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Abstract

Local stresses in a tissue, a collective property, regulate cell division and apoptosis. In turn,

cell growth and division induce active stresses in the tissue. As a consequence, there is a feed-

back between cell growth and local stresses. However, how the cell dynamics depend on local

stress-dependent cell division and the feedback strength is not understood. Here, we probe the

consequences of stress-mediated growth and cell division on cell dynamics using agent-based sim-

ulations of a two-dimensional growing tissue. We discover a rich dynamical behavior of individual

cells, ranging from jamming (mean square displacement, ∆(t) ∼ tα with α less than unity), to

hyperdiffusion (α > 2) depending on cell division rate and the strength of the mechanical feed-

back. Strikingly, ∆(t) is determined by the tissue growth law, which quantifies cell proliferation,

measuring the number of cells N(t) as a function of time. The growth law (N(t) ∼ tλ at long

times) is regulated by the critical pressure that controls the strength of the mechanical feedback

and the ratio between cell division-apoptosis rates. We show that λ ∼ α, which implies that higher

growth rate leads to a greater degree of cell migration. The variations in cell motility are linked to

the emergence of highly persistent forces extending over several cell cycle times. Our predictions

are testable using cell-tracking imaging techniques.
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I. INTRODUCTION

Cell growth, proliferation, and apoptosis are ubiquitous in biology, and play a crucial role

in embryogenesis, tumorigenesis, and wound healing [1, 2]. The breakdown of strict control

between cell division and apoptosis rates could lead to fatal diseases like cancer [3]. In

cancer metastasis, the cells develop migratory phenotype and invade the surrounding tissues

and organs [4]. Therefore, to understand the role of cell division and apoptosis numerous

experiments have been performed both in two and three dimensions, which provide the time

traces of cells [5–8]. The cell trajectories could be used to calculate dynamical properties

of cells [9] that may be quantitatively compared with experiments [6]. By building on

the understanding that cell division, apoptosis, and mechanical forces are fundamentally

intertwined in tissue growth [5–8], we examine the complex feedback loop between these

factors and its impact on cell dynamics. We employ agent-based simulations to model a

two-dimensional growing tissue, which allows us to examine the consequences of varying cell

division rate and the strength of mechanical feedback on the tissue and cell dynamics.

Our study centers on the concept of mechanical feedback, where the local stresses within

a tissue directly influence the ability of cells to grow and divide. We elucidate the nu-

anced interplay between the rate of cell division and the strength of mechanical feedback

in shaping the dynamics of the growing tissue which may have important consequences on

understanding the emergent morphogical transitions. For instance, a growing tissue ex-

hibits a morphological transition, characterized by contrasting collective cell dynamics in

the pre-and post-transition phases [5]. Cells in the pre-transition phase exhibit fluid-like be-

havior whereas those in the post-transition phase are more solid-like [5]. The morphological

transition, resulting in the contrasting dynamics, was attributed to the microenvironment-
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dependent growth and proliferation of cells [5, 10]. The growth of cells in tissue depends on

the local stresses, which in turn depend on the local growth rate. In other words, there is a

feedback between local stress and cell growth, as was pointed out in a prescient study nearly

two decades ago [10]. In addition to fluid and solid-like behavior, the dynamics could also

show glassy behavior in confluent [11] and non-confluent tissues [12]. How the mechanical

feedback and cell division affects the observed dramatic variations in collective cell dynamics

as the tissue grows is largely unknown.

Previous studies that considered cell growth and division on the cell collective dynamics

assumed that the birth rate of cells depends on its coordination number [13]. However,

recent experiments report that mere contact between cells may not be sufficient for inhibiting

mitosis in cells [5]. Here, building upon prior work [12, 14–17] where the growth of a cell

depends on the local pressure, we establish that the dynamics of cells is linked to the

tissue growth law. We show that tissue growth is controlled by two parameters- the critical

pressure (pc) and the cell birth rate (kb, the inverse of the cell division time), which are

intrinsic properties of individual cells. The pc value determines the mechanical feedback

strength [18].

The central results of this work are: (a) Depending on the values of pc and kb, cells can

exhibit widely varying dynamics from subdiffusive (the mean-squared displacement, ∆(t) ∝

tα, α ≤ 1), to superdiffusive (1 < α ≤ 2) or even hyperdiffusive (α > 2) dynamics. On

increasing the value of pc, the cells transition from sub-diffusive to hyperdiffusive dynamics.

