
High-throughput Screening of Mechanically Interlocked Catenane Metal Complexes for Enhanced Electrocatalytic Activity

Journal:	<i>Journal of Materials Chemistry A</i>
Manuscript ID	TA-ART-09-2024-006497.R1
Article Type:	Paper
Date Submitted by the Author:	02-Nov-2024
Complete List of Authors:	Tamtaji, Mohsen; Hong Kong Quantum AI Lab Ltd Goddard III, William; California Institute of Technology Chen, Guanhua; Hong Kong Quantum AI Lab Limited; The University of Hong Kong, Department of Chemistry

SCHOLARONE™
Manuscripts

1 **High-throughput Screening of Mechanically Interlocked Catenane Metal**
2 **Complexes for Enhanced Electrocatalytic Activity**
3

4 *Mohsen Tamtaji¹, William A. Goddard III^{2*}, GuanHua Chen^{1,3*}*

5
6 ¹Hong Kong Quantum AI Lab Limited, Pak Shek Kok, Hong Kong SAR, 999077, China

7 ²Materials and Process Simulation Center (MSC), MC 139-74, California Institute of
8 Technology, Pasadena CA, 91125, USA

9 ³Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR,
10 999077, China

11
12 *Corresponding Authors, email: ghc@everest.hku.hk and wag@caltech.edu

1 Abstract

2 Metal complexes have been thoroughly studied for various electrochemical reactions.
3 Mechanically interlocked molecular machines, however, have not been studied for
4 electrochemistry. In this study, we apply the concept of mechanically interlocked Catenane metal
5 complexes with a dynamic coordination environment around the metal center for hydrogen
6 evolution reaction (HER), CO₂ reduction reaction (CO₂RR), oxygen evolution reaction (OER),
7 and/or oxygen reduction reaction (ORR). We utilized density functional theory (DFT) to perform
8 a systematic high-throughput screening on 3d transition metals supported by Catenane metal
9 complexes denoted as M(II)_{CN6} and Co(I)_{CNx=4,5,6}. We found that among all the 3d transition
10 metals, only monovalent Co(I) is suitable as an application as a molecular machine. Target
11 catalysts aimed at high electrochemical as well as thermodynamic stabilities besides low HER,
12 CO₂RR, OER, and ORR overpotentials. DFT results show that HER takes place on neighboring
13 nitrogen atoms of Cu(II)_{CN6} with an overpotential of 0.27 V. In addition, CO₂RR, OER, and ORR
14 take place on the metal active sites of Ti(II)_{CN6}, Co(II)_{CN6}, and Cr(II)_{CN6}, with overpotentials of
15 1.12, 0.81, and 0.36 V, respectively. This work brings fundamental understandings into the
16 discovery of state-of-the-art electrocatalysts by introducing the idea of a dynamic coordination
17 environment.

18 **Keywords:** Molecular Machine, ORR, OER, HER, CO₂RR

1 **Introduction**

2 Mechanically interlocked molecules such as Catenanes consist of interlocked macrocycles^{1,2}
3 usually with a metal center that is surrounded by the interlocked coordination ligands.^{3–6} These
4 interlocked macrocycles possess a high degree of motion freedom around the metal center that
5 may be controlled using external stimuli such as light, pH, or applied potential depending on the
6 structure of the Catenane, the size of macrocycles, and the metal center.^{7,8} The Catenane metal
7 complex is highly stable thermodynamically and electrochemically because of the mechanical
8 chelation,⁹ positioning it as a promising candidate toward sustainable and efficient catalytic
9 processes. Recent advancements in the field of Catenane metal complexes have demonstrated their
10 potential in various catalytic applications due to their unique structural properties and dynamic
11 behavior. The dynamic motions around the metal center present the opportunity to tune the
12 interlocked coordination ligands,^{10–13} electrocatalytic activity, and selectivity of the metal center.
13 These positive attributes involving various catalytic aspects create pathways for advancing
14 mechanical interlocking as an innovative approach to designing transition metal electrocatalysts.
15 Despite the difficulties in experimentally synthesizing Catenane metal complexes and their low
16 reaction yields,⁷ their long-standing applications have recently led to the use of Catenane-
17 coordinated transition metal complexes in chemical reactions such as electrocatalysis, cross-
18 coupling, and photocatalysis.^{9,14–18} For example, a two-dimensional metal-organic layer with
19 anchored Cu(I) Catenane complexes is experimentally synthesized for high-fidelity cross-coupling
20 reactions.¹⁵ Catenane ligands ensure that Cu(I) is well-defined within its coordination
21 environment and is kinetically stable, avoiding the uncontrolled creation of oxidized copper active
22 sites and ensuring exclusive C–O coupling of substrates. In another work, a mechanically
23 interlocked Catenane Cu(I) complex for the oxygen reduction reaction (ORR) was studied
24 theoretically with the DFT-calculated overpotential of 1.81 V_{RHE} and synthesized with the

1 experimental overpotential of 0.84 V_{RHE} at -1 mA/cm² current density.⁹ This work indicates that
2 the isolation by two macromolecular rings does not prevent the Cu (I) metal center from being
3 electrochemically active and the high-coordinated Cu (I) metal center can act as a catalytic site for
4 the ORR.

5 Metal complexes such as single atom catalysts or molecular metal complexes for energy storage
6 and conversion applications are of vital importance for the electrochemical ORR, the oxygen
7 evolution reaction (OER), the hydrogen evolution reaction (HER), and the CO₂ reduction reaction
8 (CO₂RR).^{19–27} CO₂RR as a room temperature energy conversion approach can reduce
9 anthropogenic emissions of CO₂ while producing value-added products.^{25,28} ORR, OER, and HER
10 are the main components of rechargeable metal-air battery and fuel cell applications for energy
11 storage applications^{29,30,39,31–38} Recently, a substantial amount of effort has been invested in
12 designing metal complexes for electrochemistry through high-throughput screening.⁴⁰ For
13 example, an FeRu metal complex was explored theoretically followed experimental synthesis for
14 bifunctional ORR and OER along with rechargeable zinc-air battery application.²⁹ However, the
15 coordination environment of these metal complexes remains static (non-dynamic) so that
16 achieving changes in the catalytic activity of these complexes necessitates modifications to the
17 coordination environment during their synthesis process. In addition, the scaling relationship limit
18 hinders the development of these metal complexes toward enhanced catalytic activities.⁴¹
19 Therefore, to overcome the limitation on the non-dynamic environment around the metal active
20 site and address the scaling relationship limits, we have used the Catenane metal complexes.
21 Catenane metal complexes offer a unique advantage in modifying the activity of metal centers
22 through the motion of macromolecules that change the metals' coordination environment. This
23 strategic design of Catenane metal complexes with a dynamic coordination environment requires

1 systematic and in-depth investigations on the ORR, OER, CO₂RR, and HER mechanisms along
2 with the synthesizability and stability of these catalysts. As far as we know, no Catenane metal
3 complex has yet been systematically examined for OER, ORR, HER, and CO₂RR. Can all the 3d
4 transition metals serve as the metal center? What is the catalytic stability and activity of 3d
5 transition metals towards ORR, OER, CO₂RR, and HER?

6 In this work, we use mechanically interlocked molecules for several electrochemical reactions
7 through high-throughput computational screening. We investigate a series of metal complexes
8 labeled containing 3d transition metals. We discover that the Ti(II)_{CN6} is appropriate for CO₂RR,
9 Cu(II)_{CN6} is appropriate for HER, Cr(II)_{CN6} is appropriate for ORR, and Co(II)_{CN6} is appropriate
10 for OER, mainly because of the weakening of scaling relationship limit. This provides an in-depth
11 investigation of mechanically interlocked Catenanes for electrochemical reactions and beyond.

12

13 **Materials and Methods**14 **Density Functional Theory (DFT) Calculations Details**

15 We used density functional theory (DFT) calculations in Vienna ab initio Simulation Package
16 (VASP, version 6.1.0) code.^{42,43} The spin-polarized DFT calculations was performed using
17 Perdew-Burke-Ernzerhof (PBE) functional^{23,44}. While PBE functional has its deficiency in
18 calculating the adsorption energy of carbon-containing intermediates, it has been effectively
19 employed to investigate CO₂RR and CORR mechanisms,⁴⁵ showing good agreement with
20 experimental results found in the literature.⁴⁶ We used DFT-D3 correction with the Becke-Johnson
21 damping function to apply van der Waals (London dispersion) interactions.⁴⁷ We used VASPsol
22 code with the water dielectric constant ($\epsilon=78.4$).

