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Cell shape and orientation control galvanotactic accu-
racy

Ifunanya Nwogbaga,*® and Brian A. Camley??

Eukaryotic cells sense and follow electric fields during wound healing and embryogenesis — this is called
galvanotaxis. Galvanotaxis is believed to be driven by the redistribution of “sensors" — potentially
transmembrane proteins or other molecules — through electrophoresis and electroosmosis. Here, we
update our previous model of the limits of galvanotaxis due to the stochasticity of sensor movements
to account for cell shape and orientation. Computing the Fisher information shows that, in principle,
cells have more information about the electric field direction when their long axis is parallel to the
field. However, for weak fields, maximum-likelihood estimators may have lower variability when the
cell's long axis is perpendicular to the field. In an alternate possibility, we find that if cells instead
estimate the field direction by taking the average of all the sensor locations as its directional cue
(“vector sum"), this introduces a bias towards the short axis, an effect not present for isotropic cells.
We also explore the possibility that cell elongation arises downstream of sensor redistribution. We
argue that if sensors migrate to the cell's rear, the cell will tend to expand perpendicular the field —
as is more commonly observed — but if sensors migrate to the front, the cell will tend to elongate

parallel to the field.

Introduction

Electric fields play a pivotal role in biological systems. The pio-
neering experiments of Luigi Galvani in the 18th century on mus-
cle contractions in frog legs™3 are some of the earliest examples
showcasing their significance. Direct current (DC) electric fields
with strengths ranging from 30-100 mV/mm have been mea-
sured within and around developing embryos®®, though applying
additional electric fields to embryos cause abberations in embry-
onic developmentm. Endogenous electric fields in the range of
40-200 mV/mm also emerge around wounds&1Y, Applying ad-
ditional electric fields during wound healing accelerates the heal-
ing process1213 These electric fields have been shown to stim-
ulate various types of cells to undergo galvanotaxis (alternately
“electrotaxis”), a phenomenon where cells migrate directionally
in response to the electric field. Examples of galvanotaxing cells
include keratocytes I8, keratinocytes®1920, granulocytes?1H23,
ﬁbroblasts, and neural crest cells?22728 gome cells such as
keratocytes and neural crest cells respond to field strengths as low
as 25 mV/mm1¢ and 10 mV/mm®22, respectively.

There exists a consensus that cells sense electric fields through
transmembrane molecule redistribution, which occurs via elec-
trophoresis and electroosmosis. Simply put, proteins and other
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molecules on the cell surface are pulled by the electric field and
migrate relative to the field, accumulating on one side of the cell.
This redistribution of membrane-bound components is crucial for
the initiation of galvanotaxis. Putative sensor candi-
dates identified or hypothesized in the past include EGFR, P,Y ,
integrins, and lipid rafts32%36, Different cell types, of course, may
have different sensors, and there may be more than one sensor.
Ion channels have also been observed to play a role20837, sug-
gesting there may be multiple mechanisms for sensing the field
orientation8.

In our previous manuscript>2, we determined the physical lim-
its of galvanotactic measurement through sensor redistribution
for round cells (circular and spherical). We developed a model
that quantified how cells measure the direction of the electric field
by using maximum likelihood estimation (MLE). In our approach,
we assume that cells sense electric fields solely through redistribu-
tion of their transmembrane sensors. We discovered that circular
cells can predict the field’s direction efficiently by employing a
simple strategy: the cell follows the direction of the average po-
sition of the sensors on its surface. We call this strategy “vector
sum". The same result holds in 3D for spherical cells. This result
comes naturally out of MLE — for round cells, MLE and vector sum
produce the same measurement, though we find in this work this
is not always true. In this manuscript, we extend the work of30
to investigate how the shape and orientation of an elliptical cell
influence its estimate of the field direction.

We want to find the factors limiting the accuracy of a cell’s esti-
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Fig. 1 lllustration of sensors on the surface of an elliptical cell; sensors
are labeled by their elliptic angle location v; and traveling with velocity
u. The cell is in an electric field pointing along the angle y and measures
an estimated angle .

mate §r of the angle of the applied field y. To do this, we calculate
the electric field around the cell, which controls the velocity of
the sensors. We use this field to find the concentration of sensors
around the cell arising from the competition between diffusion
and electromigration. We construct a probability distribution of
the sensor location from the concentration, and use maximum
likelihood and an extended Cramér-Rao bound to quantify the
cell’s estimate of the electric field direction and its varianceC,
Surprisingly, whether the cell is more accurate in sensing the
field’s orientation when its long axis is parallel to or perpendicu-
lar to the field direction depends on the strength of the field and
the method the cell uses to interpret the sensor location. Under
the most likely experimental conditions, cells are better sensors of
field orientation when the field is perpendicular to the cell’s long
axis, as in chemotaxis®?. However, the difference in accuracy
between the best and worst orientations may not be large if the
cell uses a maximume-likelihood estimate of the field. If the cell
instead uses a simpler-to-compute “vector sum” estimate, its esti-
mate will be biased, but can in some circumstances be quite close
to the maximum-likelihood estimate, while at stronger fields, the
cell can be quite far from the best possible estimate, and its ac-
curacy will depend much more strongly on cell orientation rela-
tive to the field. We also address the possibility that the cell can
change shape in response to an applied field, hypothesizing that
cells extend radially proportional to the level of sensor concentra-
tion in a graded radial extension-style model4%42, We find this
predicts that the cell would lengthen along the field direction if
the sensors are at the front of the cell, contrary to known observa-
tions“3, but lengthen perpendicular to the field if the sensors are
at the back of the cell. These results suggest a potential way to
determine the sign of the sensor mobility — something our earlier
work did not constrain.