Surprisingly, on decreasing kb, the cells switch from sub to super-diffusive or super to hyper-

diffusive dynamics. (b) The tissue growth law, N(t) ∝ tλ, where N is the number of cells

exhibits a power law increase in time (t). Strikingly, the global growth law is a predictor

of the single-cell dynamics. As λ increases, so does α with α ∼ λ. (c) The emergence of
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persistent forces due to cell division that extends over several cell cycle times is the principal

reason for the anomalous (super or hyper-diffusive) cell dynamics. Our work provides a

unifying framework for understanding origins of differing dynamical regimes (sub-diffusive

[11], diffusive [13] and super-diffusive [12]) in the collective movement of cells driven by

mechanical feedback arising from apoptosis and division.

II. METHODS

We briefly explain the off-lattice agent-based computational model used to simulate the

spatio-temporal dynamics of a two-dimensional (2D) growing tissue. The computational

model is adapted from previous studies [9, 12, 14–17, 19, 20]. The cells are represented as

interacting deformable disks with radius depending on local rules, which assume that cells

grow stochastically, and divide upon reaching a critical mitotic size (Rm). The interaction

between cells is the sum of elastic and adhesive forces. We also assume that the cells are

moving in an overdamped environment in which the inertia is negligible and viscous forces

are large compared to environmental fluctuations.

Forces: The elastic (repulsive) force between two disks of radii Ri and Rj is modeled as,

F el
ij (t) =

h
3/2
ij (t)

3
4
(
1−ν2i
Ei

+
1−ν2j
Ej

)
√

1
Ri(t)

+ 1
Rj(t)

, (1)

where Ei and νi, respectively, are the elastic modulus and Poisson ratio of cell i. The

overlap between the disks, if they interpenetrate without deformation, is hij, is defined as

max[0, Ri +Rj − |~ri− ~rj|] with |~ri− ~rj| being the center-to-center distance between the two

disks.

Cell adhesion, mediated by receptors on the cell surface, enables the cells to stick together.

For simplicity, we assume that the receptor and ligand molecules are evenly distributed on
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the cell surface. Consequently, the magnitude of the attractive adhesive force, F ad
ij , between

two cells i and j scale as a function of their contact line segment, Lij. Keeping the 3D model

as a guide [12], we calculate F ad
ij using,

F ad
ij = Lijf

ad1

2
(creci cligj + crecj cligi ), (2)

where the creci (cligi ) is the receptor (ligand) concentration (assumed to be normalized to

the maximum receptor or ligand concentration so that 0 ≤ creci , cligi ≤ 1). In the present

study, creci , cligj are fixed and have been included for consistency with previous studies [12,

16, 17]. The coupling constant fad allows us to rescale the adhesion force to account for

the variabilities in the maximum densities of the receptor and ligand concentrations. We

calculate the contact length, Lij, using the length of contact between two intersecting circles,

Lij =

√
(|4r2ijR2

i−(r2ij−R2
j+R

2
i )

2|)
rij

. Here, rij is the distance between cells i and j. As before, Ri

and Rj denote the radius of cell i and j. In the present case, the strength of repulsive

interactions is very large compared to attractive forces which can be seen in Figure 1a.

The the sum of the repulsive and adhesive forces in Eqs.(1) and (2) point along the unit

vector nij from the center of cell j to the center of cell i. The total force on the ith cell is

given by the sum over its nearest neighbors (NN(i)),

Fi = ΣjεNN(i)(F
el
ij − F ad

ij )nij. (3)

The nearest neighbors satisfy the condition Ri +Rj − |ri − rj| > 0.

Equation of Motion: We used overdamped dynamics of the motion of the ith cell. The

equation of motion is,

ṙi =
Fi

γi
. (4)

Here, γi is the friction coefficient of the ith cell. We assume γi to be equal to cRi(t), where

c is a constant. Note, we neglect temperature effects because the drag forces are high [13]
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compared to environmental fluctuations.

Cell growth, division, and apoptosis: In the model, cells are either dormant (D) or in the

growth (G) phase depending on the magnitude of the local pressure of the cell (see Figure

1b for a schematic). Using Irving-Kirkwood’s definition, we calculate the pressure (pi) on

the ith cell due to contact with its neighbors [21] using,

pi =
1

2
ΣjεNN(i)

Fij · drij
Ai

, (5)

where Ai is local area of influence, equal to θπR2
i . The proportionality constant θ serves

as a measure to sample the local area around the ith cell and was chosen to be 1.5. If the

local pressure on the ith cell, pi, exceeds a critical value (pc) the cell immediately ceases

to grow and enters the dormant phase. Note that the cell can switch to the growth phase

once pi(t)
pc

< 1. The critical pressure, pc, serves as a mechanical feedback [10]. The local

pressure, pi, can easily exceed pc if it is small. In this case, most cells would be dormant

for a long time. In the opposite limit, pc � pi, it is unlikely that the cells would reach the

dormant phase. This would result in cell proliferation. Thus, pc determines the strength of

the mechanical feedback. A previous study used pc to control cell growth in confined spaces

in a different context [18] and showed growth-driven jamming transition, controlled by the

strength (∝ 1
pc

) of the mechanical feedback. They did not consider cell dynamics, which is

the focus of our investigation.