23 As depicted in **Figure 1a**, we constructed a single Catenane molecule with a metal single atom at
24 the center. A box with the size of 27.96 Å×21.56 Å×21.56 Å was used along the x, y, and z

1 directions to minimize interactions between periodic images. A plane wave energy cutoff of 500
2 eV is utilized and the Brillouin zone is sampled by using the $1 \times 1 \times 1$ Monkhorst-Pack k-point
3 scheme. The force and energy convergence criteria were set to $0.02 \text{ eV}\text{\AA}^{-1}$ and 10^{-5} eV ,
4 respectively, for the structural relaxations. In addition, the energy convergence criterion was set to
5 10^{-6} eV for the single-point energy calculations. The vibrational frequency and entropy
6 calculations were conducted to consider the Zero-point, enthalpic, and entropic contributions of
7 phonons at 298.15 K .²³

8

9 **Results and discussion**

10 The mechanically interlocked $M(I \text{ or } II)_{CNx=4,5,6}$ structure where M represents 3d transition metals
11 and x stands for the number of neighboring nitrogen atoms around the metal center, can enhance
12 electrochemical reactions. The side view of the $M(I \text{ or } II)_{CNx=4,5,6}$ structure is depicted in **Figure 1a**, where M is Ti, V, Cr, Fe, Mn, Co, Cu, Ni, or Zn. Moreover, the structure of one macrocycle
13 denoted as $M(I \text{ or } II)_{CNx=2,3}$ is shown in **Figure S1**. The thermodynamic stability as well as
14 electrochemical stability of these Catenane metal complexes were examined by calculating
15 formation energy ($E_{\text{formation}}$) as well as dissociation potential (U_{diss}), respectively:²³

$$E_{\text{formation}} = E_{M(I \text{ or } II)CN_{x=4,5,6}} - E_{CNx} - E_M^{\text{bulk}} \quad (1)$$

$$U_{\text{diss}} = U_{\text{diss}}^0(M - \text{bulk}) - \frac{E_{\text{formation}}}{N_e} \quad (2)$$

17 where $E_{M(I \text{ or } II)CN_{x=4,5,6}}$ and E_{CNx} are the total energy of $M(I \text{ or } II)_{CNx=4,5,6}$ with and without the
18 metal center, respectively. The metal atom's total energy in its most stable bulk form, the standard
19 dissolution potential of the metal in its bulk structure, and the number of electrons that participated
20 in the dissolution process are denoted as E_M^{bulk} , U_{diss}^0 , and N_e , respectively (Supporting
21 Information). **Figure S2** demonstrates the dissociation potential versus formation energy of $M(I$

1 or II)_{CN_x=2,3,4,5,6}. All metal complexes are thermodynamically and electrochemically stable since
2 they meet the $U_{diss} > 0$ and $E_{formation} < 0$ criteria. It is worth mentioning that, to further validate the
3 stability of the Catenanes structure, other methods such as machine learning or kinetic simulations
4 might be needed.^{48,49} **Figure 1b** displays the dissolution potential and formation energy for M(I or
5 II)_{CN_x=2,3,4,5,6} versus the number of nitrogen atoms neighboring the metal. CN6 metal complexes
6 are more electrochemically and thermodynamically stable among all metal complexes because of
7 their more positive dissociation potential and more negative formation energy, respectively.

8 **Figure 1c** shows the change in the energy of M(I or II)_{CN_x=4,5,6} with different numbers of nitrogen
9 atoms. We see that except for monovalent Cu(I), all divalent metals, M(II), possess more negative
10 energy for CN6 than for CN4 and CN5 by at least -0.5 eV. Therefore, we considered only the CN6
11 structure for all divalent metals for further catalytic calculations (M(II)_{CN6}). Interestingly, for the
12 only monovalent 3d metal, Cu(I), the CN5 structure is the more stable configuration. In
13 comparison, the CN4 and CN6 structures have energy levels that are 0.22 and 0.51 eV higher,
14 respectively. Therefore, we conclude that the Cu(I) metal complex can go through the co-
15 deformation by applying positive or negative voltages and act as the molecular machine. This is
16 consistent with a very old publication explaining the alteration in the coordination environment of
17 Cu(I) as a function of applied potential. Therefore, for monovalent Cu(I), we consider all CN4,
18 CN5, and CN6 structures for further activity calculations (Cu(I)_{CN_x=4,5,6}).

19 **Figure 1d** shows formation energies and dissociation potentials against the number of d orbital
20 electrons. This volcano plot indicates the minimum formation energy at d electron number of 9
21 (highlighted by blue color) and the lowest dissolution potential at d electron number of 6
22 (highlighted by pink color). **Table S1** provides the values for the metals' dissolution potential,
23 formation energy, and oxidation states. Cu(I)_{CN_x=4,5,6} and Cu(II)_{CN6} possess less thermodynamic

1 stability because they possess less negative formation energies. Besides the formation energy of
2 $M(I \text{ or } II)_{CNx=4,5,6}$, the formation energy of metal-free CN4, CN5, and CN6 Catenane structures are
3 calculated to be -7.00, -7.14, and -6.63 eV, respectively, with the two individual macrocycles as
4 the reference, suggesting thermodynamic stability of the metal-free Catenane.

5 Following a comprehensive study on the electrochemical as well as thermodynamic stabilities of
6 the Catenane metal complexes, we calculated the Gibbs free energies (ΔG) of reaction
7 intermediates, including H, OOH, O, OH, OO, COO, COH, COOH, and CO, to evaluate their
8 electrochemical activities. These Gibbs free energies are obtained as follows:

$$\Delta G_{\text{int.}} = E_{\text{int.}@M(I \text{ or } II)CN_{x=4,5,6}} - E_{M(I \text{ or } II)CN_{x=4,5,6}} - N_{CO_2}E_{CO_2} - N_{H_2}E_{H_2} \quad (3)$$
$$+ M_{H_2O}E_{H_2O} + \Delta E_{ZPE} - T\Delta S$$

9 where E_{CO_2} , E_{H_2O} , and E_{H_2} represent the energy of $CO_2(g)$, $H_2O(g)$, and $H_2(g)$, respectively. N_{CO_2} ,
10 N_{H_2O} , and N_{H_2} represent the stoichiometric quantities of $CO_2(g)$, $H_2O(g)$, and $H_2(g)$, respectively.
11 $E_{M(I \text{ or } II)CN_{x=4,5,6}}$ and $E_{\text{int.}@M(I \text{ or } II)CN_{x=4,5,6}}$ are the total energy of $M(I \text{ or } II)_{CNx=4,5,6}$ in the absence
12 and presence of adsorbed intermediate (int.), respectively. ΔE_{ZPE} and $T\Delta S$ are the zero-point
13 energy (ZPE) and the entropy corrections, respectively, and T is the absolute temperature (=298.15
14 K), respectively.⁵⁰

15 **Figure 2a** illustrates ΔG of H, OOH, O, OH, COO, COOH, COH, and CO reaction
16 intermediates for $Cu(I)_{CNx=4,5,6}$ and $M(II)_{CN6}$. **Figure S4** displays a histogram of Gibbs free energy
17 variation with 130 data points. The average is 2.55 eV, the skewness is 0.20, and the standard
18 deviation is 1.68 eV. **Figure 2b** displays a box plot of ΔG variation for each reaction intermediate,
19 highlighting their standard deviation as well as average. The O, COH, and OH possess the largest
20 standard deviations (1.47, 1.03, and 0.88 eV). In contrast, the more neutral intermediates such as

1 COO, CO, and OO possess the lower standard deviations (0.11, 0.11, and 0.19 eV) and smaller
2 alteration in ΔG .

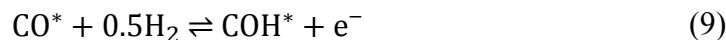
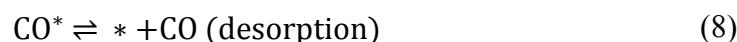
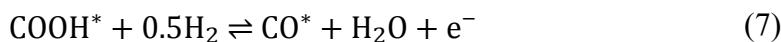
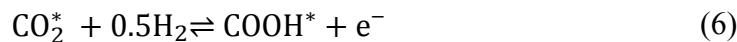
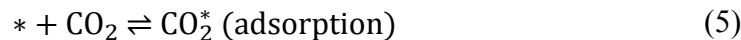
3 To examine the scaling relationship limit, a key issue in designing advanced CO₂RR, HER, ORR,
4 and OER electrocatalysts, we conducted a linear regression for the ΔG of H, OO, OOH, O, OH,
5 COO, COOH, COH, and CO intermediates. **Figure 2c-d** indicates that the scaling relationship
6 among the intermediates is weak, matching a previous report.^{51,52} **Table S2** presents the R² values
7 and linear relationship coefficients between the ΔG of H, OO, OOH, O, COO, COOH, COH, and
8 CO intermediates and ΔG of OH intermediate. The R² values for the intermediates' dependency
9 on ΔG_{OH} are below 0.84, indicating a weakened scaling relationship compared to single atom metal
10 complexes, which have R² values close to 0.99 as previously reported.^{23,53} This allows for
11 independent adjustment of the Gibbs free energy of a specific intermediate.⁵⁴ However, this
12 weakened scaling relationship doesn't allow us to achieve a universal descriptor to define the
13 electrocatalytic activity of our metal complexes. Consequently, due to the weakened scaling
14 relationship, designing mechanically interlocked metal complexes could be an effective strategy
15 to overcome this limitation, potentially leading to highly active and selective electrocatalysts.

