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sorbed at a solid-liquid interface
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This work proposes an analytical model considering the e�ects of hydrodynamic drag and kinetic

barriers induced by liquid solvation forces to predict the translational di�usivity of a nanoparticle on

an adsorbing surface. Small nanoparticles physically adsorbed to a well-wetted surface can retain

signi�cant in-plane mobility through thermally activated stick-slip motion, which can result in surface

di�usivities comparable to the bulk di�usivity due to free-space Brownian motion. Theoretical analysis

and molecular dynamics simulations in this work show that the surface di�usivity is enhanced when

(i) the Hamaker constant is smaller than a critical value prescribed by the interfacial surface energy

and particle dimensions, and (ii) the nanoparticle is adsorbed at speci�c metastable separations

of molecular dimensions away from the wall. Understanding and controlling this phenomenon can

have signi�cant implications for technical applications involving mass, charge, or energy transport

by nanomaterials dispersed in liquids under micro/nanoscale con�nement, such as membrane-based

separation and ultra�ltration, surface electrochemistry and catalysis, and interfacial self-assembly.

1 Introduction

The ability of physically adsorbed nanomaterials (e.g., nanoparti-
cles, macromolecules, polyatomic ions) to move along an adsorb-
ing surface has critical implications in numerous natural and in-
dustrial processes for water treatment, energy storage, advanced
manufacturing, and other emerging technologies involving active
and passive transport of nanomaterials dispersed in a liquid un-
der confinement. For example, membrane-based separation pro-
cesses are critically affected by the ability of the rejected material,
the retentate, to be mobilized while adsorbed to the surface for
preventing fouling and reduction of the permeate.1–3 The surface
mobility of electroactive nanomaterials can control the maximum
charge transferred at an electrode in liquid electrolyte solutions or
limit the access to catalytic sites and the effective reaction rate.4–7

Similarly, the in-plane mobility of ionic species adsorbed within
the so-called Stern layer leads to significant contributions to the
electrical conductivity of micro/nanopores and fluidic devices em-
ploying electrokinetic flows for charge separation and energy con-
version.8–10 Understanding and predicting the surface diffusivity
of nanoparticles is also relevant to advanced manufacturing tech-
nologies involving 2D self-assembly and sintering.11–17
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The physical adsorption onto a surface of a rigid nanoparticle
dispersed in a liquid solvent occurs when there is a global (stable)
or local (metastable) minimum in the energy landscape resulting
from all molecular interactions between the particle, surface, and
solvent.18–20 The adhesion process is considered as irreversible
when the energy increase to escape the stable (or metastable)
minimum is much larger than the thermal energy of the system
kBT (here, kB is the Boltzmann constant, T is the system temper-
ature).21–23 Furthermore, the adsorbed particle is “immobilized”
in a given direction when the width of a large energy well in
such direction is much smaller than the particle dimensions.24–26

These basic considerations, however, are dependent on the ob-
servation time scales and the dimensionality of the energy land-
scape, which can make highly nontrivial the rationalization of the
post-adsorption behavior of a nanoparticle.

The 1D potential of mean force (PMF) U(d) as a function
of the particle-surface separation distance d is commonly pre-
dicted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) the-
ory,19,27,28 considering van der Waals (vdW) and electric double
layer (EDL) forces, and predicts a single (stable) energy minimum
at direct particle-wall contact for which finite contact separation
d0 ≃ σ/2 is prescribed by the characteristic molecular diameter
σ . However, energy minima at multiple nanoscale separations
d −d0 > 0 can be produced by solvent-induced interactions (e.g.,
the oscillatory structural force) due to the molecular reconfigu-
ration of the solvation or hydration layers confined between the
particle and the wall.29–34 Previous work has documented that
such solvent-induced interactions not considered by DLVO theory
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can lead to the kinetic trapping of rigid nanoparticles at periodic
separations s ≃ nσ (n > 0 is an integer number) for which the par-
ticle is effectively immobilized in the direction normal to the ad-
sorbing surface while retaining substantial in-plane translational
mobility.35–38

This work proposes an analytical model to predict the (in-
plane) surface diffusivity D∥ of physically adsorbed nanoparti-
cles of rigid materials by considering hydrodynamic friction ef-
fects along with spatial fluctuations of the PMF due to nanoscale
solvent-induced interactions in the solvation layers confined be-
tween the particle and adsorbing surface. These solvation-
induced interactions lead to both the kinetic trapping of the
nanoparticle at finite separations from the solid wall and “stick-
slip” motion parallel to the surface. The proposed model requires
as input parameters basic material properties that are experimen-
tally determinable (i.e., zero-shear bulk viscosity, interfacial sur-
face energies, Hamaker constants) and therefore is applicable to
general solid materials and liquid solvents. Theoretical predic-
tions are verified by molecular dynamics (MD) simulations for the
case of small rigid nanoparticles with a range of typical Hamaker
constants and interfacial surface energies that correspond to com-
mon metal oxides and polymeric materials, which are moderately
wettable by water and simple molecular solvents.