The threshold for cell dormancy (pc) is a coarse-grained parameter that accounts for

the processes inside a cell which detects intercellular interactions and provides feedback

on the cell growth. One of the factors that inhibits cell proliferation is cell density, a

phenomenon attributed to physical contact between cells. Contact inhibition of proliferation

(CIP) describes the slowing down or cessation of cell proliferation at confluence [22]. This

is evident from growth curves (i.e. increase in cell number versus time) that level off at

6
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confluence, accompanied by biochemical indications of cell cycle arrest [23, 24]. This cell

behavior motivated us to consider pressure as a mechanical feedback on cell growth and

division.

For growing cells, we assume that the area increases at a constant rate rA as the cell

cycle progresses. The cell radius is updated from a Gaussian distribution with the mean

rate Ṙ = (2πR)−1rA. Over the cell cycle time τ , rA is taken to be,

rA =
π(Rm)2

2τ
, (6)

where Rm is the mitotic radius. The cell cycle time is related to the growth rate (kb) by

τ = ln 2
kb

. A cell divides once it grows to the fixed mitotic radius (Rm). To ensure the total

area of a cell is conserved upon cell division, we use Rd = Rm2−1/2 as the radius of the

daughter cells. The mother and daughter cells are placed at a center-to-center distance,

d = 2Rm(1 − 2−1/2) upon cell division. The direction of the new cell location is chosen

randomly from a uniform distribution on the unit circle [12, 25]. One source of stochasticity

in the cell movement is the random choice for the mitotic direction. The cells can also

undergo apoptosis at rate ka. In all the simulations, we vary kb but the apoptosis rate (ka)

is fixed to 10−6s−1. The values of the parameters used in the simulations are given in Table

1.

Table I: The parameters used in the simulations.
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Parameters Values References

Timestep (∆t) 10s This paper

Critical Radius for Division (Rm) 5 µm [12, 15]

Friction coefficient ( γi
Ri

) 0.0942 kg/(µm s) This paper

Cell Cycle Time (τmin) 54000 s [12, 26–28]

Adhesive Coefficient (fad) 10−4µN/µm This paper

Mean Cell Elastic Modulus (Ei) 10−3MPa [12, 29]

Mean Cell Poisson Ratio (νi) 0.5 [12, 15]

Death Rate (ka) 10−6s−1 [12]

Mean Receptor Concentration (crec) 1.0 (Normalized) [12]

Mean Ligand Concentration (clig) 1.0 (Normalized) [12]

We initiated the simulations by placing 100 cells on a 2D plane whose coordinates are

chosen from a normal distribution with zero mean, and standard deviation 25 µm. For each

parameter set, 20 different simulations were performed and the observables reported here

were averaged over these simulation runs. All the parameters except pc and kb are fixed. All

the simulations are terminated when the scaled time t∗ = (kb−ka)t ∼ 3.74. A representative

snapshot of the growing tissue is shown in Figure 1c.

Limitations of the model: We have modeled individual cells by a disc of radius r. The

coupling between the cells is modeled by short ranged Hertzian interactions, which depends

on the dynamical radius of the cell. In reality, the shape of a cell is anisotropic, and should

be taken into account. Here, we focus on long-time, order of cell-division time, collective

dynamics where the short time dynamics of cell shape fluctuations may not be as relevant.

8

Page 9 of 30 Soft Matter



III. RESULTS

A. Weaker mechanical feedback on cell division enhances cell motility

Typically cell division is associated with tissue volume growth due to increasing number

of cells. In a growing cell collective where cells are tightly packed in space, local stress

could regulate the propensity for cells to divide and in turn influence the cell dynamics.