16 According to the Gibbs free energy values, we calculated the overpotentials for CO₂RR, HER,
17 ORR, and OER. **Figure 3a** shows the high-throughput screening and **Figure 3b** shows a volcano
18 plot of DFT-calculated CO₂RR, HER, ORR, and OER overpotentials against the number of d
19 orbital electrons. **Figure S5** shows the DFT-predicted CO₂RR, HER, ORR, and OER
20 overpotentials versus ΔG_{OH} . This shows that Ti(II)_{CN6}, Cu(II)_{CN6}, Cr(II)_{CN6}, and Co(II)_{CN6} possess
21 less overpotential for CO₂RR, HER, ORR, and OER, respectively.

22

23 **Hydrogen Evolution Reaction (HER)**

24 We investigated the HER on M(II)_{CN6} and Cu(I)_{CNx=4,5,6} through the following fundamental step:⁵⁴

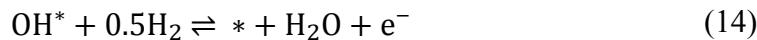
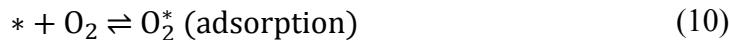
1 Too strong hydrogen binding deactivates and poisons the metal sites, and too weak hydrogen
 2 binding prevents H atoms from attaching to the metal sites, hindering their ability to perform
 3 HER.⁵⁵ Thus, a catalyst with a ΔG_{H} closer to 0 would exhibit high activity for HER. **Figure 4a**
 4 displays HER profiles for metal complexes, indicating that HER on $\text{Cu}(\text{II})_{\text{CN}6}$ leads to an
 5 overpotential of $\eta^{\text{HER}} = |\Delta G_{\text{H}}|/e = 0.27 \text{ V}_{\text{RHE}}$. **Figure 4b** displays the side view of H intermediate
 6 on the neighboring nitrogen site of $\text{Cu}(\text{II})_{\text{CN}6}$ indicating that HER takes place on the neighboring
 7 nitrogen atoms rather than on the metal site.

8

9 ***CO₂ reduction Reaction (CO₂RR) towards CO production***

10 We investigated the 2-electron transfer towards CO formation for CO₂RR at room temperature on
 11 $\text{M}(\text{II})_{\text{CN}6}$ and $\text{Cu}(\text{I})_{\text{CN}x=4,5,6}$ through the following fundamental steps:⁵⁶

12 Before investigating the CO₂RR mechanism in-depth, the competitive HER should be studied. Too
 13 strong hydrogen binding deactivates and poisons the metal sites, hindering their ability to perform
 14 CO₂RR. Thus, a catalyst that weakly binds H but strongly adsorbs CO₂ might achieve high CO₂RR
 15 selectivity. The adsorption energy of H intermediate would show stronger over the neighboring
 16 nitrogen atoms (**Figure S7**), while CO₂RR intermediates tend to be more stable over the metal
 17 active site for all the metal complexes. **Figure 5a** displays ΔG_{CO_2} against ΔG_{H} , indicating that CO₂
 18 binds more strongly to the metal centers than H does to the neighboring nitrogen atoms, except for



1 Cu(II)_{CN6} and Co(II)_{CN6}. Therefore, all metal complexes except for Cu(II)_{CN6} and Co(II)_{CN6}, show
2 selective HER over CO₂RR. Among these catalysts, Ti(II)_{CN6} leads to the minimum CO₂RR
3 overpotential.

4 **Figure 5b** displays the CO₂RR pathway for the Ti(II)_{CN6}. The green color indicates the potential-
5 determining step (PDS), which represents the step that has undergone the maximum free energy
6 change in the course of the electrochemical process. This shows that Ti(II)_{CN6} possesses a low
7 overpotential of $(\Delta G_{COOH} - \Delta G_{*+CO_2})/e = 1.12$ V with the $* + CO_2 \xrightarrow{H^+ + e^-} COOH^*$ step as PDS
8 towards CO production. The inset displays the side view of 0.27 e⁻ Bader charge transfer from
9 Ti(II)_{CN6} to COOH with the Isosurface value of 0.005 e/Å³. Blue color shows the region of charge
10 deficiency and yellow color shows the region of charge availability. Ti(II)_{CN6} possesses preferable
11 CO₂RR selectivity to HER selectivity, with exothermic CO desorption and low CO₂RR
12 overpotential. It is important to note that other reaction pathways toward C1 reaction products⁵⁷
13 are not possible. According to **Figure 5b**, the release of CO is spontaneous and exothermic,^{58,59}
14 while the hydrogenation of the CO intermediate is not favorable to produce a COH intermediate
15 towards C1 products. **Figure 5c-d** shows the partial density of states (PDOS) of 3d_{x2-y2}, 3d_{z2}, 3d_{xz},
16 3d_{xy}, and 3d_{yz} orbitals of Ti active site in Ti(II)_{CN6} in the absence and presence of COOH. **Figure**
17 **S8** shows the p_y, p_z, and p_x orbitals of the O atom in COOH intermediate adsorbed on Ti(II)_{CN6}.
18 Therefore, the 3d orbitals of the Ti active site form a bonding orbital (σ) at $E - E_f = -1.9$ eV with the
19 p_y, p_z, and p_x orbitals of the O atom in the COOH intermediate and an anti-bonding orbital at $E -$
20 $E_f = 3.24$ eV with the p_y and p_z orbitals of the O atom in the COOH intermediate.

21

22 **Oxygen Evolution and Reduction Reactions (OER and ORR)**

1 We studied the OER and ORR mechanisms by examining the backward and forward directions of
 2 the following electrochemical steps:⁵⁴

3 Similar to CO₂RR, the OER and ORR prefer to occur on the metal active site. **Figure 6a** displays
 4 the ORR pathway for Cr(II)_{CN6} with an ORR overpotential of 0.36 V_{RHE}. This is comparable to the
 5 DFT-calculated ORR overpotentials of 1.81, 0.56, 0.38, 0.44, 0.43, 0.33, and 0.34 V for Cu(I)-
 6 Catenane⁹, FeN4-SAC²³, FeFeN6-DAC⁵⁴, FeCoNiRu-HESAC²³, the benchmark Pt (111)⁶⁰,
 7 CoRu@N8V4⁶¹, and CoCuN6-gra(OH)⁶².

8 **Figure 6a** shows that the protonation of OH to produce and release H₂O is the rate-determining
 9 step (RDS). **Figure 6b** displays the side view of 0.42 e⁻ Bader charge transfer from Cr(II)_{CN6} to
 10 the OH with the Isosurface value of 0.005 e/Å³. Blue color shows the region of charge deficiency
 11 and yellow color shows the region of charge availability. **Figure 6c-d** shows the PDOS of 3d_{x2-y2},
 12 3d_{z2}, 3d_{xz}, 3d_{xy}, and 3d_{yz} orbitals of the Cr active site in Cr(II)_{CN6} in the presence and absence
 13 of OH. The 3d orbitals of the Cr active site form a bonding orbital (σ) at E-E_f=-3.9 eV and an anti-
 14 bonding orbital at E-E_f=3.9 eV with the p orbital of the O atom in OH intermediate.

15 **Figure 7a** displays the OER pathway for Co(II)_{CN6} with an OER overpotential of 0.81 V_{RHE},
 16 comparable with DFT-calculated OER overpotential of 1.76 V_{RHE} for Cu(I)-Catenane.⁹ **Figure 7a**
 17 indicates that the deprotonation of H₂O to produce OH intermediate is the OER rate-determining
 18 step (RDS). **Figure 7b** shows the side view of 0.45 e⁻ Bader charge transfer from Co(II)_{CN6} to the
 19 OH intermediate with the Isosurface value of 0.005 e/Å³. Blue color shows the region of charge

1 deficiency and yellow color shows the region of charge availability. **Figure 7c-d** shows the PDOS
2 of $3d_{x^2-y^2}$, $3d_{z^2}$, $3d_{xz}$, $3d_{xy}$, and $3d_{yz}$ orbitals of the Co active site in $\text{Co}(\text{II})_{\text{CN}6}$ in the presence of OH
3 intermediate. The 3d orbitals of the Co active site form a bonding orbital (σ) at $E-E_f=-4.2$ eV and
4 anti-bonding orbitals at $E-E_f=0.8$ eV and $E-E_f=1.0$ eV with the p orbital of the O atom in OH
5 intermediate.

