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ABSTRACT

Metastable γ-CsPbI3 is a promising solar cell material due to its suitable band gap and chemical stability. While 
this metastable perovskite structure can be achieved via introducing external pressure or strain, experimenting with 
this material is still challenging due to its phase instability. In this work, we present the first instance of exploiting 
various machine learning (ML) models to efficiently predict the band gap and enthalpy of metastable γ-CsPbI3 
under pressure or strain while identifying key structural features that determine these properties. ML models 
trained on experimentally benchmarked, first-principles calculation datasets exhibit excellent performance in 
predicting the behavior of tuned systems, comparable to predictions made for ambient material databases. In 
particular, graph neural networks (GNNs) that explicitly include a graph encoding the bond angle information 
outperform other ML models in most scenarios. The pressure-tuned system demonstrates a strong linear relationship 
between structural features and properties, effectively captured by global structural features using linear regression 
models. In contrast, the strain-tuned system shows a non-linear relationship, exhibiting superior prediction 
performance using GNNs trained on local environments. This study opens up opportunities to apply and develop ML 
models for understanding and designing materials at extreme conditions.
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Introduction

Halide perovskites have garnered significant attention in the past decade due to their remarkable 

performance as solar cell absorber materials1–4. These materials offer several advantages, including 

efficient light absorption and photoluminescence within the suitable band gap range, high structural 

flexibility for chemical and physical tuning, and low-cost production through solution processing5–8. 

Among halide perovskites, those with three-dimensional structures possess an ABX3 chemical formula, 

where B-site cations and surrounding X-site halogen anions form octahedra that encapsulate A-site 

cations. By substituting different elements or molecules at each site, the optoelectronic properties of 

halide perovskites can be modified. All-inorganic halide perovskites, such as the ones with Cs+ occupying 

the A site, offer high optoelectronic performance and stability to heat and humidity9, 10. CsPbI3 perovskite 

phases exhibit proper band gaps of 1.6 - 1.8 eV, positioning them as promising candidates for photovoltaic 

applications within the CsPbX3 family (X = Cl, Br, I)11–15.

Despite the high chemical stability, CsPbI3 exhibits phase instability under ambient conditions, with the 

functional perovskite phases (α, β, and γ) spontaneously transforming into the thermodynamically stable 

non-perovskite δ-phase CsPbI3
16–20. Given that δ-CsPbI3 possesses a larger band gap and is unsuitable as a 

solar cell absorber, considerable efforts have been devoted to (meta)stabilizing the functional perovskite 

phases at ambient conditions13, 14, 21. Among the three perovskite-phased polymorphs, the metastable 

orthorhombic γ-phase CsPbI3 has the lowest formation energy due to its substantial octahedral tilts18, 22–25. 

Recently, we successfully preserved the metastable γ-CsPbI3 to ambient conditions by manipulating the 

octahedral tilting angles through temperature and pressure engineering26, thereby unlocking the potential 

of utilizing metastable halide perovskites in practical applications.

Pressure and strain are powerful techniques for effectively tuning the structures and properties of 

halide perovskites, owing to these materials’ soft lattice structures that are highly susceptible to these 

tuning mechanisms. Various efforts have been made to stabilize metastable halide perovskites at room 

temperature and fine-tune their band gaps and charge carrier mobilities through precise control of the 

structure using pressure26–28 or strain29–31 engineering. Thus, gaining a deeper understanding of the 

behavior and structure-property relationships of these materials perturbed by external stimuli can provide
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insights for effectively manipulating them to achieve desirable optoelectronic properties.

However, experimental access to metastable halide perovskite phases and their characterization is 

challenging, especially under perturbed conditions. To amend this challenge, computational simulations, 

particularly density functional theory (DFT) calculations, are often used to study these systems under 

pressure and strain, albeit DFT calculations can be computationally expensive32. To overcome the 

limitation of prohibitively expensive DFT calculations, machine learning (ML) techniques have been 

widely applied in materials science for predicting material properties, components, and structures based on 

first-principles calculation databases33–36. By achieving accuracies comparable to DFT calculations, ML 

shows promise in replacing expensive calculations while substantially reducing the required computation 

time32. ML techniques ranging from classical models37–40 to neural networks41–44 have been utilized to 

understand and predict various material properties in diverse material systems.