To assess the effect of mechanical feedback on cell dynamics, we varied pc, which controls

the strength of the mechanical feedback on cell division. Low pc correspond to stronger

mechanical feedback as the critical pressure threshold required for cells to enter the dormant

state can be easily reached. On the other hand, high pc values imply weaker mechanical

feedback as local stress values will have to be larger to reach the critical pressure. To probe

the connection between mechanical feedback and cell dynamics, we calculated the mean

squared displacement (∆(t)),

∆(t) =
1

N

i=N∑
i=0

[ri(t)− ri(0)]2, (7)

where ri(t) is the position of the ith cell at time t, andN is the number of cells whose positions

were tracked. Because cells undergo apoptosis, we only tracked cells that were present

throughout the simulations in this calculation. Figure 2a shows the time dependence of ∆(t)

for three values of pc (from strong feedback to weak): 10−5Nm−1, 10−4Nm−1 and 10−3Nm−1

at fixed kb
ka

= 20. We analyzed the dynamics at two different timescales - intermediate

(t < 1
kb−ka

) and long time limit ( t > 1
kb−ka

) as compared to the average time it takes for

a cell to divide. The effect of mechanical feedback on cell dynamics is highly dependent

on the timescale we probe. In the intermediate time limit, the dynamics is subdiffusive (

∆(t) ∼ tδ, δ < 1) irrespective of the pc values. However, the long time dynamics strongly

depends on the pc. We find that ∆(t) ∼ (t∗)α is subdiffusive (α = 0.68) for pc = 10−5Nm−1,
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superdiffusive (α = 1.36) for pc = 10−4Nm−1 and hyperdiffusive (α = 3) for pc = 10−3Nm−1

(see Figure 2a Inset). Here, the time is normalized such that t∗ = (kb − ka)t. Overall, we

observe that as the mechanical feedback strength increases (realized by decreasing pc) the

cells are jammed, resulting in slow dynamics. Meanwhile, weaker mechanical feedback (larger

pc) gives rise to superdifussive or even hyperdiffusive dynamics. We anticipate that this cell

dynamics behavior is directly related to the increased cell proliferation and the consequent

growth of the cell collective size at lower mechanical feedback.

Next, we estimated the physical size of the cell collective using,

∆r(t) =
1

Nb(t)

Nb∑
i=1

|ri(t)−R(t)| (8)

where Nb(t) is the total number of boundary cells at time t and R(t) is the center of the cell

collective at time t. These quantities can be readily measured using imaging experiments

[5, 6]. The size of the cell collective increases algebraically with time, ∆r(t) ∼ (t∗)ξ, where

the parameter ξ characterizes the size growth of the cell collective. Figure 2b shows ∆r(t)

for pc equal to 10−5Nm−1, 10−4Nm−1 and 10−3Nm−1 with kb
ka

= 20. We find that the size

growth is maximal for pc = 10−3Nm−1, similar to the cell dynamics behavior quantified

using ∆(t). For pc = 10−5Nm−1, ξ = 0.34, for pc = 10−4Nm−1, ξ = 0.68 and for pc =

10−3Nm−1, ξ = 1.23. We surmise from the behavior of ∆(t) and ∆r(t) that the tissue

dynamics is enhanced with weaker mechanical feedback i.e. increasing pc, for a fixed value

of kb
ka

. This is because of the higher probability that the cells can divide as pc increases, as

evident from the size growth of the cell collective.

To ascertain whether mechanical feedback is the main factor in controlling cell division

and in turn cell dynamics, we varied the cell division rate. Given that cell dynamics is

enhanced with weaker mechanical feedback at a fixed value of the cell division rate, we

next wanted to understand how cell dynamics would be affected by varying the cell division
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rate (kb) at a fixed value of the mechanical feedback strength. We varied kb and kept the

apoptosis rate constant (ka = 10−6s−1). Figure 2c shows ∆(t) for kb
ka

= 20, 8 and 2 at a fixed

pc = 10−4Nm−1 . Surprisingly, slower dividing cells have higher motility in the long time

([kb − ka]t > 1) limit. For kb
ka

= 20, the MSD exponent values (∆(t) ∼ (t∗)α at long times),

are α = 1.36, for kb
ka

equal to 8, α = 1.67 and for kb
ka

equal to 2, α = 2.90. We observed a

similar behavior whereby the size of the cell collective is larger for lower values of kb
ka

(see

Fig. 2d). For kb
ka

equal to 20, ξ = 0.68, for kb
ka

equal to 8, ξ = 0.85 and for kb
ka

equal to 2,

ξ = 1.23. The time dependent changes in ∆r(t) and ∆(t) shows that the degree of migration,

quantified using ξ and α, is enhanced with decreasing cell division rate at fixed strength of

mechanical feedback. We anticipate that this is due to slower dividing cells experiencing

less local stress as compared to faster dividing cells. This shows that the interplay between

mechanical feedback and cell division is the key regulator of cell dynamics as opposed to cell

division rate alone.

B. Average time-dependent pressure relative to critical pressure explains how cell

collective growth is determined by mechanical feedback

We next sought out to determine what is the unifying explanation for the non-trivial cell

dynamics in a growing cell colony as mechanical feedback and division rate are varied? The

answer lies in how the growth law responds to the mechanical feedback. The growth law is

an emergent property that depends not only on the individual cell properties but also at the

global cell collective scale, through the mechanical feedback and intercellular interactions.