2 Theoretical Analysis

2.1 Potential of Mean Force Model: Near-Contact Conditions

Adopting a continuum (mean-field) description, we will formu-
late a simple two-dimensional expression for the effective PMF
U(d,s) of a quasi-spherical rigid nanoparticle of radius R that
is fully immersed near a planar wall, in terms of the nanoscale
separation distance d and in-plane displacement s (cf. Fig. 1a).
We consider that solvent-induced interactions arise at small
nanoscale separations due to the formation and re-arrangement
of a 3D pseudo-crystalline liquid structure in the solvation lay-
ers near a wettable surface. This leads to separation-dependent
oscillatory structural forces with a characteristic energy Us, that
decay exponentially away from the wall with a period prescribed
by the liquid molecule diameter σ .19,32,33 In-plane displacements
produce a periodic shear deformation and dislocation of the 3D
solvation structure that result in energy oscillations with ampli-
tude U∥ and a period prescribed by the characteristic interactomic
separation ∆x ∼ σ between solid atoms on the solid surface.

The PMF for the nanoparticle is therefore formulated as

U(d,s) =UDLVO +Use−
d
σ cos

(
2πd
σ

)
×
(

1− β

2
cos

(
2πs
∆x

))
(1)

where UDLVO is the energy from classical (particle-wall) DLVO in-
teractions, Us is the characteristic adhesion or de-wetting energy
due to the modeled solvent induced interactions, and β is given
by the ratio between the characteristic in-plane energy oscillation
and adhesion energy. The characteristic energy of adhesion due
to solvent-induced interactions is38

Us =−2γ̄πR2
c , (2)

where γ̄ = (γ1 + γ2)/2 is the average interfacial energy deter-
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Fig. 1 Nanoparticle near an adsorbing surface in liquid media. (a) Con-

tinuum description: a spherical rigid nanoparticle of radius R lies near a

planar wall at a separation distance d. Particle-wall contact occurs at a
single point for which d = 0. The particle PMF U(d,s) is parameterized

by the particle-wall separation distance d and the in-plane displacement

s. (b) Atomistic description: a quasi-spherical nanoparticle formed by

atoms or molecules of �nite diameter σ makes contact with the wall over

a �nite surface area Sc = πR2
c at an average separation d0 ≃ σ/2. The

contact radius Rc = R
√

1− (1−σ/R)2 is then determined from the sur-

face area Sc removed from the �rst solvation layer to attain contact.

mined by the interfacial surface energies (energy per unit area)
γi (i = 1,2) for the particle and the wall surface, and Rc =

R
√

1− (1−σ/R)2 is the effective contact radius determined from
the area Sc ≃ πRc removed from the first solvation layer when
direct particle-wall contact is attained (cf. Fig. 1b).

The PMF in Eq. 1 introduces a periodic energy barrier ∆U∥ for
in-plane motion through similar simplifications as the classical
Frenkel-Kontorova model for contact friction and stick-slip mo-
tion on the atomic scale.39–41 We consider that the energy per
unit area required to shear/dislocate the wetting liquid structure,
by breaking and forming the solvation layers to regenerate wetted
surface area as the particle moves parallel to the wall, is compara-
ble to the particle-liquid interfacial energy γpl ∼ kBT/σ2 to create
solid-liquid interface (see Sec. 3.1). Hence, the in-plane energy
barrier for a physically adsorbed nanoparticle is expressed as

∆U∥(d) = 2β
kBT
σ2 πRce−

d
σ cos

(
2πd
σ

)
(3)

for |d − dn| ≤ σ/2, where the metastable separation distances
dn = d0 ≃ nσ are prescribed by an integer number n of molecu-
lar layers, and the factor β , taking values 0 ≤ β ≤ 1, accounts for
static and dynamic effects reducing the effective energy barrier
for in-plane displacements. Such effects include “defects” in the
sheared quasi-crystalline solvation structure, particle rotation and
misalignment with the wall plane, and correlated displacements
of the particle and wetting liquid molecules.42–44

DLVO interactions near contact. The PMF formulated in Eq. 1
is valid for near-contact conditions, under which the oscilla-
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tory structural force is the dominant contribution from solvent-
induced interactions and vdW forces are the dominant DLVO in-
teraction. For this analysis we will thus adopt

UDLVO =− AR
6(d + σ

2 )
(4)

where A is the Hamaker contact for particle-wall interactions in
the liquid medium. The vdW interactions dominate over elec-

trostatic effects for weak surface charge σs ≪ 1.84
√

Aε/(24πλ 3
D)

and small separations d < R, or moderate-to-large surface charge
and nanoscale separations d ∼ σ ≲

√
Aε/(24πσ2

s λD); here, ε is
the solvent dielectric and λD is the Debye length prescribed by
the ion concentration n0. For charge regulating surfaces and elec-
troneutral systems one has |σs| ≲

√
8n0εkBT 45,46 and the near-

contact conditions modeled by Eq. 1 would correspond to d ≲ 1-
3 nm (i.e., 3 to 10 molecular diameters) in the case of moderate
Hamaker constants (|A|= 5-10 kBT ) and ion concentrations (0.01
and 1 mM) of a symmetric 1:1 electrolyte in aqueous solution.

