a ceramic (porcelain) crucible with a ceramic cover. The mixture was then heated to 120 °C at a rate of 5 °C/min and held at this temperature for 5 h to remove any residual water. After that, the mixture was heated further to 700°C at a rate of 5 °C/min and kept at that temperature for 10 h to completely dissolve the BiVO₄. The flux was then cooled slowly from 700 to 550°C at a rate of -1 °C/min. Under these conditions, the BiVO₄ forms a super-saturated solution and starts to precipitate in the form of nanowires. Growth is expected to stop at ~630°C due to solidification of the molten NaVO₃. After cooling to room temperature, a yellow frozen melt is obtained. The crucible containing the solid melt was placed inside of a 100°C 1.0 M aqueous KOH solution with stirring. After 2 h, the NaVO₃ is completely dissolved and the nanowire product can be obtained as a yellow solid by centrifugation.


Figure 1. The heating curve and the scheme of the flux-mediated synthesis of BiVO₄ nanowires (BiVO₄ NWs).

According to SEM (**Figure 2**) the product is composed of nanowires with lengths exceeding 20 μm and with an average diameter of $433.4 \pm 110.6 \text{ nm}$. A typical BiVO_4 NW (shown in the inset) has a smooth lateral surface and a diameter of 374 nm. The elemental composition of Bi, V, and O was verified by energy dispersive X-ray (EDX) mapping (**Figure 3** and **S3**). Bi, V, and oxygen are found to be clearly associated with the wires, and Bi and V occur in 1:1 atomic ratio within experimental error.

Figure 2. SEM images of the BiVO_4 nanowires (BiVO_4 NWs). The diameter of a typical nanowire is 374 nm. A distribution of the nanowire diameters is statistically shown in the histogram at the bottom right.

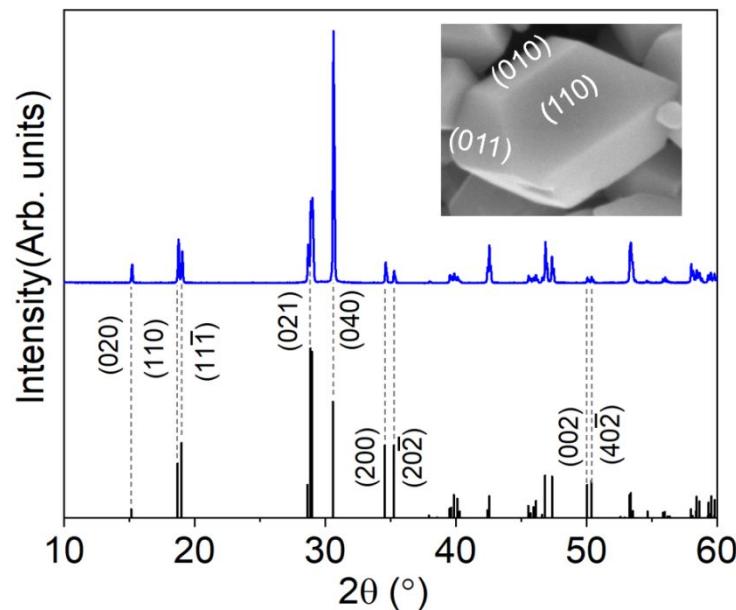
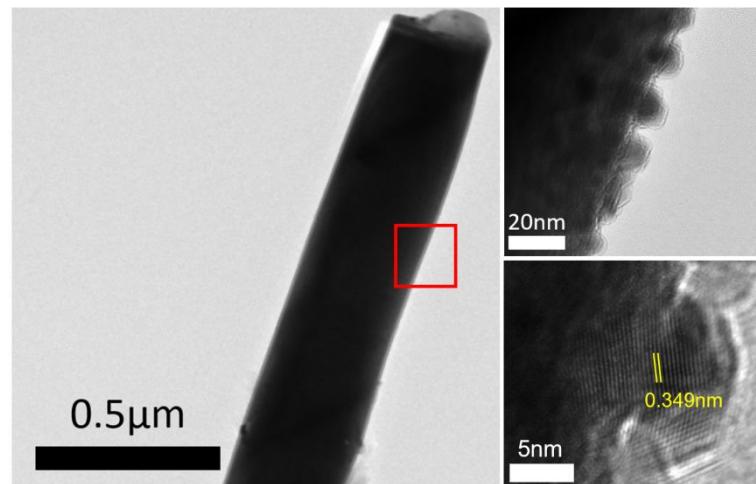
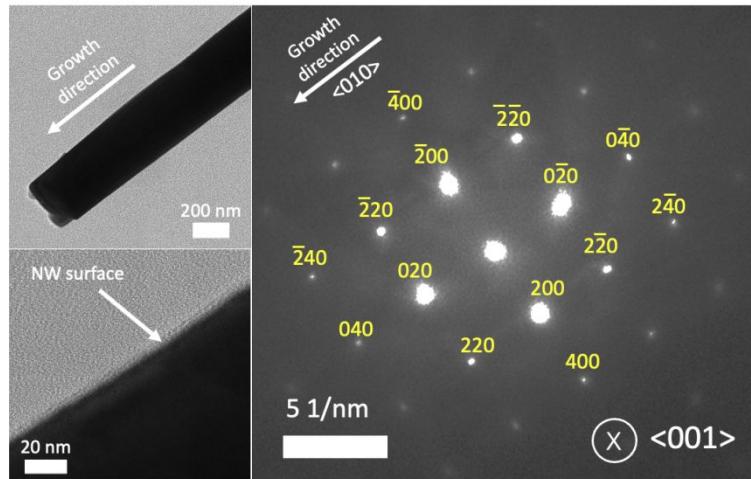

We hypothesize that BiVO_4 NWs form by nucleation and anisotropic growth inside the saturated $\text{BiVO}_4/\text{NaVO}_3$ solution. Therefore, proper adjustment of the $\text{BiVO}_4 : \text{NaVO}_3$ molar ratio is very important. For example, only ill-defined BiVO_4 crystals are obtained after cooling a solution containing twice the amount of NaVO_3 flux solvent ($\text{BiVO}_4:\text{NaVO}_3 = 1:20$ molar ratio, **Figure S2**).

Figure 3. EDX mapping of Bi, V, O, and Si on the BiVO_4 nanowires (BiVO_4 NWs). The Si signal is from the Si substrate used for the SEM sample.


Powder X-ray diffraction patterns (**Figure 4**) confirm the monoclinic Scheelite crystal structure of the nanowire product.³⁹ In the diffraction pattern of the BiVO_4 NWs, the (040) diffraction peak at 30.6° is significantly intensified compared to the (021) peak, which remains, however, the major peak in the powdered BiVO_4 samples. The intensification of the (040) peak indicates that the BiVO_4 NWs preferentially grow along the [010] direction.⁴⁰ Anisotropic crystal growth is further supported by the intensification of the (020) peak and the decrease of the (200), ($20\bar{2}$), (002), and ($40\bar{2}$) peaks relative to (021).

The location of some facets on a truncated octahedral BiVO_4 microparticle is shown in the inset of **Figure 4** to better visualize the growth orientation of BiVO_4 NWs from the precursor.


Figure 4. XRD of the BiVO_4 NWs confirming the monoclinic Scheelite crystal structure (JCPDS No. 14-0688). The intensified diffraction peak at 30.6° indicates preferential growth of BiVO_4 nanowires along the [010] direction. The correlated facets are marked on the SEM inset of a truncated octahedral microparticle.