6

7 Conclusion

8 This work introduces deep insights into the discovery of mechanically interlocked molecular
9 machines such as dimeric, trimeric, and multimeric Catenanes by applying the concept of
10 a dynamic coordination environment for electrochemistry at room temperature. Metal complexes
11 are extensively reported for electrochemical reactions. Mechanically interlocked molecular
12 machines, however, have not been systematically studied for electrochemistry using high-
13 throughput screening. Thus, we use mechanically interlocked Catenane metal complexes with a
14 dynamic coordination environment for hydrogen evolution reaction (HER), CO_2 reduction
15 reaction (CO₂RR), oxygen evolution reaction (OER), and/or oxygen reduction reaction (ORR).
16 Applying density functional theory (DFT), the thermodynamic and electrochemical stabilities of
17 Catenane metal complexes denoted as $\text{M}(\text{II})_{\text{CN}6}$ and $\text{Co}(\text{I})_{\text{CN}x=4,5,6}$ are studied. Meanwhile, HER on
18 the neighbor nitrogen atoms of $\text{Cu}(\text{II})_{\text{CN}6}$ proceeds at overpotentials as low as 0.27
19 V. The CO₂RR, ORR, and OER occur on the metal active sites of $\text{Ti}(\text{II})_{\text{CN}6}$, $\text{Cr}(\text{II})_{\text{CN}6}$, and
20 $\text{Co}(\text{II})_{\text{CN}6}$, at the overpotentials of 1.12, 0.36, and 0.37 V. In summary, the comprehensive DFT
21 calculations presented in this work pave the way for further experimental efforts by the community,
22 despite challenges and difficulties in achieving high yields when synthesizing these mechanically
23 interlocked metal complexes.

24

1 **Associated Content**

2 **Supporting Information**

3 Formation energies, scaling relationships, overpotentials, and additional figures as mentioned in
4 the text (Word).

5 POSCAR and CONTCAR files of all the relaxed structures obtained in this work (zip file).

6 **Conflicts of interest**

7 The authors respectfully declare that there are no conflicts of interest to acknowledge for this
8 research.

9

10 **Data availability**

11 Data will be available on request.

12

13 **Acknowledgments**

14 WAG thanks the US National Science Foundation (CBET-2311117) for support. GHC
15 acknowledges financial supports by the General Research Fund (Grant No. 17309620) and
16 Research Grants Council (RGC: T23-713/22-R). WAG and GHC acknowledge support from the
17 Hong Kong Quantum AI Lab, AIR@InnoHK of the Hong Kong Government.

1 **References**

2 1 N. Pairault, F. Rizzi, D. Lozano, E. M. G. Jamieson, G. J. Tizzard and S. M. Goldup, *Nat. Chem.*, 2023, **15**, 781–786.

3

4 2 Y. Wang, Y. Zhang, Z. Zhou, R. T. Vanderlinden, B. Li, B. Song, X. Li, L. Cui, J. Li, X. Jia, J. Fang, C. Li and P. J. Stang, *Nat. Commun.*, 2020, **11**, 2727.

5

6 3 D. A. Leigh, R. G. Pritchard and A. J. Stephens, *Nat. Chem.*, 2014, **6**, 978–982.

7 4 S. M. Goldup, D. A. Leigh, T. Long, P. R. McGonigal, M. D. Symes and J. Wu, *J. Am. Chem. Soc.*, 2009, **131**, 15924–15929.

8

9 5 T. Ma, Y. Zhou, C. S. Diercks, J. Kwon, F. Gándara, H. Lyu, N. Hanikel, P. Pena-Sánchez, Y. Liu, N. J. Diercks, R. O. Ritchie, D. M. Proserpio, O. Terasaki and O. M. Yaghi, *Nat. Synth.*, 2023, **2**, 286–295.

10

11

12 6 J. Liu, M. Wu, L. Wu, Y. Liang, Z. Tang, L. Jiang, L. Bian, K. Liang, X. Zheng and Z. Liu, *Angew. Chemie*, 2023, **135**, e202314481.

13

14 7 D. J. Cárdenas, A. Livoreil and J. P. Sauvage, *J. Am. Chem. Soc.*, 1996, **118**, 11980–11981.

15

16 8 V. G. Sree, S. Naik, A. Jana, A. Kadam, S. Sekar, H. Im, H.-S. Kim, J. I. Sohn and C. Bathula, *J. Colloid Interface Sci.*, 2023, **633**, 589–597.

17

18 9 X. Mo, Y. Deng, S. K. M. Lai, X. Gao, H. L. Yu, K. H. Low, Z. Guo, H. L. Wu, H. Y. Au-Yeung and E. C. M. Tse, *J. Am. Chem. Soc.*, 2023, **145**, 6087–6099.

19

20 10 Y. Yao, Y. C. Tse, S. K. M. Lai, Y. Shi, K. H. Low and H. Y. Au-Yeung, *Nat. Commun.*, 2024, **15**, 1952.

21

22 11 G. Gil-Ramírez, D. A. Leigh and A. J. Stephens, *Angew. Chemie - Int. Ed.*, 2015, **54**, 6110–6150.

23

24 12 A. Bhadani and M. Kathiresan, *Org. Chem. Front.*, 2024, **11**, 2954–2980.

25 13 L. Zhang, Y. Qiu, W. G. Liu, H. Chen, D. Shen, B. Song, K. Cai, H. Wu, Y. Jiao, Y. Feng, J. S. W. Seale, C. Pezzato, J. Tian, Y. Tan, X. Y. Chen, Q. H. Guo, C. L. Stern, D. Philp,

26

1 R. D. Astumian, W. A. Goddard and J. F. Stoddart, *Nature*, 2023, **613**, 280–286.

2 14 L. Zhu, J. Li, J. Yang and H. Y. Au-Yeung, *Chem. Sci.*, 2020, **11**, 13008–13014.

3 15 Y. Shi, L. Zhu, Y. Deng, X. Mo, Y. Wang and E. C. M. Tse, *ChemRxiv*, ,
4 DOI:10.26434/chemrxiv-2024-hk44r.

5 16 Y. Deng, Z. Lu, S. K. Lai, X. Mo, S. He and D. Lee, *ChemRxiv*, ,
6 DOI:10.26434/chemrxiv-2024-tdjrk.

7 17 M. P. Tang, L. Zhu, Y. Deng, Y. X. Shi, S. Kin-Man Lai, X. Mo, X. Y. Pang, C. Liu, W.
8 Jiang, E. C. M. Tse and H. Y. Au-Yeung, *Angew. Chemie - Int. Ed.*, 2024, **136**,
9 e202405971.

10 18 Y. Jiao, L. Đorđević, H. Mao, R. M. Young, T. Jaynes, H. Chen, Y. Qiu, K. Cai, L.
11 Zhang, X. Y. Chen, Y. Feng, M. R. Wasielewski, S. I. Stupp and J. F. Stoddart, *J. Am.
12 Chem. Soc.*, 2021, **143**, 8000–8010.

13 19 S. Dey, B. Mondal, S. Chatterjee, A. Rana, S. Amanullah and A. Dey, *Nat. Rev. Chem.*,
14 2017, **1**, 0098.

15 20 M. Haake, D. Aldakov, P. Julien, G. Veronesi, A. A. Tapia, B. Reuillard and V. Artero, *J.
16 Am. Chem. Soc.*, 2024, **146**, 15345–15355.

17 21 S. Sung, D. Kumar, M. Gil-Sepulcre and M. Nippe, *J. Am. Chem. Soc.*, 2017, **139**, 13993–
18 13996.

19 22 Y. Cheng, J. Peng, G. Lai, X. Yue, F. Li, Q. Wang, L. Chen and J. Gu, *ACS Catal.*, 2024,
20 **14**, 8446–8455.

21 23 M. Tamtaji, M. G. Kim, J. Wang, P. R. Galligan, H. Zhu, F. Hung, Z. Xu, Y. Zhu, Z. Luo,
22 W. A. G. Iii and G. Chen, *Adv. Sci.*, 2024, **11**, 2309883.

23 24 Q. Zhang, C. B. Musgrave, Y. Song, J. Su, L. Huang, L. Cheng, G. Li, Y. Liu, Y. Xin, Q.
24 Hu, G. Ye, H. Shen, X. Wang, B. Z. Tang, W. A. Goddard and R. Ye, *Nat. Synth.*, 2024,
25 **3**, 1231–1242.

26 25 N. Sakamoto, K. Sekizawa, S. Shirai, T. Nonaka, T. Arai, S. Sato and T. Morikawa, *Nat.
27 Catal.*, 2024, **7**, 574–584.

1 26 A. Tamtögl, M. Sacchi, V. Schwab, M. M. Koza and P. Fouquet, *Commun. Chem.*, 2024,
2 7, 78.