Depending on whether the average pressure experienced by cells exceeds or remain below

the critical pressure, we obtain slower or faster number growth, which can be determined

experimentally by counting the number of cells as a function of time [5].
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Changing pc: We first calculated the number of cells (N) as a function of time at pc =

10−5Nm−1, 10−4Nm−1 and 10−3Nm−1 with kb
ka

= 20 (Figure 3a). We find thatN(t) increases

as, N(t) ∼ tλ. For pc = 10−5Nm−1, λ = 1, for pc = 10−4Nm−1, λ = 1.31 and for pc =

10−3Nm−1, λ = 2.78. It is clear that growth rate increases as the mechanical feedback

strength decreases (Figure 3a). To determine the origin of the enhanced growth as pc

increases, we calculated the average pressure, 〈p(t)〉 = 1
N

∑N
i=1 pi (Figure 3b). For pc = 10−5,

the average value of 〈p(t)〉 is always higher than the critical pressure, which implies that the

cells are predominantly in the dormant phase. For pc = 10−4, 〈p(t)〉 initially exceeds pc then

dips below pc and once again exceeds it after a few cell cycle times. This causes the cells to

start entering dormancy. However, for pc = 10−3, 〈p(t)〉 is always smaller than pc, implying

that the majority of the cells are in the growth phase, resulting in increased cell division,

and proliferation. Therefore, the average value of pressure relative to the critical pressure

is a key parameter that determines the growth of the cell collective.

Changing kb
ka

: Next, we obtained N(t) at the fixed value of pc = 10−4 for three values of

kb
ka

= 20, 8 and 2 as shown in Figure 3c. The growth exponents (N(t) ∼ tλ) are λ = 1.31,

λ = 1.69 and λ = 2.60 for kb
ka

= 20, kb
ka

= 8, kb
ka

= 2, respectively. Strikingly, tissue growth rate

decreases as cell division rate increases, which may be understood in terms of the dynamic

changes in the average pressure, 〈p(t)〉, plotted in Figure 3d, as a function of kb
ka

. For kb
ka

= 2,

the 〈p(t)〉 is smaller than pc for long times (exceeding the cell division time) unlike the case

for kb
ka

= 20 and 8, indicating that the generation of pressure in the tissue is suppressed

with lower kb
ka

. We surmise that slower division rate allow cells to quickly rearrange their

positions locally to minimize intercellular forces and lower the pressure. Therefore, cell

division events are more prevalent when cells divide slowly as compared to those that divide

fast, thus resulting in greater tissue growth. Interestingly, the pressure curve for kb
ka

= 2,
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shows large fluctuations because during cell division large pressure is generated momentarily,

owing to the two daughter cells being in spatial proximity, in comparison to the average small

pressure. Our analyses show that for both conditions (changing pc and kb
ka

), the mechanical

feedback determines the cell division which in turn influences cell dynamics.

C. Growth law dictates cell dynamics

Our results so far suggest that the cell dynamics is determined by the tissue growth law.

The generality of this result follows from the following arguments. If the overall shape of

the tissue is circular in 2D (see Figure 1c), we expect the exponents governing the mean

squared displacement α (∆(t) ∼ tα) and the number growth λ (N(t) ∼ tλ) to have similar

values. From the algebraic growth of the tissue, it follows that N(t) ∼ tλ ∼ r2, which holds

for a circular shape. From the relation r2 ∼ ∆(t) ∼ tα, expect that α ∼ λ. In addition, the

exponents ξ (∆r(t) ∼ tξ) and λ should be related as λ ≈ 2ξ. By comparing the exponents

α and λ in Figure 4a, we note that the relation α ∼ λ is approximately satisfied. Similarly,

λ ≈ 2ξ as shown in the inset of Figure 4a.

Based on the findings in Figures 4a we are able to predict a diagram of states as a

function of mechanical feedback strength (pc) and cell division rate (kb
kb

). Recent works

probing the effect of cell division and apoptosis have reported subdiffusive [11], diffusive

[13], and superdiffusive motion [12]. However, the regime in which these values emerge is

unclear. Time traces of cell positions can be recorded using particle tracking techniques to

quantify the features of cell dynamics. In anticipation of such experiments, we characterized

single-cell dynamics by calculating the mean squared displacement over a broad range of

pc and kb
kb

. As the value of α can be used to determine the nature of dynamics in the time

regime of interest, we extracted the α exponent in the long time limit. Figure 4b shows

13
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the two-dimensional diagram of states. Notably, we observe all three regimes of motion,

subdiffusive, superdiffusive, and hyperdiffusive, by varying kb
ka

and pc.