Existing ML work in materials science has mostly been trained on databases containing materials 

primarily under ambient-pressure conditions. ML models trained on such databases may potentially 

overlook metastable phases that become accessible under extreme conditions32. In this study, for the first 

time, we predict material properties of a metastable phase – γ-CsPbI3 – by training ML models specifically 

on pressurized or strained systems. We employ both classical ML models, such as linear regression 

and random forest, as well as newly developed graph neural networks (GNNs) to identify the important 

features that determine the physical properties of the tuned γ-CsPbI3 system under extreme conditions. 

We specifically investigate the impact of local environments between neighboring atoms to gain a deeper 

understanding of the intricate structure-property relationships. By utilizing the simulated structures from 

high-throughput DFT calculations under pressure and strain that are benchmarked by experiments, we 

aim to contribute to the development of ML studies for efficiently predicting material properties across a 

spectrum of tuned structures.

Results

Training database generation

To simulate the structure and property changes, we computationally applied hydrostatic pressure or plane 

strain to the experimental γ-phase CsPbI3 structure at ambient conditions20. Each tuned structure was
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optimized using DFT variable cell relax-calculation with generalized gradient approximations (GGA)45 

exchange-correlation functionals as implemented in Quantum Espresso46. We generated a total of 241 

pressure-tuned structures by applying hydrostatic pressure from 0 to 2.4 GPa. Additionally, we produced 

505 strain-tuned structures by applying tensile or compressive plane strain along the ab, bc, or ac directions, 

ranging from -3.0 to +3.0%. Note that positive and negative strains denote tensile and compressive 

strains, respectively. Figure 1(a) illustrates the tuning processes under pressure and strain, while detailed 

information on the structure tuning procedures and DFT settings can be found in the Methods section. 

The selection of these specific pressure and strain ranges was motivated by previous experimental results 

reporting significant property changes, such as band gap change and phase transitions, at these levels26, 30. 

Pressure-tuning compresses the structure hydrostatically while strain-tuning isobarically deforms the 

system along certain directions. In Supplementary Information, we presented the DFT-calculated database 

and evaluated the accuracy of DFT calculations (Figures S1-S3 and S11-S12).

Classical ML model predictions based on global structural features

We extracted eight main features from the DFT-calculated structures, including in-phase and out-of-phase 

octahedral tilts47, three lattice parameters, and three Pb-I bond lengths (Figure 1(c)-(e)). These structural 

features were chosen because they play a crucial role in determining the stability and properties of a 

perovskite phase26, 48, 49. To assess the effectiveness of these structural features in representing the pressure 

and strain-tuned γ-CsPbI3 systems, we trained classical ML models using these features as inputs and the 

corresponding band gap and enthalpy values as outputs. Linear regression and random forest models were 

employed to evaluate the linear and non-linear relationships between the structure and properties. Table 1 

presents the prediction accuracies of each model, expressed as the MAD:MAE (MAD: mean absolute 

deviation, MAE: mean absolute error) ratio averaged from 5-fold cross-validation. The MAD:MAE ratio, 

a loss function accounting for different scales of each target property, indicates good model performance 

when exceeding 550. The coefficient of determination (R2) and its variance over cross-validation are shown 

in Table S1 and Figures S4-S5. For the pressure-tuned system, linear regression achieved high prediction 

accuracy with MAD:MAE ratios of 24.63 and 60.13 for band gap and enthalpy, respectively. In contrast, it 

exhibited poor performance in the strain-tuned system with MAD:MAE ratios of 2.28 for band gap and

4.32 for enthalpy. These results indicate a strong linear relationship between the eight structural features
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Figure 1. Illustrations of (a) pressure-tuning and (b) strain-tuning mechanisms. The hydrostatic pressure 
is uniformly applied to the unit cell from all directions, resulting in a reduction of the unit cell volume. 
The solid lines represent the original unit cell, while the grey dashed lines depict the deformed unit cell. 
On the other hand, in the strain-tuning, we deformed the unit cell along two lattice parameters 
(combinations of ab, bc, or ac), while adjusting the other lattice parameter (c, a, or b, respectively) to 
maintain a constant volume. Additionally, (c)-(e) illustrate the eight global structural features used to 
represent the γ-CsPbI3 system for training classical ML models. Specifically, (c) displays the lattice 
parameters a, b, and c (left) and the Pb-I bond lengths Pb-I1, Pb-I2, and Pb-I3 within the octahedron 
(right). (d) In-phase tilt ([180-θ (Pb-I-I-Pb)]/2) and (e) out-of-phase tilt ( (I-Pb-Pb-I)/2) are dihedral 
angles that characterize the octahedral tilts. (d) and (e) were reproduced from reference26 by Ke et al. 
with permission from Nature Communications, copyright 2021.