3 27 T. Liu, H. Qin, Y. Xu, X. Peng, W. Zhang and R. Cao, *ACS Catal.*, 2024, **14**, 6644–6649.

4 28 M. Tamtaji, S. Kwon, C. B. Musgrave, W. A. Goddard and G. Chen, *ACS Appl. Mater. Interfaces*, 2024, **16**, 50567–50575.

5 29 M. Tamtaji, M. G. Kim, Z. Li, S. Cai, W. Jun, P. R. Galligan, F.-F. Hung, H. Guo, S. Chen, W. A. G. III and Z. Luo, *Nano Energy*, 2024, **126**, 109634.

6 30 J. Feng, L. Wu, S. Liu, L. Xu, X. Song, L. Zhang, Q. Zhu, X. Kang, X. Sun and B. Han, *J. Am. Chem. Soc.*, 2023, **145**, 9857–9866.

7 31 W. Xia, Y. Xie, S. Jia, S. Han, R. Qi, T. Chen, X. Xing, T. Yao, D. Zhou, X. Dong, J. Zhai, J. Li, J. He, D. Jiang, Y. Yamauchi, M. He, H. Wu and B. Han, *J. Am. Chem. Soc.*, 2023, **145**, 17253–17264.

8 32 J. Chen, T. Wang, X. Wang, B. Yang, X. Sang, S. Zheng, S. Yao, Z. Li, Q. Zhang, L. Lei, J. Xu, L. Dai and Y. Hou, *Adv. Funct. Mater.*, 2022, **32**, 2110174.

9 33 J. Leverett, T. Tran-Phu, J. A. Yuwono, P. Kumar, C. Kim, Q. Zhai, C. Han, J. Qu, J. Cairney, A. N. Simonov, R. K. Hocking, L. Dai, R. Daiyan and R. Amal, *Adv. Energy Mater.*, 2022, **12**, 2201500.

10 34 C. Du, J. P. Mills, A. G. Yohannes, W. Wei, L. Wang, S. Lu, J. Lian, M. Wang, T. Guo, X. Wang, H. Zhou, C. Sun, J. Z. Wen, B. Kendall, M. Couillard, H. Guo, Z. Tan, S. Siahrostami and Y. A. Wu, *Nat. Commun.*, 2023, **14**, 6142.

11 35 I. Jang, S. Lee, D. Kim, V. K. Paidi, S. Lee, N. Dong, J. Y. Jung, K. Lee, H. Lim, P. Kim and S. Jong, *Adv. Mater.*, 2024, **36**, 2403273.

12 36 Z. Bai, X. Z. Jiang and K. H. Luo, *Phys. Chem. Chem. Phys.*, 2023, **25**, 23717–23727.

13 37 Q. Zhao, M. Zhang, Y. Gao, H. Dong, L. Zheng, Y. Zhang, J. Ouyang and N. Na, *J. Am. Chem. Soc.*, 2024, **146**, 14875–14888.

14 38 Z. Qiao, R. Jiang, H. Xu, D. Cao and X. C. Zeng, *Angew. Chemie Int. Ed.*, 2024, **136**, e202407812.

1 39 X. Rong, H. J. Wang, X. L. Lu, R. Si and T. B. Lu, *Angew. Chemie - Int. Ed.*, 2020, **59**,
2 1961–1965.

3 40 X. Wang, Q. Zhang and J. Zhou, *J. Colloid Interface Sci.*, 2022, **610**, 546–556.

4 41 M. K. Wong, J. J. Foo, J. Y. Loh and W. J. Ong, *Adv. Energy Mater.*, 2024, **14**, 2303281.

5 42 M. Tamtaji, Y. Li, Y. C. Cai, H. Liu, W. A. G. III and G. Chen, *J. Mater. Chem. A*, 2023,
6 **11**, 25410–25421.

7 43 M. Tamtaji, W. A. Goddard III, Z. Hu and G. H. Chen, *J. Mater. Sci. Technol.*, 2025, **218**,
8 126–134.

9 44 X. Liu, Z. Zhang, Z. Xing, L. Xianglin and C. Cheng1, *Res. Sq.*, 2024, 1–25.

10 45 C. B. Musgrave, Y. Li, Z. Luo and W. A. Goddard, *Nano Energy*, 2023, **118**, 108966.

11 46 J. Gao, A. Bahmanpour, O. Kröcher, S. M. Zakeeruddin, D. Ren and M. Grätzel, *Nat. Chem.*, 2023, **15**, 705–713.

12 47 S. Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.*, 2011, **32**, 1456–1465.

13 48 N. M. Twyman, A. Walsh and T. Buonassisi, *Chem. Mater.*, 2022, **34**, 2545–2552.

14 49 C. J. Bartel, A. Trewartha, Q. Wang, A. Dunn, A. Jain and G. Ceder, *npj Comput. Mater.*,
15 2020, **6**, 97.

16 50 Z. Xue, R. Tan, J. Tian, H. Hou, X. Zhang and Y. Zhao, *J. Colloid Interface Sci.*, 2024,
17 **674**, 353–360.

18 51 C. Wang, *Commun. Chem.*, 2024, **7**, 9.

19 52 J. M. Gallagher, B. M. W. Roberts, S. Borsley and D. A. Leigh, *Chem*, 2024, **10**, 855–866.

20 53 M. Tamtaji, M. Kazemeini and J. Abdi, *Int. J. Hydrogen Energy*, 2024, **80**, 1075–1083.

21 54 M. Tamtaji, Q. Peng, T. Liu, X. Zhao, Z. Xu, P. R. Galligan, M. D. Hossain, Z. Liu, H.
22 Wong, H. Liu, K. Amine, Y. Zhu, W. A. Goddard, W. Wu and Z. Luo, *Nano Energy*,
23 2023, **108**, 108218.

24 55 M. D. Hossain, Z. Liu, M. Zhuang, X. Yan, G. L. Xu, C. A. Gadre, A. Tyagi, I. H. Abidi,

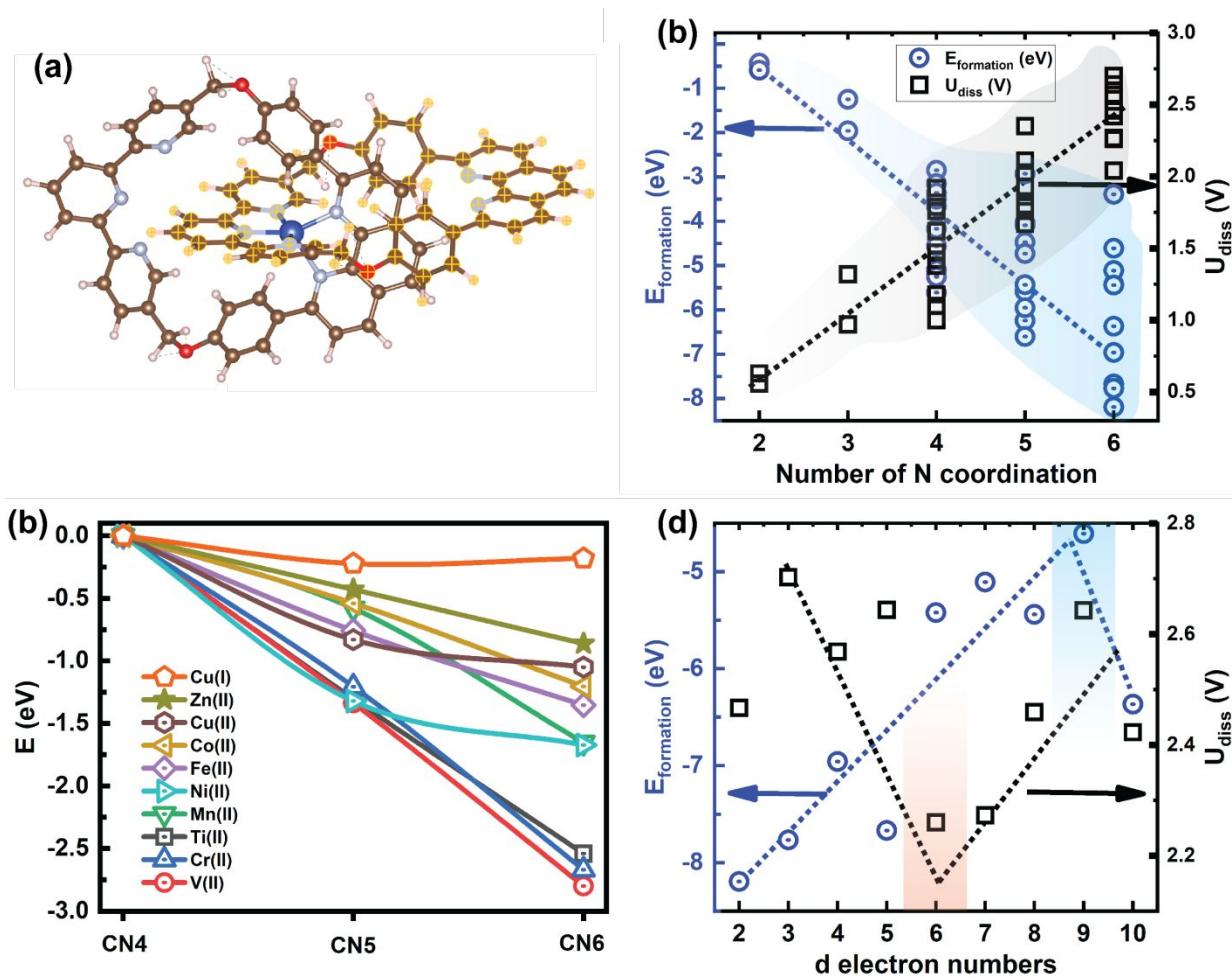
1 C. J. Sun, H. Wong, A. Guda, Y. Hao, X. Pan, K. Amine and Z. Luo, *Adv. Energy Mater.*,
2 2019, **9**, 1803689.