Transmission electron microscopy (TEM) was employed to examine the microstructure of BiVO₄ NWs and to gather local surface information. As can be seen from **Figure 5**, the nanowire appears smooth on the 500 nm scale, but shows small nanospheres on their periphery, which become visible at higher magnification. Using phase contrast imaging lattice fringes of the nanospheres were observed with an interplanar spacing of 0.349 nm, which matches the $d_{002}=0.346$ nm spacing of (002) planes in α -Bi₂O₃.⁴¹ Therefore, the small particles on the nanowire surface can be attributed to bismuth oxide.

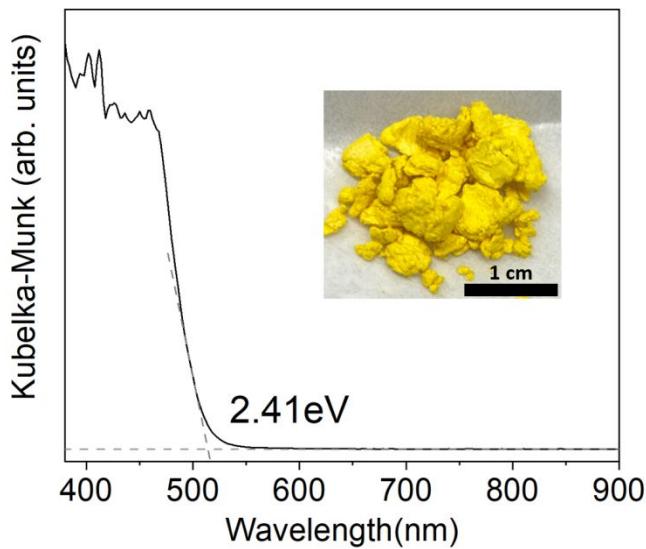


Figure 5. (HR)TEM image (left) and the higher magnification phase contrast images (right) of a BiVO₄ nanowire showing approximately spherical shaped nanoparticles at the nanowire surface. A closeup shows lattice fringes of 0.349 nm, which resemble the 0.346 nm d-spacing of (002) facets in alpha-Bi₂O₃.⁴¹

To dissolve the Bi_2O_3 nanospheres, the nanowires were etched with 1.0 M HNO_3 for ten minutes at room temperature. As shown in **Figure 6**, this treatment removes the spheres from the BiVO_4 surface. A selective area electron diffraction (SEAD) pattern recorded for the etched BiVO_4 NWs is shown in **Figure 6**. The SAED pattern was recorded in the $\langle 001 \rangle$ zone-axis orientation. All spots can be indexed to a single lattice of the monoclinic Scheelite crystal structure. This confirms nanowires are single crystals and grow in the $\langle 010 \rangle$ direction.

Figure 6. Bright field amplitude contrast HRTEM images and selected area electron diffraction (SAED) pattern of a single BiVO_4 nanowire after nitric acid etch. White arrows indicate nanowire growth direction and nanowire surface. Diffraction spots can be indexed to a single lattice of the monoclinic Scheelite structure (JCPDS No. 14-0688).

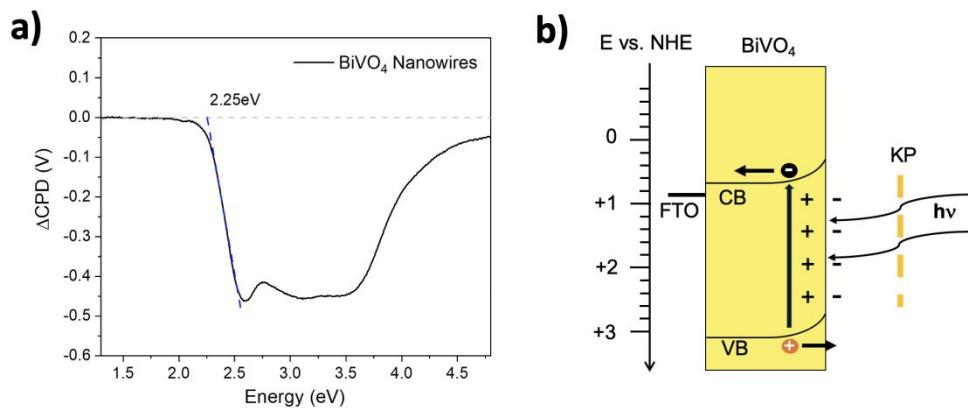
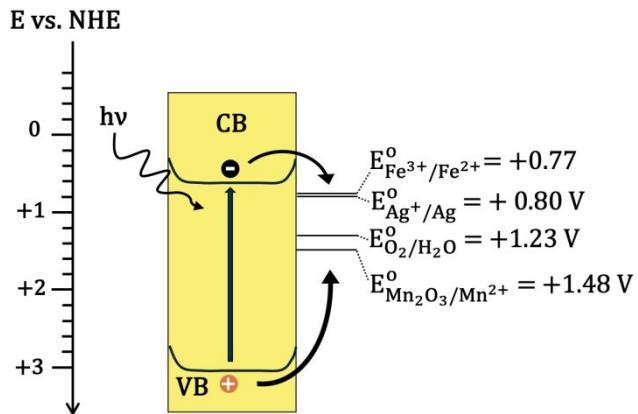


Figure 7. Kubelka-Munk diffuse reflectance spectrum of BiVO_4 nanowires (BiVO₄ NWs). The inset shows the color of the nanowire aggregates.

A photo and an optical absorption spectrum of the BiVO₄ NWs are shown in **Figure 7**. The material forms a cotton-like powder that appears bright yellow. The absorption edge is found at 514 nm, corresponding to an optical bandgap of 2.41 eV. This value matches the reported 2.4 eV bandgap for BiVO₄.⁴²


To investigate the ability of the BiVO₄ NWs to generate a photovoltage under illumination, surface photovoltage spectra (SPS) were recorded on a drop-cast thin film of BiVO₄ NWs on a fluorine-doped tin oxide (FTO) substrate. The surface photovoltage signal is plotted in **Figure 8a** versus the photon energy. It is given by the light induced change of the contact potential difference (CPD), $\text{SPV}=\text{CPD}(\text{light})-\text{CPD}(\text{dark})$. The signal is negative, indicative of electron transfer away from the Kelvin probe and towards the FTO. This charge separation direction is controlled by the electric field in the n-type depletion layer as shown in **Figure 8b**. The CPD

onset at 2.25 eV slightly below the 2.41 eV optical bandgap, is attributed to excitation from sub-bandgap defect states such as V^{4+} and O^- .⁴³ The ΔCPD reaches its maximum of -0.46 V at 2.59 eV and returns to the baseline > 4.0 eV due to the diminishing Xe arc lamp intensity at this photon energy. The high photovoltage signal reversibility (88%) suggests minimal hole trapping at the BiVO_4 surface.⁴⁴ Overall, the SPS spectrum confirms the n-type character of BiVO_4 NWs and the presence of defect states near the band edges.

Figure 8. a) Surface photovoltage spectrum (SPS) of BiVO_4 nanowire film on FTO in vacuum. b) Schematic energy diagram at $\text{pH} = 0$ showing carrier separation in the space charge region of BiVO_4 under illumination. The sample is illuminated through the Kelvin Probe (KP).