and output properties in the pressure-tuned system. Conversely, the strain-tuned system showed improved 

accuracies using random forest, with MAD:MAE ratios of 13.37 and 8.60 for band gap and enthalpy, 

respectively. However, the pressure-tuned system demonstrated slightly decreased performance with the 

random forest model, revealing a non-linear relationship between structural features and properties in
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the strain-tuned γ-CsPbI3 system. The non-linearity observed in the strain-tuned system is evident in the 

linear regression band gap prediction results, where several data points form distinct shapes, deviating 

from the ideal prediction line (Figure S4(c)). These distinct shapes were not observed in the random forest 

prediction results, which account for non-linearity in the data.

MAD:MAE Linear Regression Random Forest CGCNN ALIGNN
Band gap Pressure 24.63 6.82 8.05 14.00

Strain 2.28 13.37 9.01 32.64
Enthalpy Pressure 60.13 56.90 51.85 65.26

Strain 4.32 8.60 17.06 35.16

Table 1. Summary of prediction performance on test sets. MAD:MAE value presents the prediction 
accuracies of each model and indicates good model performance when exceeding 5. Each MAD:MAE 
value is averaged from the 5-fold cross-validation. The best prediction results for each target are indicated 
in bold.

Overall, the results indicate that the eight structural features effectively capture the structure-property 

relationships with high accuracy. In the process of identifying the primary structural features that influence 

the band gap and enthalpy predictions, it was observed that these features exhibit significant mutual 

correlation (Figure S8). The presence of strong multicollinearity among input features poses challenges 

in accurately evaluating and interpreting feature importance, which can lead to potentially misleading 

conclusions51, 52. We analyzed the impact of multicollinearity on evaluating feature importance in the 

Supplementary Information and assessed the performance of new models restructured based on the features 

identified through some of the feature selection techniques (Figures S8-S10). For the strain-tuned system, 

the new random forest models demonstrated similar prediction accuracy to the original models. However, 

the new linear regression models for the pressure-tuned system exhibited a notable decrease in prediction 

accuracy, particularly for the band gap. This decrease can be attributed to the high degree of correlation 

among the eight global features within the pressure-tuned system, including instances where octahedral 

tilts and Pb-I lengths are inherent components of lattice parameters. Thus, to enhance the prediction 

accuracy of the pressure-tuned system, it is essential to consider all eight features together as inputs.

Impact of local environments in GNN predictions

GNN models are based on a message-passing algorithm, which enables the inclusion of interactions 

between neighboring atoms. Unlike the classical models trained solely on global features, GNNs utilize
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the coordinates of the entire unit cell structure and learn from local environments42. In this context, local 

environments encompass not only the interactions between the central atom and its neighboring atoms but 

also the interactions between neighboring atoms and their further neighbors. These intricate local details 

are captured and encoded in the crystal graph by updating the node corresponding to each atom. In this 

study, we trained and compared two GNNs: crystal graph convolutional neural network (CGCNN)43  

and atomistic line graph neural network (ALIGNN)44. Both models represent the crystal structure of 

interest by constructing a graph composed of nodes and edges, encoding atom and bond information, 

respectively. The key distinction between the two models is that ALIGNN incorporates a line graph that 

describes bond angle information among three atoms. We compare these models to examine the effect 

of considering angle information on the ML performance, particularly considering that the octahedral 

tilting angles were identified as significant structural features determining the bandgap and enthalpy of the 

γ-CsPbI3 system26. Although the three-body bond angles considered in the ALIGNN model are distinct 

from the dihedral in-phase and out-of-phase tilting angles observed in the γ-CsPbI3 system, they are 

closely related.