Metastable adhesion and off-plane kinetic trapping. The
solvent-induced interactions modeled in Eq. 1 produce local en-
ergy minima at a finite number of nearly periodic distances dn ≃
d0 +nσ (n = 1,∞) that satisfy the condition38

e−
dn
σ

(
dn

σ
+

1
2

)2
≥ |A|

|γ̄|σ2 ×
(

Rσ

24π2R2
c

)
, (5)

where we use
√

1+4π2 ≃ 2π. According to Eq. 5, metastable ad-
hesion at finite separations of 1 to 4 molecular layers is expected
for small nanoparticles of radius R ≲ 100 nm and conventional
rigid materials for which |A|≲ 20kBT and |γ̄|≲ 3kBT/σ2, in aque-
ous solutions for which σ ≃ 0.3 nm. The PMF in Eq. 1 additionally
predicts that particle-wall contact can be effectively prevented
due to a kinetic trapping phenomenon when |U(dn − σ/2,0)−
U(dn+σ/2,0)|> kBT .38 Fully preventing the kinetic trapping and
achieving particle-wall contact with stable adhesion at d = d0 re-
quires Hamaker constants larger than a critical value38

Ac =
(

0.465πR2
c |γ̄|− kBT

)
× (22.5σ/R). (6)

Eq. 6 predicts that quasi-spherical nanoparticles with R ≫ σ

can attain contact for Hamaker constants larger than Ac =

65.7|γ̄|σ2, which corresponds to moderately large Hamaker con-
stants A ≳ 20-60 kBT for the case of common hydrophilic materi-
als (e.g., metal oxides) in aqueous media.

2.2 Surface Diffusivity

To rationalize the surface diffusivity of a physically adsorbed sub-
100-nm nanoparticle we will consider that the particle can be
“trapped” at metastable separations dn ≃ d0 + nσ within a few
molecular layers (n= 1,4), according to Eq 5, and that direct “dry”
contact is prevented over long times when the Hamaker constant
is smaller than the critical value predicted by Eq. 6.38 Accord-
ing to the PMF model in Eq. 1 thermally activated stick-slip mo-
tion parallel to the surface arises while the particle is adsorbed at
metastable separations dn; i.e., the particle “sticks” when trapped
at local minima for which ∂U/∂ s = 0 and “slips” when rapidly

crossing over an energy barrier of magnitude ∆U∥ in the in-plane
direction. Hence, a substantial effective diffusivity is expected
for negative (repulsive) or weakly positive (attractive) Hamaker
constants smaller than the critical value Ac predicted by Eq. 6.

The effective diffusivity, determined from the mean square
displacement (MSD) in a specific direction of motion, is pre-
scribed by (1) dissipative effects (e.g., hydrodynamic drag) de-
termined by a friction coefficient ξ and (2) kinetic effects con-
trolled by the magnitude of energy barriers ∆U along such di-
rection of motion.24,47–50 Such dissipative and kinetic effects
can be highly local and anisotropic in the presence of liquid-
solid interfaces.42–44,51 The in-plane diffusivity D∥, as well as
the off-plane diffusivity D⊥, near contact is generally expected
to differ significantly from the diffusion constant D0 = kBT/ξ0

in the isotropic liquid bulk, which is prescribed by the free-
space drag coefficient ξ0 in the absence of energy barriers hin-
dering thermal motion.52–55 The in-plane hydrodynamic friction
coefficient can be conveniently expressed as ξ∥ = λ∥(d)ξ0 where
λ∥(d) is a separation-dependent correction factor and ξ0 = 6πµR′

is the free-space Stokes drag determined by the shear viscos-
ity of the liquid and the hydrodynamic or solvated radius R′

of the nanoparticle.56,57 The thermally activated crossing of in-
plane energy barriers is a random process with a kinetic rate
Γ∥ = Γ0 exp(−∆U∥/kBT ) where the attempt rate Γ0 = 2D∥/σ2 is
estimated from the time to diffuse between neighboring minima
under pure Brownian motion.24,47–50 From the in-plane mean
square displacement MSD∥(1/Γ∥)=σ2 = 2D∥/Γ∥ due to thermally
activated crossings between neighboring minima one can esti-
mate the effective surface diffusivity D∥(d) = D0 exp(−∆U∥/kBT ).