3 56 Y. Huang, F. Rehman, M. Tamtaji, X. Li, Y. Huang, T. Zhang and Z. Luo, *J. Mater.*
4 *Chem. A*, 2021, **10**, 5813–5834.

5 57 L. Yu, F. Li, J. Huang, B. G. Sumpter, W. E. Mustain and Z. Chen, *ACS Catal.*, 2023, **13**,
6 9616–9628.

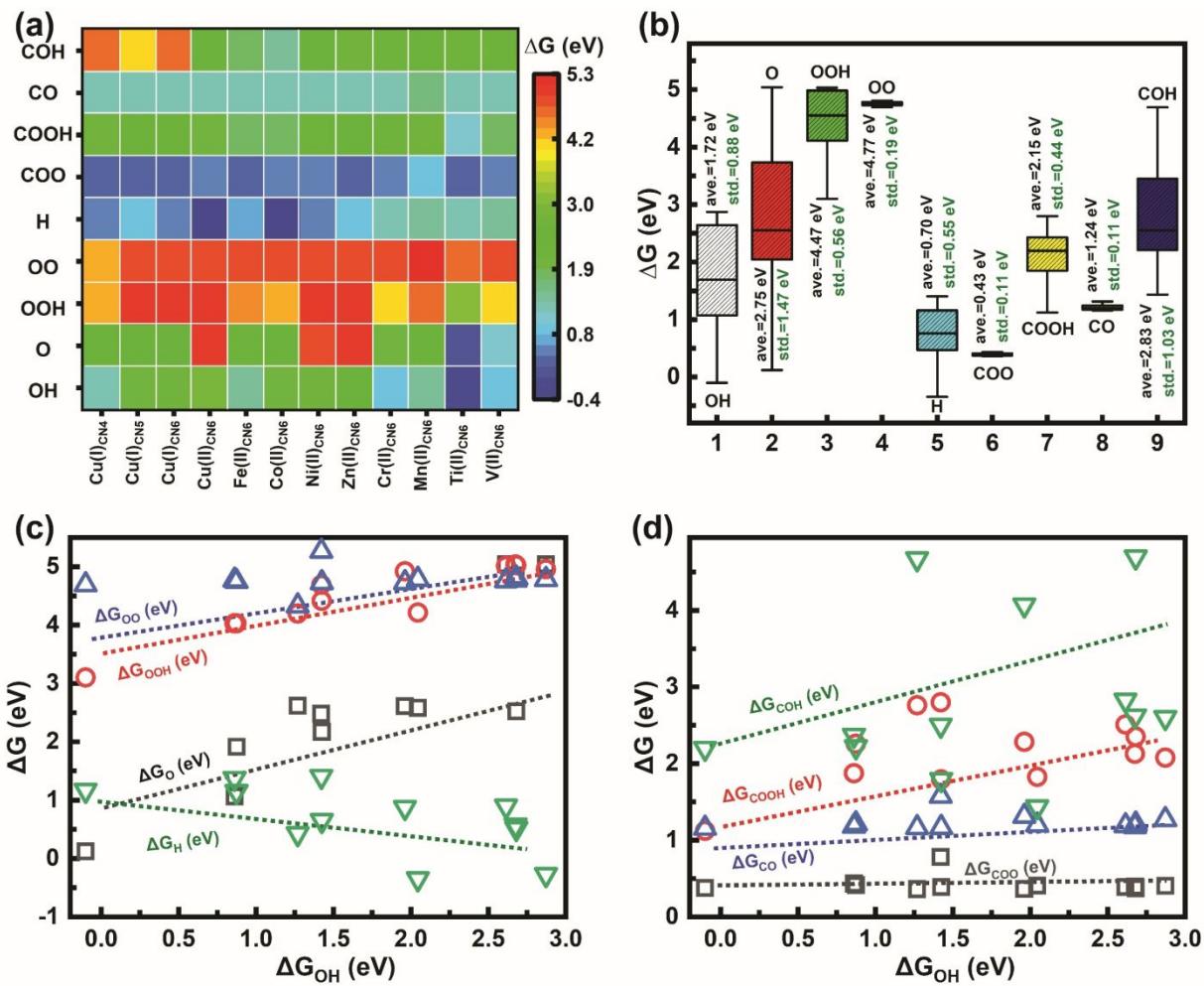
7 58 Q. Zhou, X. Tang, S. Qiu, L. Wang, L. Hao and Y. Yu, *Mater. Today Phys.*, 2023, **33**,
8 101050.

9 59 J. Xiao, J. J. Masana, H. Dong, H. Zhang, H. Yang, M. Qiu and Y. Yu, *J. Mater. Chem. A*,
10 2023, **11**, 24359–24370.

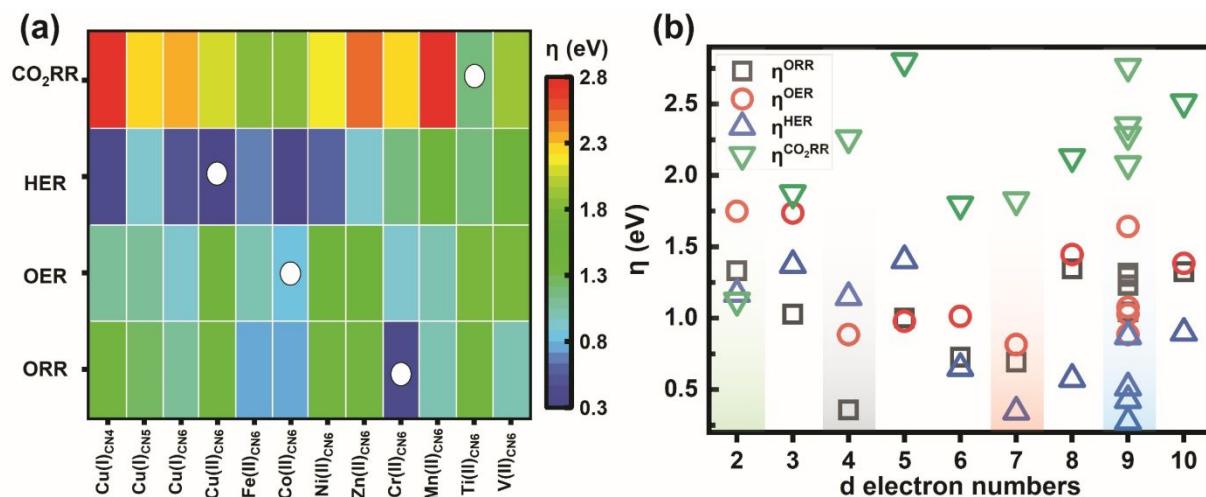

11 60 H. Xu, D. Cheng, D. Cao and X. C. Zeng, *Nat. Catal.*, 2018, **1**, 339–348.

12 61 J. Zhang, A. Yu and C. Sun, *Appl. Surf. Sci.*, 2022, **605**, 154534.