Table 1 summarizes the performance of CGCNN and ALIGNN for band gap and enthalpy predictions 

in both the pressure- and strain-tuned systems (Figure S6-S7). ALIGNN consistently outperforms CGCNN, 

indicating that the inclusion of bond angles as inputs during the learning process enhances the prediction 

accuracy of GNNs, in agreement with previous studies. Chaudhary and DeCost conducted a similar 

comparison on the Materials Project (MP) database44, 53, demonstrating ALIGNN’s superior performance, 

with approximately 1.8 times higher MAD:MAE ratio for band gap and formation energy predictions. In 

our study, ALIGNN exhibits a better performance than CGCNN, showing 3.62- and 2.06-times as high 

MAD:MAE ratios for the band gap and enthalpy predictions in the strain-tuned system. This indicates a 

more substantial improvement than the ambient MP database training results. Conversely, the pressure- 

tuned system shows 1.74- and 1.26-times as high MAD:MAE ratios for band gap and enthalpy predictions 

from ALIGNN compared to CGCNN, demonstrating comparable or slightly lower values than those 

obtained from the MP database training results. These findings suggest that the strain-tuned system is more 

responsive to the inclusion of local bond angle information than the ambient or pressure-tuned crystal 

structures on average.
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Comparing the performance of classical models and GNNs as shown in Table 1, different trends emerge

depending on the tuning methods. For pressure-tuning, classical models yield higher or comparable 

accuracies compared to GNNs, indicating that global features effectively capture the γ-CsPbI3 system’s 

behavior without considering local interactions. In contrast, the strain-tuned system exhibits the highest 

prediction accuracies with GNNs, particularly with ALIGNN (Figure 2). This suggests that the 

inclusion of local bond angle information benefits the prediction accuracy of the strain-tuned system.

Figure 2. Prediction results from the best performing models for each target property. Pressure-tuned (a) 
band gap by linear regression and (b) enthalpy by ALIGNN. Strain-tuned (c) band gap and (d) enthalpy by 
ALIGNN. Solid lines are X=Y curves that represent the ideal predictions. In (a) and (d), the prediction 
results exhibit underestimation for higher band gap and enthalpy values. This discrepancy can be 
attributed to the data imbalance problem, where the training data had fewer input structures in these 
regions. As a result, the model underestimated the target properties for the corresponding structures.
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Discussion

In this study, we explored the predictive capabilities of ML models for physical properties in pressure- 

and strain-tuned γ-CsPbI3 systems, highlighting the influence of different tuning methods on model 

performance. Our findings indicate that ML models can effectively predict the perturbed systems as 

accurately as ambient-conditioned materials, thus demonstrating the potential of ML techniques for 

exploring materials under extreme conditions. In particular, classical models perform comparably well 

to GNNs in predicting properties in the pressure-tuned system, leveraging the representation of eight 

structural features and revealing a strong linear structure-property relationship. In contrast, the strain-tuned 

system exhibits improved prediction accuracy when incorporating local interactions and embracing more 

non-linearity using GNNs.

The observed discrepancy in model performance between pressure- and strain-tuned systems can be 

attributed to the distinct nature of their tuning mechanisms. Pressure tuning primarily entails progressive 

and hydrostatic modification of the structures, whereas strain tuning involves deformation along specific 

directions. This anisotropic distortion likely introduces non-linear structure-property effects into the dataset. 

Notably, the predictions from the pressure-tuned system primarily rely on global features, encompassing 

octahedral tilting angles, Pb-I bond lengths, and lattice parameters. In contrast, the strain-tuned system is 

better characterized by local environments, including local bond angles and chemical information.

The superior performance of classical models compared to GNNs in the pressure-tuned system 

highlights the limitation of GNN models in capturing global features, as previously noted in related 

research by Gong et al.54 If GNNs could effectively consider all structural features during the learning 

process, they would offer broader applicability across various systems, including the pressure-tuned 

system like the one studied in this work. Therefore, further work is needed to combine GNNs with 

global structural feature considerations and establish a larger database encompassing accurate property 

values from pressure- and strain-tuned systems. This would facilitate the generalization of ML models for 

predicting properties in diverse perovskite systems, including those with lower-dimensional structures, 

and enable better comparison with experimental data.
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Methods