Considering dissipative and kinetic effects near contact condi-
tions the nanoparticle surface diffusivity is thus given by

D∥(d) = D0 ×λ∥× e−∆U∥/kBT , (7)

where ∆U∥ is defined in Eq. 3 and the hydrodynamic friction fac-
tor is analytically estimated as

λ∥(d) = 1+
1
6

R′2
c

R′d
, (8)

by adding to the Stokes drag for a sphere the shear drag of a pla-
nar circular facet with a solvated radius R′

c moving parallel to
the wall at a small separation distance d < R; we will employ in
this expression the hydrodynamic or solvated radii R′ = R+ 2σ

and R′
c = Rc + 2σ based on MD simulation results for the stud-

ied conditions (see Sec. 3). Predictions from Eqs. 7-8 with the
PMF modeled in Eq. 1 will be compared with MD simulations
described in the following section for a range of conditions com-
monly encountered for rigid nanoparticles of conventional metal
oxides58–60 (e.g., Fe3O4, SiO2, TiO2) or polymeric materials.61–63

3 Molecular Dynamics

To verify the analytical model for the surface diffusivity pro-
posed in Sec. 2 we perform MD simulations with the open-source
package LAMMPS64 for single quasi-spherical rigid nanoparti-
cles subject to thermal motion while physically adsorbed onto a
plane wall fully immersed in liquid. The MD simulations in this
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Fig. 2 Molecular dynamics simulations of nanoparticle adsorption and surface di�usion. (a) Atomistic representation of the modeled quasi-spherical

rigid nanoparticle (R = 6σ) and planar wall. The periodic simulation domain has the top/bottom walls located at y =±yw =±20σ and is �lled with the

modeled liquid. The particle-wall distance d(t) = yw −R−|y| and in-plane displacement s(t) =
√

x2 + z2 are computed from the center-of-mass position

x(t) reported by the MD replica simulations. (b) Replica MD simulations (�ve) for each of the studied eleven conditions (see Table. 1) report di�erent

separation distances d(t) and in-plane displacements s(t) (color lines). Metastable adhesion or contact occurs at a random time Ta (see circles) after

which the separation distance d(t > Ta)≃ d̄ remains nearly constant. The particle can perform stick-slip motion or remain immobile after adhesion (cf.

right panels). The reported MD replicas correspond to A = 15.8kBT and γpl = γwl =−0.34kBT/σ2.

work are not intended to model any specific solid or liquid (e.g.,
polar/non-polar solvents) but to produce the DLVO and solvent-
induced interactions considered in the analytical expressions in
Sec. 2 through measurable material properties. Three different
atomic species model the liquid solvent (l), solid particle (p), and
wall (w), the three atomic species are modeled with the same van
der Waals diameter σ , atomic mass m, and zero charge. The par-
ticle and wall number densities np = nw = 1/σ3 are uniform and
equal, and the bulk number density of the liquid is nl = 0.8/σ3.
The simulation domain is a 3D periodic box (Lx = 80σ , Ly = 42.5σ ,
Lz = 80σ) fully filled with the modeled liquid solvent and confined
along the y-direction by a plane wall located at y =±yw; here, the
wall coordinate yw = 20σ is defined by the plane where liquid
and solid molecules of finite size σ get in contact (see Fig. 2a). A
quasi-spherical nanoparticle of radius R = 6σ (i.e., ∼ 4 nm diame-
ter) is carved out of a fcc lattice with uniform spacing ∆x = 41/3σ

and the plane wall is a “frozen” fcc lattice with the same uniform
spacing ∆x (cf. Fig. 2a). All the MD simulations are performed
in the NVT ensemble with a Nose-Hoover thermostat to maintain
constant system temperature for the particle and liquid.65

The MD simulations in this work employ the standard 12-
6 Lennard-Jones (LJ) pairwise potential U(r) = 4ei j[(σ/r)12 −
(σ/r)6], where ei j is the characteristic interaction energy be-
tween different species (i, j = l, p,w) and r is the distance between
any two atoms. The LJ potential is used with a cutoff distance
rc = 2.5σ for liquid-liquid and solid-liquid interactions and rc = 4σ

for particle-wall interactions, which improves computational effi-
ciency while accurately representing interatomic forces.66,67 The
standard LJ potential models pairwise hard-core repulsion and
non-retarded vdW attraction between different atomic species,
which collectively gives rise to the DLVO and solvent induced-
interactions38,51,68–70 considered in the PMF model in Eq. 1.

Replica simulations. Five MD replica simulations per case are
performed by initializing the atomic velocities with different ran-
dom values producing the same system temperature T and let-
ting the system energy equilibrate with the particle fixed at
the center of the domain (cf. Fig. 2b). After the equilibra-
tion step the nanoparticle is free to translate and rotate as a
rigid body, the equations of motion for the particle and liquid
atoms are integrated with a small timestep ∆t = 0.01

√
kBT/mσ .