Figure 4b reveals three interesting characteristics of cell dynamics: (a) upon increasing pc,

there is a transition from subdiffusive to superdiffusive, and finally hyperdiffusive behavior.

At fixed kb
ka

= 20, for pc = 5× 10−6Nm−1 dynamics is subdiffusive while for pc = 10−4Nm−1

cells exhibit superdiffusive motion. Upon further increasing pc to 10−3Nm−1, hyperdiffusive

dynamics is observed. (b) Surprisingly, upon decreasing kb
ka

, α increases. For smaller pc

values, on decreasing kb
ka

, the dynamics change from subdiffusive to superdiffusive behavior.

For higher pc values, the dynamics changes from superdiffusive to hyperdiffusive. For fixed

pc = 10−5Nm−1, the subdiffusive dynamics at kb
ka

= 20 changes to superdiffusion at kb
ka

= 2.

For a higher value of pc = 10−4Nm−1, at kb
ka

= 20 ( kb
ka

= 2), the dynamics is superdiffusive

(hyperdiffusive). The diagram of states (Figure 4b) was created using a smoothing procedure

where the values of the MSD exponents at unknown values of kb
ka

and pc were interpolated

using the known simulation MSD values. The interpolation is logarithmically (linearly)

scaled in pc ( kb
ka

) axis. The two-dimensional phase diagram predicts the emergence of different

dynamical regimes, from subdiffusive to hyperdiffusive, which can be tested in imaging

experiments [5, 6].

D. Emergence of highly correlated force

Next, we wanted to gain a mechanistic understanding of the emergent anomalous dy-

namics of individual cells. We calculated the force autocorrelation function, FAF(t∗) =

〈F(t+t∗)·F(t)〉t
〈F(t)·F(t)〉t [19], which in an overdamped system encodes the directed nature of motion in

individual cells. Here, F(t) is the force on the cell at time t and 〈...〉t is the time average.

Figure 5 shows the plot of FAF for varying pc = 10−3Nm−1, 10−4Nm−1 and 10−5Nm−1 at
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fixed kb
ka

= 20. It shows that the FAF decays via a two steps, characterized by short ( γ
ERm

)

and long (∼ 1
kb−ka

) times. To extract the two-time scales, we fit FAF using Ae−
t∗
τc + C in

both the regimes.

At short times (see the inset of Figure 5), for pc = 10−3Nm−1, A = 0.5, τc = 1.2γ
ERm

and C = 0.41. For pc = 10−4Nm−1, A = 0.75, τc = 0.97γ
ERm

and C = 0.16. Lastly, for

pc = 10−5Nm−1, A = 0.81, τc = 0.95γ
ERm

and C = 0.11. It is clear that at short times, the

relaxation time is approximately close to the elastic time scale γ
ERm

, which is negligible

compared to 1
kb−ka

.

In the long time limit, the FAF exhibits correlations. For pc = 10−3Nm−1, A = 0.41, τc =

2.2
kb−ka

and C = −0.06. For pc = 10−4, A = 0.12, τc = 2.3
kb−ka

and C = −0.02. Lastly, at strong

mechanical feedback (pc = 10−5Nm−1), A = 0.04, τc = 0.2
kb−ka

and C ≈ 0. A is negligible,

implying the absence of correlations force, which explains the observed subdiffusive dynam-

ics. The value of A for pc = 10−3Nm−1 is four times larger than for pc = 10−4Nm−1. In

addition, the FAF decays over (2-3) cell division times when the feedback strength is weak.

Larger magnitude of FAF in the long time regime leads to higher degree of migration for

pc = 10−3Nm−1.

IV. CONCLUSION

We used simulations of a minimal two-dimensional off-lattice model to provide a com-

prehensive analysis of the variations in the cell dynamics and tissue growth as the strength

of the mechanical feedback and cell division rates are altered. Building upon our earlier

work showing the remarkable spatial and temporal variations in the dynamics of the cells

from the center to the periphery of 3D cell collectives [12, 17], we discover that the inter-

play between mechanical feedback strength and cell number growth is a key determinant of
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cell dynamics. The emergent dynamics of the cell collective changes from subdiffusive to

superdiffusive to hyperdiffusive, as the pc and kb
ka

are varied. We quantify the emergence of a

force that is highly correlated in time arising from cell division that is persistent over several

cell division times which is directly correlated with super-diffusive and hyper-diffusive cell

dynamics. Notably, we show that biologically relevant parameters (pc,
kb
ka

) could be chosen

to suppress highly directed cell dynamics even as the cell division rate is increased.