Structure tuning

The γ-CsPbI3 system was computationally tuned by applying hydrostatic pressure or introducing tensile 

or compressive plane strains to the experimental ambient structure20. The initial experimental structure 

was optimized at 0 GPa using DFT relax-calculation. From this zero-pressure optimized structure, a total 

of 241 pressure-tuned structures were obtained at pressures ranging from 0 GPa to 2.40 GPa with a 0.01 

GPa increment. For strain tuning, 505 structures were created by deforming two of the lattice parameters 

from -3.0 to +3.0% with a step size of 0.5%, while maintaining a constant volume and the zero-pressure 

condition. Note that positive and negative strains indicate tensile and compressive strains, respectively. 

For instance, if the lengths of lattice parameters a and b were elongated by +3.0% each to simulate tensile 

strain, the c parameter was compressed to maintain the initial volume. Within the specified pressure and 

strain ranges, both the pressure- and strain-tuned systems showed potential phase transitions marked 

by discontinuous structural changes at certain pressure and strain levels. These findings are elaborately 

detailed in the Supplementary Information.

First-principles DFT calculations

The strain-tuned γ-CsPbI3 structures were optimized using DFT relax-calculation, while the pressure- 

tuned structures were optimized using variable-cell relax-calculation with Quantum Espresso46. Ultrasoft 

pseudopotentials with PBE exchange-correlation functionals55 were selected, and a Monkhorst-Pack 

K-point grid of 4x3x4 centered on the Γ point was used56. The kinetic energy cutoff was set at 75 

Ry for wavefunctions and 500 Ry for the charge density. From the optimized structures, the band gap 

value at the Γ point and the enthalpy (H = E + PV) at the respective pressure or strain conditions were 

obtained. Supplementary Information provides a comparison between results obtained from different 

exchange-correlation functionals and band gap corrections.

Classical models

Multiple linear regression and random forest models were trained using structural features as inputs 

and the corresponding band gap and enthalpy as outputs. Classical models were employed initially to 

assess how well the global features could represent the tuned γ-CsPbI3 system for band gap and enthalpy
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predictions. Each model utilized eight structural parameters as inputs and predicted band gap or enthalpy 

for the corresponding pressure and strain levels, which included 241 and 505 structures, respectively. 

The random forest model consisted of 200 estimators (decision trees). The models underwent 5-fold 

cross-validation, and the loss functions from each fold were averaged. All the classical models in this 

study were implemented using the Scikit-learn library in Python57.

GNN models

Two GNN models, CGCNN43 and ALIGNN44, were employed for band gap and enthalpy prediction. 

CGCNN and ALIGNN represent the crystal structure as a graph, with nodes representing atoms and edges 

encoding atomic bonds. CGCNN utilizes convolutional neural networks with convolutional and pooling 

layers on the crystal graph. ALIGNN, in addition to the crystal graph, incorporates a line graph that 

captures bond angle information. The optimized structures in Crystallographic Information Framework 

(CIF) format from the training dataset were used to train these models, which predicted target properties 

such as band gap and enthalpy. The dataset was divided into a training set (60%), a validation set (20%), 

and a testing set (20%), with training conducted over 200 epochs. To eliminate biases resulting from 

different property scales, the target properties were standardized to have a mean value of zero and a 

standard deviation of one.

Model evaluation

To evaluate the performance of the models, MAE, MAD, and coefficients of determination (R2) were 

calculated using the ML-predicted and DFT-calculated target values in the testing dataset. Since different 

chemistry and properties have different scales, evaluating model prediction accuracy solely based on MAE 

values can be misleading. Therefore, the MAD:MAE ratios are presented in Table 1, which were obtained 

by dividing MAE by MAD, a metric used by Choudhary and DeCost44. The MAD:MAE ratios allow for 

an unbiased comparison of model performance across different properties. Models with MAD:MAE ratios 

beyond 5 are generally considered to be well-performing, with higher ratios indicating higher prediction 

accuracy50.
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Data availability

The complete input database for γ-CsPbI3 utilized in this study can be accessed on GitHub at https:

//github.com/mhan8/Metastable_ML.

Code availability

The ML models trained using our database and their respective training configurations are available on 

GitHub at https://github.com/mhan8/Metastable_ML.
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