Under the modeled conditions the liquid has a constant bulk
shear viscosity µ = 2.1

√
mkBT/σ2.71,72 The Stokes-Einstein rela-

tion D0 = kBT/(6πµR′) with a hydrodynamic radius R′ = R+ 2σ

accounts for the particle diffusivity determined from free-space
MD simulations within a 15% relative error for all the studied
cases.38 As reported in Table 1 these replica simulations are per-
formed for eleven different conditions by using a set of different
interaction energies for the particle-liquid LJ energy epl = 0.5-
1.5 kBT and wall-liquid energy ewl = 0.5-1.5 kBT , while the
LJ energy is eii = kBT for all self-interactions and epw = kBT
for the pairwise particle-wall interactions. This set of pairwise
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interaction energies produces five different Hamaker constants
A = 4π2σ6np(nwepw −nlepl) = -7.9, 0, 7.9, 15.8, & 23.7 kBT , and
five different interfacial energies γ̄ = (γpl + γwl)/2 = -0.23, -0.34,
-0.6, -0.81, & -1 kBT/σ2, as described in Sec. 3.1.
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Fig. 3 Liquid structure and solvation layers near a planar wall. (a) The

2D liquid density �eld n(x,y) = n(z,y) computed from MD presents peri-

odic spatial variations of comparable magnitude in the direction normal

and parallel to the wall, indicating the presence of o�- and in-plane en-

ergy barriers induced by the liquid solvation structure. (b) The 1D liquid

density pro�le n(y) = (1/Lx)
∫ Lx

0 n(x,y)dy shows local energy minima in the

liquid solvation structure with a period similar to the liquid molecule di-

ameter σ . The density pro�les, reported for three di�erent solid-liquid

interaction energies ewl = 0.5, 0.75, & 1 kBT , show that density �uctua-

tions decay nearly exponentially away from the wall and their magnitude

increases monotonically with the pairwise LJ energy ewl . (c) Solid-liquid

interfacial energies γwl computed from MD via the 1D density pro�le n(y).
For the modeled conditions, |γwl | increases with the pairwise energy ewl
following a nearly quadratic relation (see �t to the MD data).

The MD simulations report the instantaneous center-of-mass
position of the nanoparticle, x(t) = xi+ yj+ zk, from which the
wall-particle separation distance d = yw −R− |y(t)| and in-plane
displacement s(t) =

√
x2 + z2 are readily determined. All the

replica simulations are initialized with the nanoparticle at the
center of the simulation domain at an initial separation d(0) =
yw − R from the top/bottom walls and run over the same sim-

ulation time Ts ≃ 5d(0)2/D0 that is nearly five times the diffu-
sive time TD = d(0)2/D0 to reach the (top or bottom) wall un-
der free-space Brownian motion. Metastable adhesion or con-
tact in each replica simulation occurs at a random adhesion time
Ta, after which the nanoparticle remains “trapped” near a finite
distance dn − d0 ≃ nσ (n = 0,4) undergoing extremely small off-
plane displacements |d(t > Ta)−dn| ≪ σ that result in a vanishing
off-plane diffusivity D⊥ → 0 for t > Ta (cf. Fig. 2b). Notably, the
nanoparticle can retain substantial in-plane diffusivity D∥(d)≲D0

through stick-slip motion after metastable adhesion at finite sep-
arations d̄ − d0 = 1-4 σ of one to four molecular layers from the
wall for certain studied combinations of sufficiently low Hamaker
constant and large magnitude of the interfacial surface energy (cf.
Table. 1).

3.1 Solvation structure and interfacial energy

The solid-liquid interfacial energy and local free energy of the
liquid can be effectively determined from the equilibrium num-
ber density via conventional mean-field approximations.34,38,73

To determine the number density field from MD we perform a
set of supplementary simulations with the modeled liquid con-
fined by the plane wall as reported in Fig. 2a but without a
nanoparticle. As shown in Fig. 3a, the 2D number density field
n(x,y) = n(z,y) = (1/Lz)

∫ Lz
0 n(x,y,z)dz computed from the time-

averaged 3D positions of liquid atoms presents off-plane and in-
plane spatial fluctuations near the wall with similar magnitude a
period comparable to the atomic diameter σ . This phenomenon
corresponds to the formation of a 3D quasi-crystalline structure
in the solvation layers near the wall and gives rise to the solvent-
induced interactions approximately modeled in Eqs. 1–3. Spa-
tial density variations normal and parallel to the wall have simi-
lar magnitudes (cf. Fig. 3a) indicating the presence of compara-
ble free energy barriers ∆u =−kBT ln(n/nl) induced by the liquid
structure along the off-plane and in-plane directions, as consid-
ered in formulating Eq. 3.