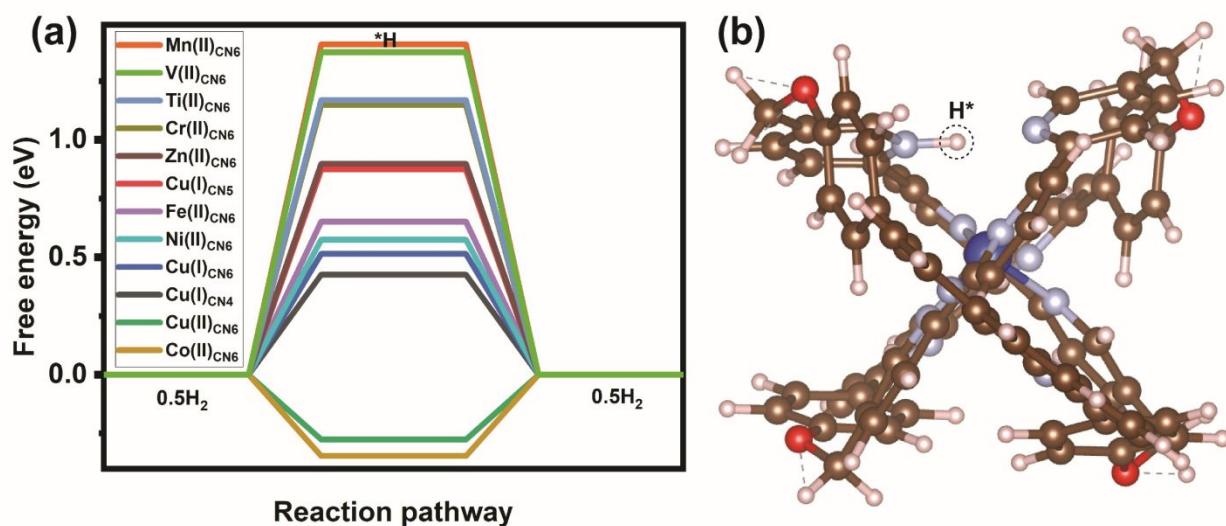
13 62 L. Yu, F. Li, J. Zhao and Z. Chen, *Adv. Powder Mater.*, 2022, **1**, 100031.