In growing cell collectives, highly persistent forces emerge with weaker mechanical feed-

back on cell division whose decay exhibits two relaxation time scales: one short (elastic time

scale, γ
ERm

) and one long (division-apoptosis time scale, 1
kb−ka

). The presence of persistent

forces determines the variations in the dynamics as cell division rates and the strength of

the feedback are varied. Weaker mechanical feedback corresponding to higher pc values lead

to more persistent force correlations which in turn results in hyperdiffusive cell dynamics.

How cell divisions affect tissue fluidity and how long-lasting and reversible is this effect

are outstanding questions of broad relevance to collective cell behaviors [30]. We discover

that the cell dynamics is controlled by the growth law of the cell collective, which depends

primarily on the strength of the mechanical feedback. Interestingly, the three exponents α

(for mean squared displacement), λ (for number growth) and ξ (for size growth) are related

as α ≈ λ ≈ 2ξ, providing evidence that cell dynamics and tissue growth are interrelated.

Therefore, we can estimate the values of the other two exponents if one of them is obtained in

experiments. The phase diagram summarizing our findings provides a unified picture of the

disparate dynamics found in several theoretical studies [11–13]. Because these arguments

are general, we propose that global dynamics of a growing cell collectives must exhibit

the features of sub-diffusive to hyper-diffusive motion. Finally, it is likely that the non-

equilibrium dynamics, due to the interplay between mechanical feedback and kb >> ka,

16

Page 17 of 30 Soft Matter



may also be relevant in other situations such as embryogenesis and wound healing.

Experimental Validation: The prediction that there is a strong correlation between growth

laws of tissues and dynamics of single cells could be validated by we performing experiments

along the lines of Puliafito et.al. [5], where MDCK cells were grown on a two dimensional

substrate. In the above experiment, both the growth laws, and cell dynamics could be

measured. If the experiment could be generalized to cell lines with varying cell doubling

times and sensitivity to contact inhibition of proliferation, the predictions in the present

study can be experimentally tested.
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Data Availability: The simulation code for the present study was custom generated in

MATLAB can be found on google drive [31].
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c)b)

a)
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p<pc

R>=Rm 

Figure 1: The 2D model. (a) Inter-cellular force as a function of distance between two

cells with identical radii, Ri = Rj = 4µm. The repulsive and attractive parts of the force

are given by Eqs. (1) and (2), respectively. The inset is the zoomed-in view that highlights

the region in which the force is predominantly attractive. (b) Illustration of the role of

mechanical feedback. On the left, the “red” cell is dormant (cannot grow and divide)

because the pressure exerted by the neighbors exceeds pc. The “green” cell is in the growth

phase (G) (p < pc). The green cell from the left gives birth to two daughter cells (cyan and

green) when the radius exceeds the mitotic radius Rm. (c) A snapshot of the 2D growing

tissue consisting of approximately 4,750 cells at t∗ = 3.74, with pc = 10−3MPa and

kb
ka

= 20. The global shape is approximately circular. The colors in plot are for illustration

purposes only.
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a b

c d

Figure 2: Cell dynamics is regulated by mechanical feedback (pc) and cell

division rate ( kb
ka
): (a) Mean squared displacement, ∆(t), as a function of time at fixed

kb
ka

= 20. From top to bottom, the curves are for pc = 10−3Nm−1, 10−4Nm−1 and

10−5Nm−1. The inset focuses on the long time limit (t > 1
kb−ka

). The x-axis is scaled by

kb − ka. The dashed lines are power law fits (∆(t) ∼ tα). The α values are given in the

upper left box. (Continued on the next page)
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Figure 2: (b) Size of the cell collective, ∆r(t) as a function of time for different pc values

at fixed kb
ka

= 20. The dashed lines are power-law fits (∆r ∼ (t∗)ξ). The ξ values are given

in the upper left box. (c) ∆(t), as a function of time. From left to right, curves correspond

to kb
ka

= 20, 8 and 2 at fixed pc = 10−4Nm−1. The inset focuses on the long time regime

(t > 1
kb−ka

). The dashed lines are the power law fits ( ∆(t) ∼ (t∗)α). The α values are given

in the upper left box. (d) ∆r(t) as a function of time for changing kb
ka

. The dashed line is

the power law fit (∆r ∼ (t∗)ξ). The ξ values are given in the upper left box.
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Figure 3: Growth law governs the cell dynamics: (a) Number of cells, (N(t)), as a

function of time at three values of pc, labeled in the figure. The dashed lines with the

power the power law fits ( N(t) ∼ (t∗)λ) are shown. (b) Average pressure, 〈P (t)〉, as a

function of time. The curves correspond to pc = 10−3Nm−1(top), 10−4Nm−1 (middle), and