The solid-liquid interfacial energy γ =−kBT
∫ Ly/2

0 nln(n/nl)dy is
given by the energy required to remove the wetting liquid under
equilibrium conditions34,73 and can thus be determined from the
1D liquid density profile n(y) =

∫∫
n(x,y,z)dxdz/(LxLz) in the direc-

tion normal to a plane wall (cf. Fig. 3b). The surface energy thus
determined from the liquid density profile considers both DLVO
and non-DLVO interactions from liquid-liquid and liquid-solid in-
teractions that give rise to the formation of interfacial solvation
structures and solvent-induced interactions. Solid-liquid interfa-
cial surface energies computed with this approach are reported
in Fig. 3c for pairwise (wall-liquid) LJ energies ewl = 0.5-1.5 kBT
that result in a range of moderate to large interfacial surface ener-
gies γwl= -0.23 to -1 kBT/σ2. The surface energy magnitude |γwl |
for the studied conditions increases with the pairwise LJ energy
ewl following a nearly quadratic relation (cf. Fig. 3c). The solid-
liquid interfacial energies thus computed for a plane wall are em-
ployed to estimate the wall-liquid and particle-liquid interfacial
surface energies employed in analytical expressions. The particle-
liquid and wall-liquid interfacial energies with the corresponding
solvation energies, and Hamaker constants for the eleven cases
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𝑒𝑝𝑙

𝑘𝐵𝑇

𝑒𝑤𝑙
𝑘𝐵𝑇

𝛾𝑝𝑙𝜎
2

𝑘𝐵𝑇

𝛾𝑤𝑙𝜎
2

𝑘𝐵𝑇

ҧ𝛾 𝜎2

𝑘𝐵𝑇

𝑈𝑠
𝑘𝐵𝑇

𝐴

𝑘𝐵𝑇

𝐴𝑐
𝑘𝐵𝑇

ҧ𝑑 − 𝑑0
𝜎

ഥ𝐷∥
𝐷0

1.5 1.5 -1 -1 1.00 69.1 -7.9 56.5 3.26 0.65

1.25 1.25 -0.82 -0.82 0.82 56.7 0.0 45.7 3.10 0.76

1 1 -0.6 -0.6 0.60 41.5 7.9 32.4 2.71 0.45

1 0.75 -0.6 -0.34 0.47 32.5 7.9 24.6 2.01 0.36

1 0.5 -0.6 -0.23 0.42 28.7 7.9 21.3 1.48 0.27

0.75 1 -0.34 -0.6 0.47 32.5 15.8 24.6 1.60 0.24

0.75 0.75 -0.34 -0.34 0.34 23.5 15.8 16.7 0.96 0.11

0.75 0.5 -0.34 -0.23 0.29 19.7 15.8 13.4 0.08 0.01

0.5 1 -0.23 -0.6 0.42 28.7 23.7 21.3 0.89 0.00

0.5 0.75 -0.23 -0.34 0.29 19.7 23.7 13.4 0.30 0.12

0.5 0.5 -0.23 -0.23 0.23 15.9 23.7 10.1 0.08 0.01

Table 1 Experimentally determinable model parameters for the eleven

cases modeled by MD simulation. Each combination of LJ interaction

energies in MD simulations produce the reported particle-liquid and wall-

liquid interfacial surface energies γpl and γwl , respectively, adhesion (or

dewetting) energy Us, Hamaker constant A, and the critical contact value

Ac. The average surface di�usivity D̄∥ and wall separation d̄ − d0 are

computed by averaging all MD replica simulations for each studied con-

dition. Shaded area: predicted contact conditions for which the Hamaker

constant A > Ac is larger than the critical value Ac given by Eq. 6 For

reference, Hamaker constants typically range from 5 to 20 kBT for metal

oxides58�60 (e.g., SiO2, TiO2, ZnO) and 3 to 5 kBT for hydrophilic poly-

mers (e.g., PEG, PMAA) under room temperature conditions.61�63

studied by MD simulations are reported in Table. 1.

4 Results and discussion

This section analyzes and compares analytical predictions for the
surface diffusivity from Eq. 7 using the PMF model in Eqs. 1–3 and
results from the MD replica simulations described in Sec. 3 for a
set of eleven conditions with the experimentally determinable pa-
rameters described in Table 1. The parameters reported in Table 1
with a range of weakly repulsive to strongly attractive Hamaker
constants A/kBT = -7.9 to 23.7 and weakly to moderately strong
surfaces energies γ̄σ2/kBT = -0.23 to -1.0, correspond to a small
quasi-spherical nanoparticle (R = 6σ ≃ 4 nm) of weakly to mod-
erately wettable materials dispersed in simple molecular solvents,
such as metal oxides and hydrophilic polymers in aqueous solu-
tions. The retention of substantial in-plane mobility after physical
adsorption, while the nanoparticle is kinetically trapped at finite
metastable separations from the solid wall, is predicted for the
cases for which A ≲ 65.7γ̄σ2 according to Eq. 6 (see exposed re-
gion in Table 1).38