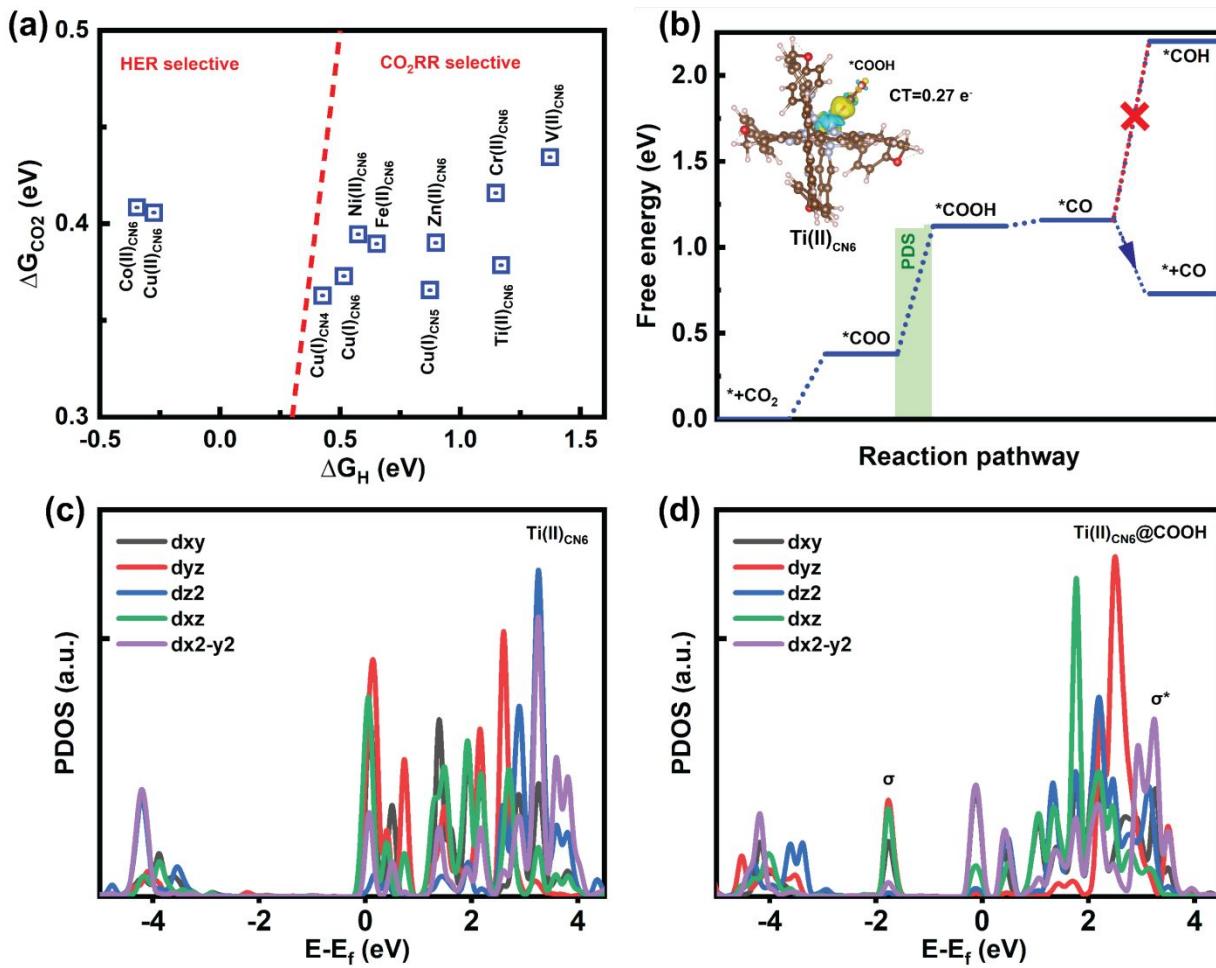

14

1

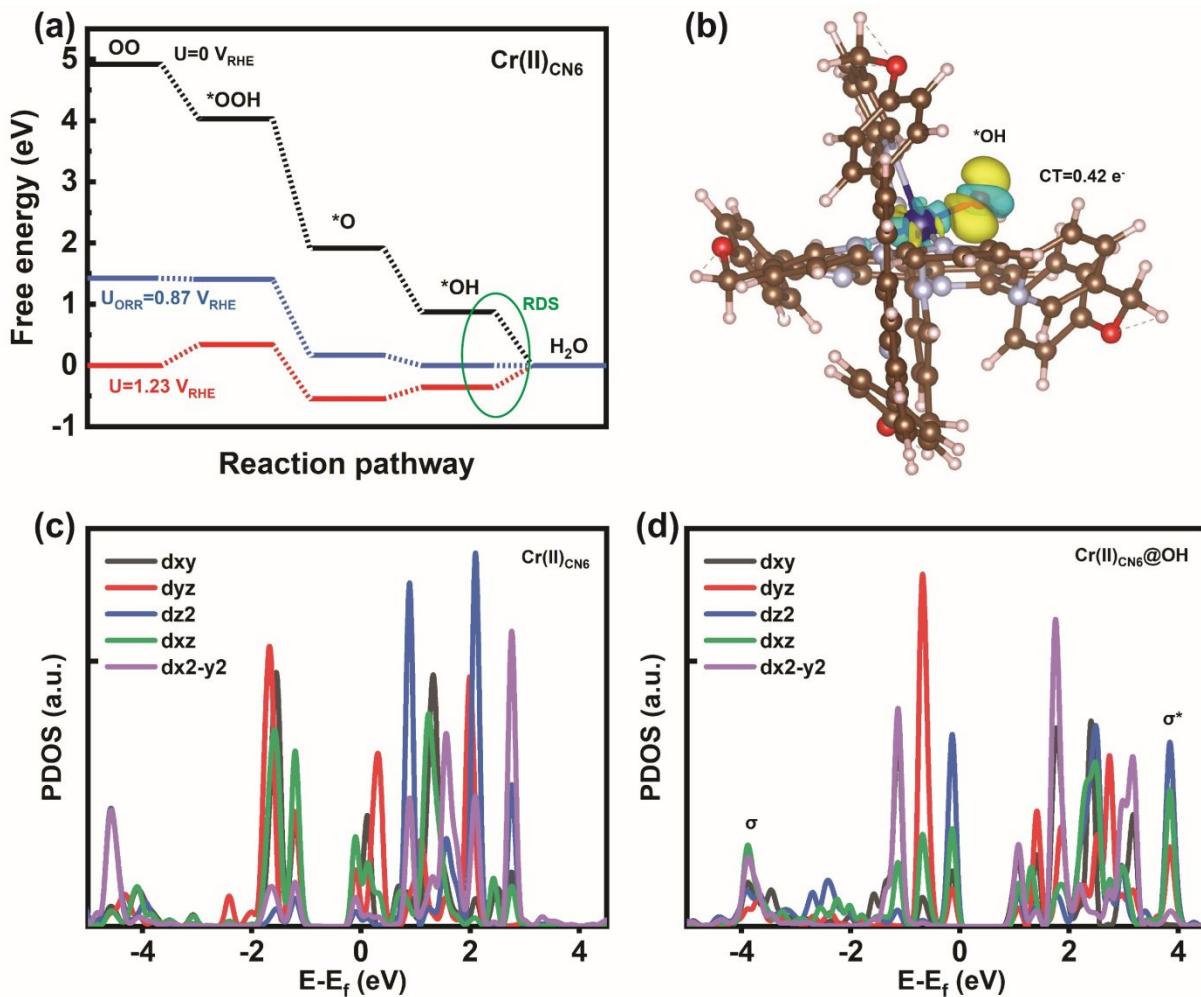


2
3 **Figure 1. Mechanically interlocked metal complex.** (a) The structure of $M(\text{I or II})_{\text{CN}x=4,5,6}$ which
4 M represents 3d transition metals. Brown, light blue, and dark blue balls show C, N, and M
5 elements, respectively. (b) Dissolution potential and formation energy for $M(\text{I or II})_{\text{CN}x=2,3,4,5,6}$
6 versus the number of nitrogen atoms around the metal, indicating all the candidates meet the
7 electrochemical and thermodynamic stability criteria ($U_{\text{diss}} > 0$ and $E_{\text{formation}} < 0$). (c) The change in
8 the energy of $M(\text{I or II})_{\text{CN}x=4,5,6}$ with different nitrogen atoms. (d) Volcano plot for the formation
9 energy and dissolution potential against the number of d orbital electrons for $M(\text{II})_{\text{CN}6}$ suggesting
10 the minimum formation energy at the d electron number of 9 and lowest dissolution potential at
11 the d electron number of 6.

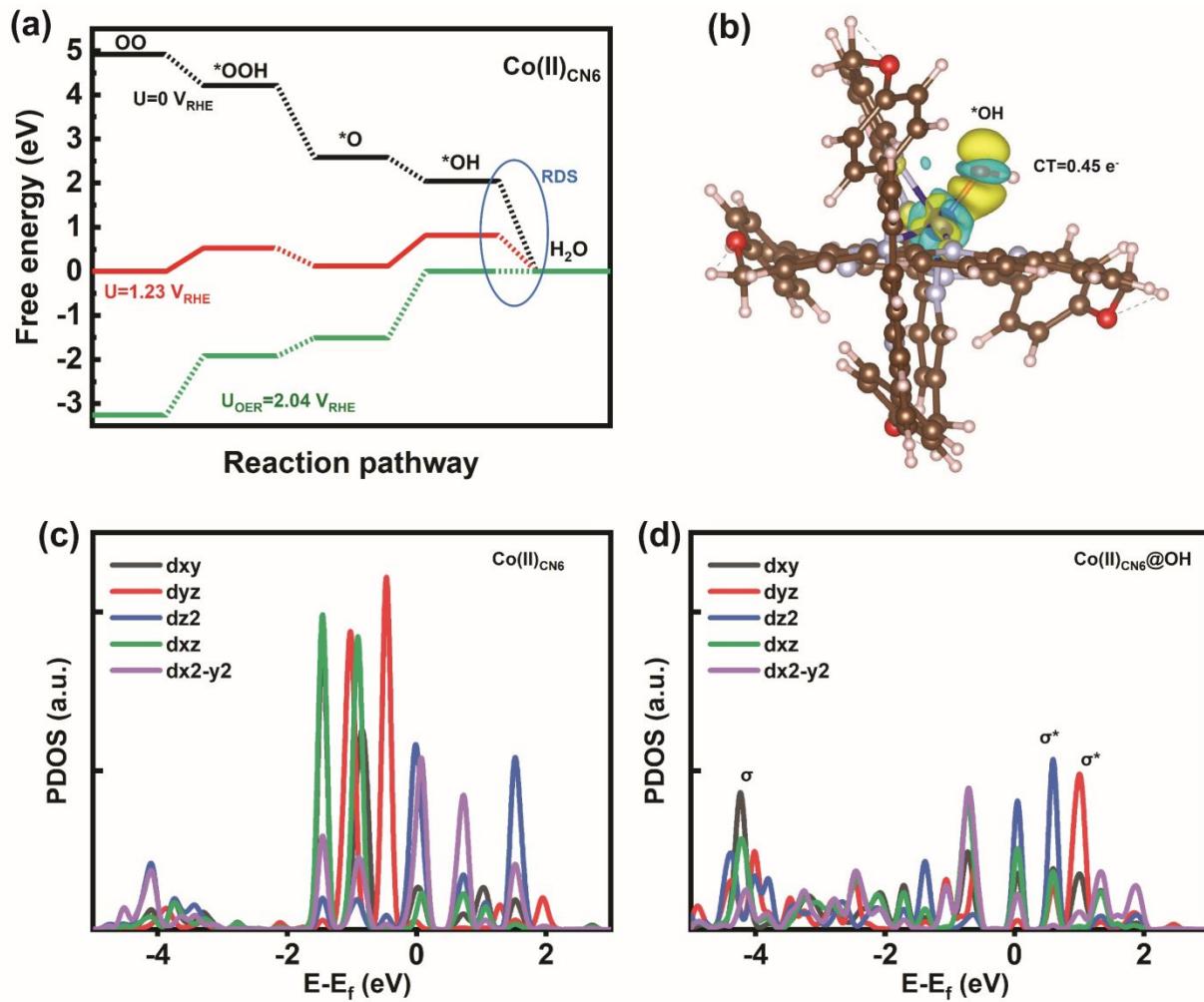

12


1 **Figure 2. Gibbs free energy analysis.** (a) DFT-obtained Gibbs free energy of reaction
2 intermediates for $\text{M(II)}_{\text{CN}6}$. (b) Box plot of Gibbs free energy variation of each reaction
3 intermediate. (c,d) Analysis of the weakened scaling relationship limits among the intermediates.

1
2 **Figure 3. Overpotentials.** (a) High throughput screening of DFT-calculated CO₂RR, HER, OER,
3 and ORR overpotentials. (b) Volcano plot of DFT-obtained CO₂RR, HER, OER, and ORR
4 overpotentials against the number of d orbital electrons suggesting the lowest overpotentials at d
5 electron number of 7.
6



7
8 **Figure 4. HER.** (a) HER pathways for metal complexes, indicating Cu(II)_{CN6} with HER
9 overpotentials 0.27 V_{RHE}. (b) The side view of H intermediate on nitrogen active site of Cu(II)_{CN6}.
10


1 **Figure 5. CO₂RR pathway.** (a) ΔG of CO_2 versus ΔG of H for $M(II)_{CN6}$ and $Cu(I)_{CNx=4,5,6}$,
2 showing that all the structures except for $Co(II)_{CN6}$ and $Cu(II)_{CN6}$ are CO₂RR selective on the
3 surface. (b) CO₂RR pathway for $Ti(II)_{CN6}$ with CO₂RR overpotential of 1.12 V_{RHE}. The inset
4 displays the side view of the Bader charge transfer from $Ti(II)_{CN6}$ to COOH with the Isosurface
5 value of 0.005 e/Å³. Blue color shows the region of charge deficiency and yellow color shows the
6 region of charge availability. Partial density of states (PDOS) of $3d_{x_{2-y2}}$, $3d_{z_2}$, $3d_{xz}$, $3d_{xy}$, and $3d_{yz}$
7 orbitals of Ti active site in $Ti(II)_{CN6}$ (c) in the absence and (d) in the presence of COOH
8 intermediate.

10

1 **Figure 6. ORR pathway.** (a) ORR pathway for Cr(II)CN_6 with ORR overpotential of $1.15 \text{ V}_{\text{RHE}}$.
2 (b) The side view of the Bader charge transfer from Cr(II)CN_6 to OH with the Isosurface value of
3 $0.005 \text{ e}/\text{\AA}^3$. Blue color shows the region of charge deficiency and yellow color shows the region
4 of charge availability. Partial density of states (PDOS) of $3d_{x^2-y^2}$, $3d_{z^2}$, $3d_{xz}$, $3d_{xy}$, and $3d_{yz}$ orbitals
5 of Cr atom in Cr(II)CN_6 (c) in the absence and (d) in the presence of OH intermediate.
6

7

1 **Figure 7. OER pathway.** (a) OER pathway for $\text{Co(II)}_{\text{CN}6}$ with OER overpotential of $0.79 \text{ V}_{\text{RHE}}$.
2 (b) The side view of the Bader charge transfer from $\text{Co(II)}_{\text{CN}6}$ to OH with the Isosurface value of
3 $0.005 \text{ e}/\text{\AA}^3$. Blue color shows the region of charge deficiency and yellow color shows the region
4 of charge availability. Partial density of states (PDOS) of $3d_{x^2-y^2}$, $3d_{z^2}$, $3d_{xz}$, $3d_{xy}$, and $3d_{yz}$ orbitals
5 of Cr atom in $\text{Co(II)}_{\text{CN}6}$ (c) in the absence and (d) in the presence of OH intermediate.
6

Data availability

Data will be available on request.