10−5Nm−1 (bottom). The dashed lines mark the pc values; blue - pc = 10−3Nm−1, orange

- pc = 10−4Nm−1, and green - pc = 10−5Nm−1. (Continued on the next page).
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Figure 3: (c) N(t), as a function of time. From bottom to top, curves correspond to

kb
ka

= 20 (blue), 8 (orange) and 2 (green). The dashed lines are the power law fits. The λ

values are mentioned in the upper left box. (d) Average pressure, 〈P (t)〉, as a function of

time for the three kb
ka

values. From bottom to top, curves correspond to kb
ka

= 20 (blue), 8

(orange) and 2 (green). The dashed line corresponds to a pressure equal to 10−4Nm−1.
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Figure 4: Dynamical phase diagram : (a) The MSD exponent α as a function of the

growth law exponent λ. The slope of the dashed line is approximately unity. In the inset

we plot the relationship between λ and ξ. The fit of the line is λ ≈ 2ξ. (b) Dynamical

regimes as a phase diagram in the plane of pc and kb
ka

. The color bar on the right shows the

value of α. Sub-diffusion (α ≤ 1), superdiffusion (1 < α ≤ 2), and hyper-diffusion (α > 2)

in the long-time cell dynamics ( (kb− ka)t > 1). The black (blue) lines correspond to α = 1

(α = 2).
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Figure 5: Correlation in force: Force autocorrelation function (FAF) as a function of

time. From top to bottom, FAF corresponds to pc = 10−3, 10−4 and 10−5. The dashed lines

are the fits. Inset is the zoomed of the initial times. The figure shows the emergence of

FAF with two-time scales: long (∼ 1
kb−ka

) and short (elastic time scale = γ
ER

).

24

Page 25 of 30 Soft Matter



[1] Barres B, Hart I, Coles H, Burne J, Voyvodic J, Richardson W, et al. Cell death and control

of cell survival in the oligodendrocyte lineage. Cell. 1992;70(1):31–46.

[2] Lecuit T, Le Goff L. Orchestrating size and shape during morphogenesis. Nature.

2007;450(7167):189.

[3] Weinberg RA. The Biology of Cancer, 2nd Edition. Garland Science; 2013.

[4] Kumar S, Weaver VM. Mechanics, malignancy, and metastasis: the force journey of a tumor

cell. Cancer and Metastasis Reviews. 2009;28(1-2):113–127.

[5] Puliafito A, Hufnagel L, Neveu P, Streichan S, Sigal A, Fygenson DK, et al. Collective and

single cell behavior in epithelial contact inhibition. Proceedings of the National Academy of

Sciences. 2012;109(3):739–744.

[6] Valencia AMJ, Wu PH, Yogurtcu ON, Rao P, DiGiacomo J, Godet I, et al. Collective cancer

cell invasion induced by coordinated contractile stresses. Oncotarget. 2015;6(41):43438.

[7] Han YL, Pegoraro AF, Li H, Li K, Yuan Y, Xu G, et al. Cell swelling, softening and invasion

in a three-dimensional breast cancer model. Nature physics. 2020;16(1):101–108.

[8] Kim JH, Pegoraro AF, Das A, Koehler SA, Ujwary SA, Lan B, et al. Unjamming and

collective migration in MCF10A breast cancer cell lines. Biochemical and biophysical research

communications. 2020;521(3):706–715.

[9] Sinha S, Thirumalai D. Self-generated persistent random forces drive phase separation in

growing tumors. The Journal of Chemical Physics. 2020;153(20).

[10] Shraiman BI. Mechanical feedback as a possible regulator of tissue growth. Proceedings of

the National Academy of Sciences. 2005;102(9):3318–3323.

25

Page 26 of 30Soft Matter



[11] Czajkowski M, Sussman DM, Marchetti MC, Manning ML. Glassy dynamics in models of

confluent tissue with mitosis and apoptosis. Soft matter. 2019;15(44):9133–9149.

[12] Malmi-Kakkada AN, Li X, Samanta HS, Sinha S, Thirumalai D. Cell Growth Rate Dictates

the Onset of Glass to Fluidlike Transition and Long Time Superdiffusion in an Evolving Cell

Colony. Physical Review X. 2018;8(2):021025.

[13] Matoz-Fernandez D, Martens K, Sknepnek R, Barrat J, Henkes S. Cell division and death

inhibit glassy behaviour of confluent tissues. Soft matter. 2017;13(17):3205–3212.
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