Nanoparticle surface diffusivity. To determine the separation-
dependent surface diffusivity from the MD replica simulations we
compute the in-plane MSD after adhesion or contact

MSD∥(∆t, d̄) =
1
N

N

∑
i=1

(s(ti +∆t)− s(ti))2 for |d j(ti)− d̄|< σ

2
, (9)

for lag times 0 < ∆t ≤ Ts − Ta by using only the N parallel dis-
placements for which the wall-particle separation is within half
a molecular diameter from the average adhesion distance d̄ =

(1/N)∑d(ti > Ta). As reported in Fig. 4a-c, the in-plane MSD com-
puted from MD simulations via Eq. 9 increases linearly with the
lag times for finite lag times ∆t ≳ 0.2σ2/D0. The effective sur-

face diffusivity in MD simulations (cf. Fig. 3b) is therefore readily
determined from the standard Brownian diffusion relationship

MSD∥(∆t,d) = 2D∥(d)×∆t (10)

by using linear regression for the finite range of lag times corre-
sponding to 0.2σ2/D0 ≤ D0∆t/σ2 ≤ 2, which yields very high R-
square values R2 = 0.96-0.98 for all the studied cases. The surface
diffusivities computed via Eqs.9–10 and corresponding R-squared
values did not show significant variation when increasing the up-
per bound of the lag time range employed for linear regression.

The average particle-wall separation d̄ and surface diffusivity
D̄∥ computed from the five replica simulations for each studied
condition are reported in Table 1. The averaged results show a
gradual increase of the particle-wall separation and average sur-
face diffusivity with the magnitude of the interfacial surface ener-
gies that characterize the degree of wettability of the particle and
wall surfaces. Notably, the cases for which the particle Hamaker
constant A is larger than the critical contact value Ac predicted by
Eq. 6 (see shaded area in Table 1) report a noticeable reduction
of the average surface diffusivity, as expected when direct “dry”
contact between the particle and the wall is attained.

The in-plane mean square displacement and separation-
dependent surface diffusivity D∥(d) reported in Fig. 4 for indi-
vidual replica simulations provides a more detailed picture of the
complex post-adsorption behavior with stick-slip motion or im-
mobilization randomly occurring at different separations from the
wall. As showed in Fig. 4a-c the surface diffusivity D∥(d) for in-
dividual simulations for the same studied conditions can differ
significantly from the average surface diffusivity as the Hamaker
constant increases and/or the interfacial energy magnitude de-
creases. We compare in Fig. 4d the separation-dependent surface
diffusivity D∥(d) predicted by the analytical model in Eq. 7 for the
case of vanishingly small in-plane energy barriers β = 0 and for
thermally activated stick-slip motion with energy barriers compa-
rable to the solvation energy by using β = 0.25 & 1 in Eq. 3. The
surface diffusivities determined from MD simulations (see mark-
ers in Fig. 4d) are reported for the average post-adsorption sep-
arations d̄ for each of the five replicas of the eleven studied con-
ditions. To readily compare the surface and bulk diffusivity, the
results reported in Fig. 4d are normalized by the bulk diffusion
constant D0 computed in MD simulations for free-space Brown-
ian motion (see Sec. 3).

All the surface diffusivities computed from individual MD
replica simulations fall within the analytical predictions for in-
plane Brownian diffusion solely hindered by hydrodynamic drag
(i.e., β = 0 in Eq. 3) and stick-slip motion with activation bar-
riers prescribed by a surface energy γτ = kBT/σ2 (i.e., β = 1 in
Eq. 3. First we must note that while the upper bound value
D∥ =D0λ∥ ∝ d−1 is solely prescribed by hydrodynamic friction and
inversely proportional to the wall-particle separation, the lower
surface diffusivity bound decreases exponentially with the separa-
tion distance. Hence, as the Hamaker constant decreases and/or
the surface energy magnitude increases so that A < Ac ≃ 65.7|γ̄|σ2

and contact is prevented by kinetic effects, the surface diffusivi-
ties D∥ ≳ 0.2D0 can become comparable to the free-space diffu-
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0.23 23.7 10.1

𝐴/𝑘𝐵𝑇 𝐴𝑐/𝑘𝐵𝑇ҧ𝛾 𝜎2/𝑘𝐵𝑇

contact metastable adhesion

Eq. 7
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𝐷∥

𝐷0

(d)
𝐴 > 𝐴𝑐 𝐴 < 𝐴𝑐

𝐷∥ → 0

𝑀𝑆𝐷∥

𝜎2

Δ𝑡𝐷0/𝜎2

𝑀𝑆𝐷∥

𝜎2

Δ𝑡𝐷0/𝜎2
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ҧ𝛾 𝜎2/𝑘𝐵𝑇 = 0.34

𝐴/𝑘𝐵𝑇 = 7.9

ҧ𝛾 𝜎2/𝑘𝐵𝑇 = 0.6
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𝐷∥ = 0.11𝐷0 𝐷∥ = 0.45𝐷0 𝐷∥ = 0.65 𝐷0