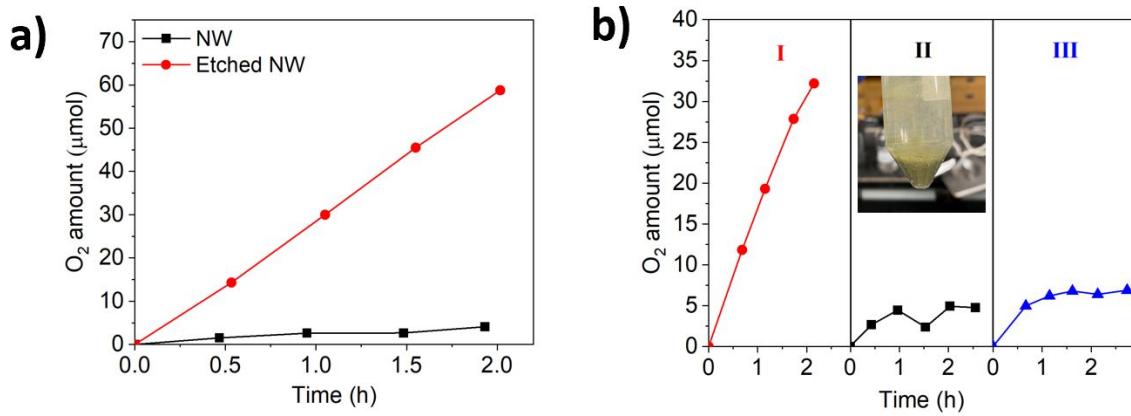
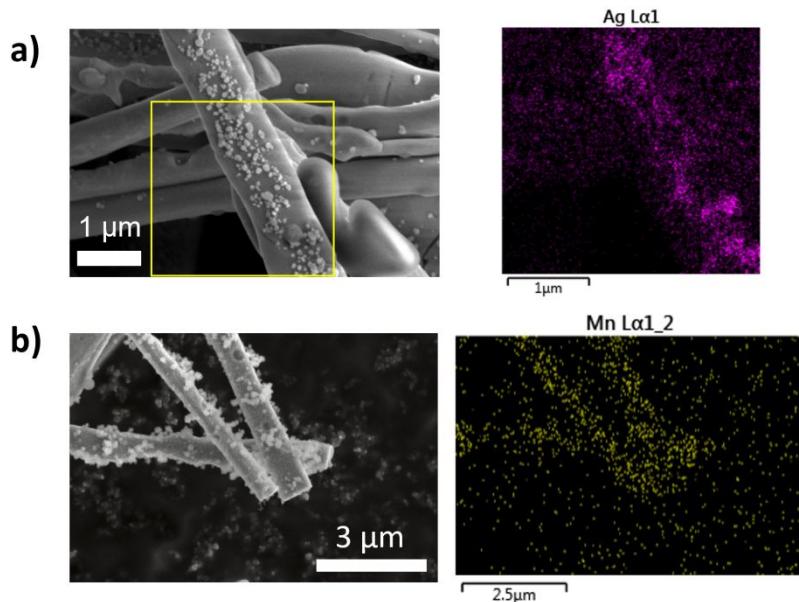

To evaluate the photocatalytic activity of the BiVO_4 NWs, water oxidation experiments were conducted under visible light ($\lambda > 400$ nm) from a 300 W Xe lamp in a round bottom flask containing 100 mg BiVO_4 NWs and 100 mL of 0.02 M $\text{Fe}(\text{NO}_3)_3$. Under these conditions, $\text{Fe}(\text{H}_2\text{O})_6^{3+}$ serves as an acceptor for photoelectrons from illuminated BiVO_4 NWs,^{45,46} allowing photoholes to accumulate for water oxidation, as illustrated in the energy diagram in **Figure 9**.

Figure 9. Energy band diagram showing carrier transfer in the gas evolution/photodeposition experiments in $\text{Fe}(\text{NO}_3)_3$, AgNO_3 , and MnCl_2 solutions under visible light and at $\text{pH} = 0$. The reported conduction band edge of BiVO_4 is 0.35 V vs. NHE (4.79 eV vs. vacuum level) and its valence band edge is 2.83 V vs. NHE (7.27 eV vs. vacuum level).^{5,47}

As can be seen in **Figure 10a**, the as-prepared BiVO_4 NWs evolve some O_2 (black curve) but the rate is very low ($2.26 \mu\text{mol}/\text{h}$). It was hypothesized that this low activity was due to the coverage of surface sites by the Bi_2O_3 nanospheres. Indeed, NWs after 5 min etching with HNO_3 give a much higher O_2 evolution rate ($28.75 \mu\text{mol}/\text{h}$), as indicated by the red curve in **Figure 10a**. This represents a 12.7-fold enhancement, but still is much lower than what is typically observed with BiVO_4 particles under such conditions (**Table S1**).⁴⁸ Further etching for 10-40 mins in 1.0 M nitric acid did not result in further enhancement, as shown in **Figure S4**. Also, the prolonged etching does lead to surface damage in the form of pits. Some of these pits occur already 5 min into the HNO_3 etch, as can be seen in SEM in **Figure S5**. Lastly, etching of the nanowires with 1.0 M KOH solution was also attempted, but did not result in increased oxygen evolution activity (**Figure S4**).

To investigate the photostability of BiVO_4 NWs, a 6 hour continuous gas evolution test was conducted in 100 mL 0.02 M $\text{Fe}(\text{NO}_3)_3$ solution using a 100 mg sample under Xe lamp irradiation. The visible light intensity at the flask was reduced to 350 mW/cm² to slow the consumption of Fe^{3+} , minimizing the impact of Fe^{3+} concentration changes on the oxygen evolution rate of BiVO_4 NWs. The flask was evacuated every 2 hours, and the collective oxygen amount was plotted against the reaction time to help evaluate curve linearity, as shown in **Figure S6**. The higher initial oxygen rate is attributed to the release of surface-adsorbed O_2 from the nanowire surface after storage in air. After the first hour, the oxygen evolution rate gradually stabilized, as indicated by improved linearity, but a slow decline in the oxygen evolution rate from consumption of Fe^{3+} and production of Fe^{2+} was still observed. Negligible changes in the optical and morphological properties after the 6 hour test are evidenced by UV-Vis spectra (**Figure S7**) and SEM images (**Figure S8**). These results indicate reasonable photostability of BiVO_4 NWs under oxygen evolution conditions.


Figure 10. (a) O_2 evolution of 100 mg BiVO_4 NWs in 100 mL 0.02 M $\text{Fe}(\text{NO}_3)_3$ solution under visible light ($\lambda > 400$ nm and 32–36°C). (b) O_2 evolution with 5 min etched BiVO_4 NWs in 0.02

M Fe(NO₃)₃ (I), 0.05 M AgNO₃ (II), and mechanically ground BiVO₄ NWs in 0.05 M AgNO₃ (III). Photo inset: BiVO₄ NWs solid after photodeposition of Ag.

Photocatalytic measurements were repeated under the same conditions with the etched BiVO₄ NWs and illumination from a 405 nm LED. The corresponding oxygen evolution trace is shown in **Figure S9**. Based on this data, the apparent quantum efficiency of O₂ evolution is 0.44% (Calculation details in the experimental section). For comparison, BiVO₄ nanosheets with large (040) and small (200) facets achieved an AQE of 4.5% using Fe³⁺ as the electron scavenger under 440 nm light, as reported by Can Li's group in 2021.²¹ The 10 times higher efficiency is attributed to facet induced charge separation, where (040) facets attract photoelectrons and (200) facets attract photoholes. Facet-dependent spatial charge separation is a well-established process for monoclinic BiVO₄ microparticles,^{19,21,22,49} and also for other photocatalysts, including La:NaTaO₃,⁵⁰ TiO₂,⁵¹ SrTiO₃,^{52,53} and WO₃ crystals.^{54,55} As recently seen for SrTiO₃ single crystals, the facet selectivity is rooted in differences of the facet work functions, and the charge transfer barrier heights of the corresponding semiconductor-liquid junctions.⁵⁶

A simple way to measure the charge selectivity of facets is by photodeposition of Ag, Au, MnO_x, or PbO₂ after reaction of the corresponding metal salts with photogenerated electrons or holes.^{19,21} Accordingly, BiVO₄ NWs were illuminated in a 0.05 M AgNO₃ solution with light from a Xe arc lamp and a 0.22 M NaNO₂ UV filter. Because Ag⁺ is an effective electron scavenger, O₂ was formed again, as before with Fe(NO₃)₃. However, O₂ evolution stopped after 1 hour due to the deposition of silver metal on the nanowires (**Figure 9b**). The optical absorption from Ag also changed the yellow BiVO₄ NWs suspension to green (**photo inset**).⁵⁷

According to SEM images and EDX in **Figure 11** and **S10**, most of the Ag grows on the NWs surface and not on the nanowire tips. This shows that photoelectrons are extracted mainly along the NW perimeter.

Figure 11. (a) SEM and EDX mapping of Ag at the lateral surface of BiVO₄ NWs after photodeposition of Ag. (b) SEM and EDX mapping of Mn at the lateral surface of BiVO₄ NWs after photodeposition of MnO_x. Nanoparticles were found on both the lateral and tip surfaces.

In a separate experiment, photohole accumulation sites were identified by photodeposition of MnO_x on BiVO₄ NWs from an aqueous solution of 0.02 M NaIO₃ and 0.505 mM MnCl₂ under >400 nm light from a Xe arc lamp.¹⁹ Here, IO₃⁻ extracts the photoelectrons while Mn²⁺ captures the photoholes, resulting in the formation of insoluble MnO_x. Inspection of the SEM and EDX data after irradiation for 2 hours (**Figure 11b** and **S11**) reveals MnO_x nanoparticles at both lateral surface and tip surfaces. The Ag and MnO_x photolabeling results demonstrate the

absence of a facet-dependent charge separation mechanism in these BiVO_4 NWs. This explains their low quantum efficiency of 0.44% in comparison to other BiVO_4 morphologies (**Table S1**). Finally, mechanical grinding was explored to increase the NW tip area composed of (040) facets for potential enhancement in O_2 evolution. However, the same amount of O_2 was generated from photodeposition of Ag (**Figure 9b**). This confirms again that charges are predominantly extracted at the nanowire perimeter, as suggested by the photolabeling results above. An additional factor for the low activity are the large dimensions of the nanowires (average 433 nm diameter and ~ 20 μm length). These values vastly exceed the electron diffusion length of ~ 10 nm⁵⁸ and hole diffusion length of 45-100 nm^{6,8,9,59} in BiVO_4 , and as a result, photocarriers generated near the nanowire center undergo recombination and cannot be extracted. On the other hand, the measured O_2 evolution rate of 28.75 $\mu\text{mol}/\text{h}$ does surpass previously reported rates of 0.075 $\mu\text{mol O}_2/\text{h}$ for Ni@NiO-loaded W: BiVO_4 nanofibers (NFs)³⁰ and 13.7 $\mu\text{mol O}_2/\text{h}$ for mesoporous undoped BiVO_4 NF (see **Table S1**).²⁸ This is attributed to the single crystal character of the nanowires which suppresses charge recombination and promotes charge transfer. Higher nanowire OER activity may be achievable by adding a water oxidation cocatalyst.

CONCLUSION

In conclusion, we present a scalable synthesis of single-crystalline BiVO_4 NWs of monoclinic Scheelite structure type. The NWs have an average diameter of 433 ± 110 nm and lengths exceeding 20 μm . They grow along the [010] direction, based on powder XRD and SAED data. As-grown NWs contain Bi_2O_3 nanocrystals on their surface, which can be removed by etching with 1.0 M HNO_3 . The NWs have a 2.41 eV optical bandgap and behave as n-type

semiconductors, based on Surface Photovoltage Spectroscopy. Under visible light, etched BiVO₄ NWs evolve O₂ from 0.02 M Fe(NO₃)₃ at 28.75 μmol/h, corresponding to an apparent quantum efficiency of 0.44% at 405 nm. The low activity of the material is due to the absence of a facet dependent charge separation mechanism, as confirmed by photodeposition experiments with Ag⁺ ion and Mn²⁺ ion. Additionally, the large NW diameter is above the electron and hole diffusion lengths, preventing extraction of short-lived carriers. Improved activity may be achievable with thinner wires and after adding a water oxidation cocatalyst. Thus, the single crystalline nanowires may enable new applications of BiVO₄ in photocatalytic membranes (see ref. 27 for example) and overall water splitting devices.

EXPERIMENTAL SECTION

Bi₂O₃ (99.9%, Acros Organics), V₂O₅ (99.6+%, Acros Organics), NaVO₃ (96%, Acros Organics), HNO₃ (69.2%, Fisher Scientific), AgNO₃ (99+%, ACS reagent, Thermo Scientific Chemicals), MnCl₂·4H₂O (99+%, Acros Organics), Fe(NO₃)₃·9H₂O (ACS, 98+%, Thermo Scientific Chemicals) porcelain ceramic crucibles (Fisherbrand) were used as received. Water was purified to 18 MΩcm resistivity by a Nano-pure system.

Flux synthesis of BiVO₄ nanowires: As the precursor for flux synthesis, BiVO₄ microparticles was first synthesized by a liquid-solid state reaction at room temperature and under ambient condition using a procedure reported in the literature.⁶⁰ Briefly, 2.33 g Bi₂O₃ and 0.91 g V₂O₅ were mixed in 50 mL of 0.5 M HNO₃ and stirred for 2 days at room temperature. The final product was washed five times in water and left to dry at 70 °C in an oven resulting in a yellow powder that was obtained in a yield of 95%.

The as-prepared BiVO_4 microparticles were used as the reagent in the flux method with NaVO_3 as the flux solvent. 0.648 g BiVO_4 was mixed and ground with 2.438 g NaVO_3 in 1:10 molar ratio and transferred to a ceramic (porcelain) crucible with a ceramic cover. The mixture of solid salts was heated to 120 °C at a rate of 5 °C/min and held at that temperature for 5 h to remove any residual water. After that, the mixture was heated to 700 °C at a rate of 5 °C/min and kept at that temperature for 10 h. Finally, the mixture was cooled to 550 °C at a rate of -1 °C/min and then naturally cooled to room temperature. The resulting yellow solid chunk was immersed in 200 mL of a stirred 1.0 M KOH solution at 100 °C for 2 h to remove all NaVO_3 . The product was separated by centrifugation, washed with 1.0 M KOH once more, and then with water for 4 times, and dried in at 70 °C oven overnight. A nitric acid wash was performed on BiVO_4 nanowires to remove the surface Bi_2O_3 , as well as the oxides from the crucible in some cases. For the acid etch, 40 mg BiVO_4 nanowires were dispersed in 10 mL of 1.0 M HNO_3 for 5 mins, 10 min, 20 min and 40 min, followed by washing 3 times with water and drying in a 70 °C oven overnight. Base wash in 10 mL of 1.0 M KOH was done by soaking 40 mg of BiVO_4 NWs for 10 min or 40 min to study the effect of wash time on their photocatalytic activity.