Fig. 4 In-plane mean square displacement MSD∥ and surface di�usivity D∥ at di�erent adhesion separations. (a-c) MSD∥(∆t,d) vs. lag time ∆t
computed from individual MD replica simulations for three studied cases with surface energy magnitudes |γ̄|= 0.34, 0.6, & 1.0 kBT/σ2 and Hamaker

constants A = 15.8, 7.9,&− 7.9 kBT , respectively. Black solid lines: linear �ts (R2 = 0.96-0.98) to the MD data computed via Eq. 9 for individual

replica simulations. Dashed grey line: MSD corresponding to the average surface di�usivity D̄ determined using all the replica simulations for the

studied case. (d) Surface di�usivity D∥(d) vs. separation from contact d −d0 computed from individual MD replica simulations for the eleven studied

cases reported in Table 1 (see legend). Analytical predictions from Eq. 7 are reported for purely hydrodynamic e�ects (∆U∥ = 0) and kinetic e�ects

with energy barriers ∆U∥ comparable to the adhesion energy: β = 0 (red line), β = 0.25 (dark red dashed-dotted line), and β = 1.0 (black line). Shaded

yellow regions: conditions for which A > Ac and contact with vanishing surface di�usivity is expected.

sivity D0. This analytical prediction is verified by the MD replica
simulations and indicates that significant in-plane mobility can be
retained after physical adsorption when either or both the parti-
cle and wall surface wettability increases. Secondly, the ability
to diffuse in-plane is generally reduced when the nanoparticle is
adsorbed at separations from contact dn −d0 = nσ given by an in-
teger number n of molecular liquid layers (cf. Fig. 4d). On the
other hand, the surface diffusivity D∥(d)→ D0λ∥(d) increases to-
ward the maximum value prescribed by hydrodynamic drag when
the particle-wall separation is slightly larger than the metastable
position and 0 < |d −dn|< σ/2, which is consistent with the ana-
lytical prediction for in-plane energy barriers in Eq. 3. This obser-
vation indicates that “defects” in the pseudo-crystalline structure
of the liquid solvation layers, induced by the particle rotation,
shape, and misalignment with the plane wall, can have significant
effects on the effective surface diffusivity of a physically adsorbed
nanoparticle.

5 Conclusions

A simple analytical model using as input a compact set of mea-
surable or determinable parameters was formulated to predict the

surface diffusivity of rigid nanoparticles physically adsorbed to a
surface immersed in liquid media. While only vdW forces were
considered for the studied near-contact conditions with particle-
wall separations of molecular dimensions, the proposed model
and analysis can be readily extended to include the electric dou-
ble layer force when this is necessary. Analytical predictions from
the formulated model provide the upper and lower bound for the
range of random surface diffusivities reported by MD simulations
of single particle adsorption over a range of physical conditions
that correspond to common hydrophilic nanomaterials dispersed
in aqueous solutions. While stable physical adsorption occurs
for direct contact between the nanoparticle and solid surface,
there are ubiquitous physicochemical conditions for which con-
tact is prevented due to a kinetic trapping phenomenon caused by
solvent-induced interactions for critically low Hamaker constants.
Under such trapping conditions corresponding to “weak” attrac-
tive vdw interactions with A ≲ 65.7|γ̄|σ2, nanoparticles of radius
R ≫ σ can have surface diffusivities D∥ ∼ D0 comparable to the
free-space diffusivity D0, over observation times t ≫ R2/D0 much
larger than the characteristic diffusive time prescribed by the par-
ticle radius. Notably, the in-plane diffusivity is enhanced when
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the particle remains physically adsorbed at particle-wall separa-
tions that prevent the formation of an integer number of solvation
layers between the particle and wall surfaces.

An important conclusion of this work is that nanoparticles of
common materials that are moderately to highly hydrophilic can
produce combinations of Hamaker constant and surface energies
that enable post-adsorption surface diffusion over distances larger
than the particle size. Tuning the ability of a nanoparticle to
remain mobile over an adsorbing surface has important impli-
cations to various technical applications that involve adhesion,
transport, and removal of nanomaterials to/from wetted surfaces,
or the reduction/oxidation of nanoparticles at catalytic sites on
an electrode surface. The findings of this work are relevant to
common nanomaterials (e.g., metal oxide nanoparticles and mi-
cro/nanoplastics) that are extensively employed in commercial
applications, and are subsequently released in the environment.
The proposed analytical model can be employed to guide future
experimental studies, support the rational design of applications
involving mass and charge transfer on wetted surfaces, and to
help improve models for the environmental fate of engineered
nanomaterials.
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