Photodeposition of Ag and MnO_x as adapted from Li et al¹⁹ with slight modification. Photodeposition of Ag was done in a 100 mL suspension with 100 mg BiVO_4 NWs and 0.05 M AgNO_3 for 3 hours. Photodeposition of MnO_x was performed in a 50 mL aqueous suspension with 25 mg BiVO_4 NWs, 0.02 M NaIO_3 , and 0.505 mM MnCl_2 for 2 hours. The suspensions were sonicated in a 100 mL round bottom flask for 10 min, and the air was then replaced by purging with N_2 for 10 min. Illumination was provided by a 300 W Xe arc lamp equipped with a 0.22 M

NaNO_2 long-pass filter ($\lambda > 400$ nm) and an IR water filter. The irradiance was 400 mW/cm^2 as measured by a GaAsP detector connected to an *International Light* NIST traceable photometer.

Powder X-ray Diffraction scans were conducted with a Bruker D8 ADVANCE Powder Diffractometers, at a wavelength of $\lambda = 0.154$ nm. The scan rate was set as 0.14 degree/second.

UV-Vis Diffuse Reflectance Spectroscopy was performed on sample films using a Thermo Scientific Evolution 220 Spectrometer equipped with an integrating sphere. A barium sulfate standard was used to calibrate the background.

Scanning electron microscopy (SEM) images were recorded using the Everhardt-Thornley detector of a FEI Scios instrument operating at of 5.0 keV. Qualitative elemental mapping of the sample was carried out at an acceleration voltage of 20 kV using an Oxford X-Max EDS detector.

Transmission electron microscopy (TEM) was performed with a JEOL 2100F TEM operated at 200 keV. TEM samples were prepared by drop-casting a 0.2 mg/mL suspension of BiVO_4 NWs onto carbon supported copper TEM grids, followed by overnight drying at room temperature.

Surface photovoltage spectroscopy (SPS) scans were conducted under vacuum ($< 1\text{E-}4$ mbar) using a gold Kelvin probe (Delta PHI Besocke) as the reference electrode. Samples were illuminated with monochromatic light from a 300 W Xe lamp filtered through an Oriel Cornerstone

130 monochromator. NW films were prepared via the following method. First, F-doped tin oxide (FTO) substrates were sonicated sequentially in acetone, ethanol and nano-pure water for 15 min and dried in a 70°C oven for 2 h before use. Then a 5 mg/mL of BiVO₄ NW suspension was prepared and sonicated for 1 h. 50 µL of this suspension was then drop-coated onto a circular area on the FTO substrate as defined by a circular tape mask (diameter = 0.70 cm). The film was dried in air overnight and annealed in air at 400°C for 2 h. The ramping rate is 2.5°C/min for both heating and cooling.

Photocatalytic water oxidation experiments were conducted in a glass round bottom flask using a mixture of 100 mg BiVO₄ nanowires in 100 mL of 0.02 M Fe(NO₃)₃ solution. The solution was stirred magnetically and cooled with a fan to 33 °C as measured contactlessly with an infrared thermometer. The light from a 300 W Xe-lamp was filtered through a 0.22 M NaNO₂ long-pass filter ($\lambda > 400$ nm) and a water near infrared filter. The visible light intensity at the location of the round bottom flask was ~550 mW/cm² as measured by International Light NIST traceable photometer. Prior to illumination, the flask was sonicated for 10 minutes and then connected to an air-tight irradiation setup connected to an SRI GC 8610C gas chromatograph. The 6 hour stability test was performed under the same parameters, except a visible light intensity of ~350 mW/cm² was used and vacuum evacuation of the gas space was performed every 2 hours.

Apparent quantum efficiency measurements were conducted as described above in a round bottom flask with magnetic stirring, except a 405 nm LED light source was used, whose light intensity at the flask was 622 mW/cm² as measured by an International Light NIST traceable photometer with a GaAsP detector. The back of the flask was covered with an aluminum foil

mirror to reduce photon leakage, leaving an elliptical window of 1.900 cm² for the LED. The apparent quantum efficiency (AQE) was obtained with the following equation and values:

$$AQE = \frac{\text{rate of reacted electrons}}{\text{rate of incident photons}}$$

$$= \frac{\text{micromoles of } O_2 \text{ evolved per second} \times 4 \frac{\text{electrons}}{O_2} \times 10^{-6} \frac{\text{mole}}{\text{micromole}} \times h \times c \times F}{P \times A \times \lambda \times e}$$

In the above equation, A = 1.900 cm² is the area of illumination, P = 622 mW/cm² is the light intensity per square centimeter, λ = 405 nm is the wavelength of light, h is the Planck's constant, c is the speed of light, F = 96485 C/mol is the Faraday constant, e is the elemental charge.

SUPPORTING INFORMATION

SEM images, EDX data, oxygen evolution data, quantum efficiency data and a comparison with the reported BiVO₄.^{14,18,20,21,27,28,30,61–63}

Corresponding Author

Frank Osterloh – Department of Chemistry, University of California, Davis, California 95616, United States; <https://orcid.org/0000-0002-9288-3407>; Email: fosterloh@ucdavis.edu

Authors

Chengcan Xiao – Department of Chemistry, University of California, Davis, California 95616, United States; <https://orcid.org/0000-0001-9664-9338>

Samutr Assavachin – Department of Chemistry, University of California, Davis, California 95616, United States; <https://orcid.org/0000-0002-6360-3680>

William Hahn – Department of Materials Science and Engineering, University of California, Davis, California 95616, United States

Li Wang – Department of Chemistry, University of California, Davis, California 95616, United States;

Klaus van Benthem – Department of Materials Science and Engineering, University of California, Davis, California 95616, United States; <https://orcid.org/0000-0001-8865-046X>;
Email: benthem@ucdavis.edu

CONFLICTS OF INTEREST

There are no conflicts of interest to declare

ACKNOWLEDGEMENTS

The authors acknowledge the financial support from the National Science Foundation under Grant CHE 1900136. Electron microscopy characterization was carried out at the Center for Nano Micromanufacturing (CNM2) and the Advanced Materials Characterization Laboratory (AMCaT).

REFERENCES

- (1) Kim, J. H.; Lee, J. S. Elaborately Modified BiVO₄ Photoanodes for Solar Water Splitting. *Adv. Mater.* **2019**, *31* (20), 1806938. <https://doi.org/10.1002/adma.201806938>.
- (2) Wang, S.; Wang, X.; Liu, B.; Guo, Z.; Ostrikov, K. (Ken); Wang, L.; Huang, W. Vacancy Defect Engineering of BiVO₄ Photoanodes for Photoelectrochemical Water Splitting. *Nanoscale* **2021**, *13* (43), 17989–18009. <https://doi.org/10.1039/D1NR05691C>.
- (3) Shi, H.; Guo, H.; Wang, S.; Zhang, G.; Hu, Y.; Jiang, W.; Liu, G. Visible Light Photoanode Material for Photoelectrochemical Water Splitting: A Review of Bismuth Vanadate. *Energy Fuels* **2022**, *36* (19), 11404–11427. <https://doi.org/10.1021/acs.energyfuels.2c00994>.
- (4) Kudo, A.; Ueda, K.; Kato, H.; Mikami, I. Photocatalytic O₂ Evolution under Visible Light Irradiation on BiVO₄ in Aqueous AgNO₃ Solution. *Catal. Lett.* **1998**, *53* (3), 229–230. <https://doi.org/10.1023/A:1019034728816>.
- (5) Cooper, J. K.; Gul, S.; Toma, F. M.; Chen, L.; Glans, P.-A.; Guo, J.; Ager, J. W.; Yano, J.; Sharp, I. D. Electronic Structure of Monoclinic BiVO₄. *Chem. Mater.* **2014**, *26* (18), 5365–5373. <https://doi.org/10.1021/cm5025074>.
- (6) Abdi, F. F.; Savenije, T. J.; May, M. M.; Dam, B.; van de Krol, R. The Origin of Slow Carrier Transport in BiVO₄ Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study. *J. Phys. Chem. Lett.* **2013**, *4* (16), 2752–2757. <https://doi.org/10.1021/jz4013257>.
- (7) Ziwrtsch, M.; Müller, S.; Hempel, H.; Unold, T.; Abdi, F. F.; van de Krol, R.; Friedrich, D.; Eichberger, R. Direct Time-Resolved Observation of Carrier Trapping and Polaron Conductivity in BiVO₄. *ACS Energy Lett.* **2016**, *1* (5), 888–894. <https://doi.org/10.1021/acsenergylett.6b00423>.

- (8) Rettie, A. J. E.; Lee, H. C.; Marshall, L. G.; Lin, J.-F.; Capan, C.; Lindemuth, J.; McCloy, J. S.; Zhou, J.; Bard, A. J.; Mullins, C. B. Combined Charge Carrier Transport and Photoelectrochemical Characterization of BiVO_4 Single Crystals: Intrinsic Behavior of a Complex Metal Oxide. *J. Am. Chem. Soc.* **2013**, *135* (30), 11389–11396. <https://doi.org/10.1021/ja405550k>.
- (9) Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by “Co-Pi” Catalyst-Modified $\text{W}:\text{BiVO}_4$. *J. Am. Chem. Soc.* **2011**, *133* (45), 18370–18377. <https://doi.org/10.1021/ja207348x>.
- (10) Rettie, A. J. E.; Chemelewski, W. D.; Emin, D.; Mullins, C. B. Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes. *J. Phys. Chem. Lett.* **2016**, *7* (3), 471–479. <https://doi.org/10.1021/acs.jpclett.5b02143>.
- (11) Kim, T. W.; Choi, K.-S. Nanoporous BiVO_4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. *Science* **2014**, *343* (6174), 990–994. <https://doi.org/10.1126/science.1246913>.
- (12) Yang, J. W.; Park, I. J.; Lee, S. A.; Lee, M. G.; Lee, T. H.; Park, H.; Kim, C.; Park, J.; Moon, J.; Kim, J. Y.; Jang, H. W. Near-Complete Charge Separation in Tailored BiVO_4 -Based Heterostructure Photoanodes toward Artificial Leaf. *Appl. Catal. B Environ.* **2021**, *293*, 120217. <https://doi.org/10.1016/j.apcatb.2021.120217>.
- (13) Liu, B.; Wang, X.; Zhang, Y.; Xu, L.; Wang, T.; Xiao, X.; Wang, S.; Wang, L.; Huang, W. A BiVO_4 Photoanode with a VO_x Layer Bearing Oxygen Vacancies Offers Improved Charge

Transfer and Oxygen Evolution Kinetics in Photoelectrochemical Water Splitting. *Angew. Chem. Int. Ed.* **2023**, *62* (10), e202217346. <https://doi.org/10.1002/anie.202217346>.

- (14) Okunaka, S.; Tokudome, H.; Hitomi, Y.; Abe, R. Preparation of Fine Particles of Sheelite-Monoclinic Phase BiVO₄ via an Aqueous Chelating Method for Efficient Photocatalytic Oxygen Evolution under Visible-Light Irradiation. *J. Mater. Chem. A* **2016**, *4* (10), 3926–3932. <https://doi.org/10.1039/C5TA09789D>.
- (15) Li, G.; Zhang, D.; Yu, J. C. Ordered Mesoporous BiVO₄ through Nanocasting: A Superior Visible Light-Driven Photocatalyst. *Chem. Mater.* **2008**, *20* (12), 3983–3992. <https://doi.org/10.1021/cm800236z>.
- (16) Sun, J.; Chen, G.; Wu, J.; Dong, H.; Xiong, G. Bismuth Vanadate Hollow Spheres: Bubble Template Synthesis and Enhanced Photocatalytic Properties for Photodegradation. *Appl. Catal. B Environ.* **2013**, *132–133*, 304–314. <https://doi.org/10.1016/j.apcatb.2012.12.002>.
- (17) Zhao, Y.; Xie, Y.; Zhu, X.; Yan, S.; Wang, S. Surfactant-Free Synthesis of Hyperbranched Monoclinic Bismuth Vanadate and Its Applications in Photocatalysis, Gas Sensing, and Lithium-Ion Batteries. *Chem. – Eur. J.* **2008**, *14* (5), 1601–1606. <https://doi.org/10.1002/chem.200701053>.
- (18) Qi, Y.; Zhang, J.; Kong, Y.; Zhao, Y.; Chen, S.; Li, D.; Liu, W.; Chen, Y.; Xie, T.; Cui, J.; Li, C.; Domen, K.; Zhang, F. Unraveling of Cocatalysts Photodeposited Selectively on Facets of BiVO₄ to Boost Solar Water Splitting. *Nat. Commun.* **2022**, *13* (1), 484. <https://doi.org/10.1038/s41467-022-28146-6>.

- (19) Li, R.; Zhang, F.; Wang, D.; Yang, J.; Li, M.; Zhu, J.; Zhou, X.; Han, H.; Li, C. Spatial Separation of Photogenerated Electrons and Holes among {010} and {110} Crystal Facets of BiVO₄. *Nat. Commun.* **2013**, *4* (1), 1432. <https://doi.org/10.1038/ncomms2401>.
- (20) Zhao, Y.; Ding, C.; Zhu, J.; Qin, W.; Tao, X.; Fan, F.; Li, R.; Li, C. A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts. *Angew. Chem. Int. Ed.* **2020**, *59* (24), 9653–9658. <https://doi.org/10.1002/anie.202001438>.
- (21) Deng, Y.; Zhou, H.; Zhao, Y.; Yang, B.; Shi, M.; Tao, X.; Yang, S.; Li, R.; Li, C. Spatial Separation of Photogenerated Charges on Well-Defined Bismuth Vanadate Square Nanocrystals. *Small* **2022**, *18* (5), 2103245. <https://doi.org/10.1002/smll.202103245>.
- (22) Xie, Z.; Tan, H. L.; Wu, H.; Amal, R.; Scott, J.; Ng, Y. H. Facet-Dependent Spatial Charge Separation with Rational Cocatalyst Deposition on BiVO₄. *Mater. Today Energy* **2022**, *26*, 100986. <https://doi.org/10.1016/j.mtener.2022.100986>.
- (23) Vayssieres, L.; Beermann, N.; Lindquist, S.-E.; Hagfeldt, A. Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides. *Chem. Mater.* **2001**, *13* (2), 233–235. <https://doi.org/10.1021/cm001202x>.
- (24) A. Santori, E.; Iii, J. R. M.; J. Bierman, M.; C. Strandwitz, N.; D. Kelzenberg, M.; S. Brunschwig, B.; A. Atwater, H.; S. Lewis, N. Photoanodic Behavior of Vapor-Liquid-Solid-Grown, Lightly Doped, Crystalline Si Microwire Arrays. *Energy Environ. Sci.* **2012**, *5* (5), 6867–6871. <https://doi.org/10.1039/C2EE03468A>.
- (25) Deng, J.; Su, Y.; Liu, D.; Yang, P.; Liu, B.; Liu, C. Nanowire Photoelectrochemistry. *Chem. Rev.* **2019**, *119* (15), 9221–9259. <https://doi.org/10.1021/acs.chemrev.9b00232>.

- (26) Lei, M.; Liu, J.; Huang, Y.; Dong, Y.; Zhou, S.; Zhao, H.; Wang, Z.; Wu, M.; Lei, Y.; Wang, Z. The Optimization of Optical Modes in Ni-BiVO₄ Nanoarrays for Boosting Photoelectrochemical Water Splitting. *Nanotechnology* **2019**, *30* (44), 445403. <https://doi.org/10.1088/1361-6528/ab350d>.
- (27) Liu, B.; Wu, C.-H.; Miao, J.; Yang, P. All Inorganic Semiconductor Nanowire Mesh for Direct Solar Water Splitting. *ACS Nano* **2014**, *8* (11), 11739–11744. <https://doi.org/10.1021/nn5051954>.
- (28) Yu, M.; Shang, C.; Ma, G.; Meng, Q.; Chen, Z.; Jin, M.; Shui, L.; Zhang, Y.; Zhang, Z.; Yuan, M.; Wang, X.; Zhou, G. Synthesis and Characterization of Mesoporous BiVO₄ Nanofibers with Enhanced Photocatalytic Water Oxidation Performance. *Appl. Surf. Sci.* **2019**, *481*, 255–261. <https://doi.org/10.1016/j.apsusc.2019.03.056>.
- (29) Wei, J.; Wang, H.; Kang, C.; Ye, X.; Wu, Y.; Liu, B.; Song, C. The Electrospun-Assisted Assembly of Bismuth-Modified BiVO₄ Porous Nanofibers with Enhanced Photocatalytic Performance. *New J. Chem.* **2022**, *46* (2), 798–807. <https://doi.org/10.1039/D1NJ04862G>.
- (30) Ro Yoon, K.; Wan Ko, J.; Youn, D.-Y.; Beum Park, C.; Kim, I.-D. Synthesis of Ni-Based Co-Catalyst Functionalized W:BiVO₄ Nanofibers for Solar Water Oxidation. *Green Chem.* **2016**, *18* (4), 944–950. <https://doi.org/10.1039/C5GC01588J>.
- (31) Liu, H.; Hou, H.; Gao, F.; Yao, X.; Yang, W. Tailored Fabrication of Thoroughly Mesoporous BiVO₄ Nanofibers and Their Visible-Light Photocatalytic Activities. *ACS Appl. Mater. Interfaces* **2016**, *8* (3), 1929–1936. <https://doi.org/10.1021/acsami.5b10086>.

- (32) Cheng, J.; Feng, J.; Pan, W. Enhanced Photocatalytic Activity in Electrospun Bismuth Vanadate Nanofibers with Phase Junction. *ACS Appl. Mater. Interfaces* **2015**, *7* (18), 9638–9644. <https://doi.org/10.1021/acsami.5b01305>.
- (33) Yue, S.; Chen, L.; Zhang, M.; Liu, Z.; Chen, T.; Xie, M.; Cao, Z.; Han, W. Electrostatic Field Enhanced Photocatalytic CO₂ Conversion on BiVO₄ Nanowires. *Nano-Micro Lett.* **2021**, *14* (1), 15. <https://doi.org/10.1007/s40820-021-00749-6>.
- (34) Su, J.; Guo, L.; Yoriya, S.; Grimes, C. A. Aqueous Growth of Pyramidal-Shaped BiVO₄ Nanowire Arrays and Structural Characterization: Application to Photoelectrochemical Water Splitting. *Cryst. Growth Des.* **2010**, *10* (2), 856–861. <https://doi.org/10.1021/cg9012125>.
- (35) Fang, D.; Cui, M.; Bao, R.; Yi, J.; Luo, Z. In-Situ Coating Polypyrrole on Charged BiVO₄ Nanowire Arrays to Improve Lithium-Ion Storage Properties. *Solid State Ion.* **2020**, *346*, 115222. <https://doi.org/10.1016/j.ssi.2020.115222>.
- (36) Fang, D.; Li, X.; Liu, H.; Xu, W.; Jiang, M.; Li, W.; Fan, X. BiVO₄-rGO with a Novel Structure on Steel Fabric Used as High-Performance Photocatalysts. *Sci. Rep.* **2017**, *7* (1), 7979. <https://doi.org/10.1038/s41598-017-07342-1>.
- (37) Eigermann, W.; Müller-Vogt, G.; Wendl, W. Solubility Curves in High-Temperature Melts for the Growth of Single Crystals of Rare Earth Vanadates and Phosphates. *Phys. Status Solidi A* **1978**, *49* (1), 145–148. <https://doi.org/10.1002/pssa.2210490117>.

- (38) Dunkle, S. S.; Helmich, R. J.; Suslick, K. S. BiVO₄ as a Visible-Light Photocatalyst Prepared by Ultrasonic Spray Pyrolysis. *J. Phys. Chem. C* **2009**, *113* (28), 11980–11983. <https://doi.org/10.1021/jp903757x>.
- (39) Tokunaga, S.; Kato, H.; Kudo, A. Selective Preparation of Monoclinic and Tetragonal BiVO₄ with Scheelite Structure and Their Photocatalytic Properties. *Chem. Mater.* **2001**, *13* (12), 4624–4628. <https://doi.org/10.1021/cm0103390>.
- (40) Hu, X.; Masuda, Y.; Ohji, T.; Kato, K. Low-Temperature Fabrication of ZnO Nanoarray Films by Forced Hydrolysis of Anhydrous Zinc Acetate Layer. *J. Cryst. Growth* **2009**, *311* (3), 597–600. <https://doi.org/10.1016/j.jcrysgro.2008.09.040>.
- (41) Malmros, G. The Crystal Structure of Alpha-Bi₂O₃. *Acta Chem. Scand.* **1970**, *24* (2), 384–396.
- (42) Kudo, A.; Omori, K.; Kato, H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO₄ Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. *J. Am. Chem. Soc.* **1999**, *121* (49), 11459–11467. <https://doi.org/10.1021/ja992541y>.
- (43) Tan, H. L.; Suyanto, A.; Denko, A. T. D.; Saputera, W. H.; Amal, R.; Osterloh, F. E.; Ng, Y. H. Enhancing the Photoactivity of Faceted BiVO₄ via Annealing in Oxygen-Deficient Condition. *Part. Part. Syst. Charact.* **2017**, *34* (4), 1600290. <https://doi.org/10.1002/ppsc.201600290>.

- (44) Daemi, S.; Kundmann, A.; Becker, K.; Cendula, P.; Osterloh, F. E. Contactless Measurement of the Photovoltage in BiVO_4 Photoelectrodes. *Energy Environ. Sci.* **2023**, *16* (10), 4530–4538. <https://doi.org/10.1039/D3EE02087H>.
- (45) Suzuki, H.; Kunioku, H.; Higashi, M.; Tomita, O.; Kato, D.; Kageyama, H.; Abe, R. Lead Bismuth Oxyhalides PbBiO_2X ($\text{X} = \text{Cl, Br}$) as Visible-Light-Responsive Photocatalysts for Water Oxidation: Role of Lone-Pair Electrons in Valence Band Engineering. *Chem. Mater.* **2018**, *30* (17), 5862–5869. <https://doi.org/10.1021/acs.chemmater.8b01385>.
- (46) Bamwenda, G. R.; Uesugi, T.; Abe, Y.; Sayama, K.; Arakawa, H. The Photocatalytic Oxidation of Water to O_2 over Pure CeO_2 , WO_3 , and TiO_2 Using Fe^{3+} and Ce^{4+} as Electron Acceptors. *Appl. Catal. Gen.* **2001**, *205* (1), 117–128. [https://doi.org/10.1016/S0926-860X\(00\)00549-4](https://doi.org/10.1016/S0926-860X(00)00549-4).
- (47) Hermans, Y.; Murcia-López, S.; Klein, A.; Krol, R. van de; Andreu, T.; Morante, J. R.; Toupane, T.; Jaegermann, W. Analysis of the Interfacial Characteristics of BiVO_4 /Metal Oxide Heterostructures and Its Implication on Their Junction Properties. *Phys. Chem. Chem. Phys.* **2019**, *21* (9), 5086–5096. <https://doi.org/10.1039/C8CP07483F>.
- (48) Miseki, Y.; Sayama, K. Highly Efficient Fe(III) Reduction and Solar-Energy Accumulation over a BiVO_4 Photocatalyst. *Chem. Commun.* **2018**, *54* (21), 2670–2673. <https://doi.org/10.1039/C8CC00257F>.
- (49) Shen, M.; Kaufman, A. J.; Huang, J.; Price, C.; Boettcher, S. W. Nanoscale Measurements of Charge Transfer at Cocatalyst/Semiconductor Interfaces in BiVO_4 Particle Photocatalysts. *Nano Lett.* **2022**, *22* (23), 9493–9499. <https://doi.org/10.1021/acs.nanolett.2c03592>.

- (50) Kato, H.; Asakura, K.; Kudo, A. Highly Efficient Water Splitting into H₂ and O₂ over Lanthanum-Doped NaTaO₃ Photocatalysts with High Crystallinity and Surface Nanostructure. *J. Am. Chem. Soc.* **2003**, *125* (10), 3082–3089. <https://doi.org/10.1021/ja027751g>.
- (51) Ohno, T.; Sarukawa, K.; Matsumura, M. Crystal Faces of Rutile and Anatase TiO₂ Particles and Their Roles in Photocatalytic Reactions. *New J. Chem.* **2002**, *26* (9), 1167–1170. <https://doi.org/10.1039/B202140D>.
- (52) Mu, L.; Zeng, B.; Tao, X.; Zhao, Y.; Li, C. Unusual Charge Distribution on the Facet of a SrTiO₃ Nanocube under Light Irradiation. *J. Phys. Chem. Lett.* **2019**, *10* (6), 1212–1216. <https://doi.org/10.1021/acs.jpclett.9b00243>.
- (53) Mu, L.; Zhao, Y.; Li, A.; Wang, S.; Wang, Z.; Yang, J.; Wang, Y.; Liu, T.; Chen, R.; Zhu, J.; Fan, F.; Li, R.; Li, C. Enhancing Charge Separation on High Symmetry SrTiO₃ Exposed with Anisotropic Facets for Photocatalytic Water Splitting. *Energy Environ. Sci.* **2016**, *9* (7), 2463–2469. <https://doi.org/10.1039/C6EE00526H>.
- (54) Xie, Y. P.; Liu, G.; Yin, L.; Cheng, H.-M. Crystal Facet-Dependent Photocatalytic Oxidation and Reduction Reactivity of Monoclinic WO₃ for Solar Energy Conversion. *J. Mater. Chem.* **2012**, *22* (14), 6746–6751. <https://doi.org/10.1039/C2JM16178H>.
- (55) Liu, G.; Yu, J. C.; Lu, G. Q. (Max); Cheng, H.-M. Crystal Facet Engineering of Semiconductor Photocatalysts: Motivations, Advances and Unique Properties. *Chem. Commun.* **2011**, *47* (24), 6763–6783. <https://doi.org/10.1039/C1CC10665A>.

- (56) Assavachin, S.; Xiao, C.; Becker, K.; Osterloh, F. E. Facets Control Charge Separation during Photoelectrochemical Water Oxidation with Strontium Titanate (SrTiO_3) Single Crystals. *Energy Environ. Sci.* **2024**, *17* (10), 3493–3502. <https://doi.org/10.1039/D3EE04308H>.
- (57) Mori, K.; Verma, P.; Hayashi, R.; Fuku, K.; Yamashita, H. Color-Controlled Ag Nanoparticles and Nanorods within Confined Mesopores: Microwave-Assisted Rapid Synthesis and Application in Plasmonic Catalysis under Visible-Light Irradiation. *Chem. – Eur. J.* **2015**, *21* (33), 11885–11893. <https://doi.org/10.1002/chem.201501361>.
- (58) Seabold, J. A.; Zhu, K.; Neale, N. R. Efficient Solar Photoelectrolysis by Nanoporous Mo:BiVO₄ through Controlled Electron Transport. *Phys. Chem. Chem. Phys.* **2013**, *16* (3), 1121–1131. <https://doi.org/10.1039/C3CP54356K>.
- (59) Antony, R. P.; Bassi, P. S.; Abdi, F. F.; Chiam, S. Y.; Ren, Y.; Barber, J.; Loo, J. S. C.; Wong, L. H. Electrospun Mo-BiVO₄ for Efficient Photoelectrochemical Water Oxidation: Direct Evidence of Improved Hole Diffusion Length and Charge Separation. *Electrochimica Acta* **2016**, *211*, 173–182. <https://doi.org/10.1016/j.electacta.2016.06.008>.
- (60) Iwase, A.; Kato, H.; Kudo, A. A Simple Preparation Method of Visible-Light-Driven BiVO₄ Photocatalysts from Oxide Starting Materials (Bi_2O_3 and V_2O_5) and Their Photocatalytic Activities. *J. Sol. Energy Eng.* **2010**, *132* (021106). <https://doi.org/10.1115/1.4001172>.
- (61) Abbood, H. A.; Alabdie, A.; Al-Hawash, A.; Abbood, A. A.; Huang, K. Fabrication of Double-Sided Comb-like F/Ce Co-Doped BiVO₄ Micro/Nanostructures for Enhanced Photocatalytic Degradation and Water Oxidation. *J. Nanoparticle Res.* **2020**, *22* (4), 78. <https://doi.org/10.1007/s11051-020-04792-z>.

- (62) He, B.; Li, Z.; Zhao, D.; Liu, H.; Zhong, Y.; Ning, J.; Zhang, Z.; Wang, Y.; Hu, Y. Fabrication of Porous Cu-Doped BiVO₄ Nanotubes as Efficient Oxygen-Evolving Photocatalysts. *ACS Appl. Nano Mater.* **2018**, *1* (6), 2589–2599. <https://doi.org/10.1021/acsanm.8b00281>.
- (63) Hu, J.; He, H.; Li, L.; Zhou, X.; Li, Z.; Shen, Q.; Wu, C.; Asiri, A. M.; Zhou, Y.; Zou, Z. Highly Symmetrical, 24-Faceted, Concave BiVO₄ Polyhedron Bounded by Multiple High-Index Facets for Prominent Photocatalytic O₂ Evolution under Visible Light. *Chem. Commun.* **2019**, *55* (33), 4777–4780. <https://doi.org/10.1039/C9CC01366K>.

Data Availability

Data in support of the conclusions of this study is presented in the manuscript and in the Supporting Information section. This data is also available from the corresponding authors upon reasonable request.