Model and Methods

We describe our cell as a two-dimensional ellipse, characterized
by major and minor axes Ry and R,. A = R} /R; is the cell’s aspect
ratio. Throughout this paper, we will choose coordinates so that
the cell is elongated along the x-direction — the field direction
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may vary but the cell’s long axis direction is always consistent.
Motivated byl0B931 we claim that the cell senses the electric
field direction y via electromobile sensors (Fig. [I), producing
an estimate of the field direction . Given the geometry, we use
elliptic coordinates (u,v), where u is the elliptic radius and v
is the elliptic angle, with corresponding unit vectors ft(u,v) and
V(u,v) (see Appendix[A). fi is normal to the cell surface while ¥
is tangential to the surface.

Calculation of the external electric field

The motion of sensors on the cell boundary is dependent on the
local electric field 1722530 To find the electric field at the bound-
ary of the cell, we solve Laplace’s equation V2@ = 0 for the electric
potential @ in elliptic coordinates, subject to the conditions that
far away from the cell ® = —Ey(xcosy + ysiny), and at the cell
boundary the gradient of the potential vanishes normal to the cell
surface, i.e. the electric field is solely tangential to the membrane.
The latter condition is valid for a nonconductive membrane#+42|
This assumption is appropriate since the resistivity of the mem-
brane is much higher than that of the solution and cytoplasm
(see Appendix [C| and“#43), With the assumption of a noncon-
ductive membrane, the only role of the cell membrane is to set
the boundary condition, and no field can penetrate into the cell
interior. The properties of the cell interior are thus irrelevant,
and subsequently, the electric field around the cell is solely deter-
mined by the cell shape 42 We show field lines around the cell
in Fig. [2] The solution to Laplace’s equation in elliptic coordinates
is well known“©#7, When an external field Ecx; = Eg(cos W, sin )
is applied to the cell, the electric field outside the cell is

Ega et — eZHo—H R
E= ﬁf cos(v—vy)fi
(€h)]

o 4 W

ha 5 sin(v —y)v.

The cell has foci at +a, with a = /R; — R, (see Appendix [A);
the cell’s boundary is at p = uy. The scale factor hy,(u,v) =
ay/(cosh2pt —cos2v) /2. This is the usual curvilinear scale factor
for elliptic coordinates, z,, =|dr/du|. The field tangent to the cell
at the boundary u = y is proportional to the unit vector v, which
points in the direction tangential to the cell surface

B aeto N
E” = —E()m Sln(\/ — I[I)V, 2)

where the scale factor Ay, = hy (fo, V). Note that aet = acosh g+
asinhly = Ry + R,. The largest magnitudes of E are naturally
where the applied field is parallel to the local surface of the cell.
This means that when the applied field is parallel to the long axis
of the cell (y = 0), the local tangential field E;| is largest along
the long side of the cell, tending to concentrate sensors to the
narrow tips of the cell. By contrast, if the field is perpendicular
to the cell, the tangential field is largest at the narrow tips of
the cell, and the sensors are pulled toward the broad side of the
cell, though they are not as strongly concentrated. Plots of E are
shown in Appendix
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Fig. 2 Field lines of the field outside the cell, given three different orientations y of the applied field. Note that from the boundary conditions
(Appendix E[) the normal component of the electric field vanishes at the cell boundary. Sensor concentration ¢(V) is also plotted as a color map. The
concentration is plotted as ¢(V)/cmax, where cmax = coe®. This normalization sets the maximum of the colorbar to 1 and the minimum to e 2K, (a)
Field lines and sensor concentration when k¥ = 1. (b) Field lines and sensor concentration when k¥ =0.1.

Transport of sensors along boundary and probability distribu-
tion

Armed with an expression for the electric field everywhere around
the cell, we can now calculate the transport of sensors at the
cell boundary. The sensors move following the tangential field
to the surface, traveling along the cell’s boundary with velocity u.
We assume that u = mE|, where m is the electrophoretic mobil-
ity constant. This mobility constant can be positive or negative
depending on the sensors’ charge and the zeta potential of the
cell surface; we do not attempt to estimate m, but think of it
as phenomenological and generally try to fit it from experimental
data. The assumption that the velocity is proportional to the local
electric field is reasonable since the cell’s membrane is treated as
nonconducting and the electric double layer is thin compared to
the radius of curvature of the cell2248| (The assumption that sen-
sor velocity is proportional to the local field is slightly different to
our assumptions in3% we discuss this difference in more depth in
Appendix [B]) Each sensor is labeled by its elliptic angle location
v;. Transport of the density of sensors ¢ along the contour can
be derived by balancing the advective flux cu with the diffusive
flux. This flux balance captures the competition between sensor
migration driven by the electric field, which tends to polarize the
sensors, and diffusion, which tends to spread the sensors out2930,
Balancing these fluxes, we find

cu = DVHC, (3)

where V|| is the gradient along the membrane and D the sensor’s
diffusion coefficient. The density of sensors can only depend on
their location on the boundary v, so we can write Eq. explic-
itly as:

v. 4

The scale factor i, appears in this calculation from the expression
of the gradient in the ¥ direction in elliptic coordinates. Substitut-
ing in Eq. @) for E| and rearranging, the solution is proportional
to the von Mises distribution®”

c(v) =cpexp[Kkcos(v—y)]. (5)

Here, ¢y is a proportionality constant set to determine the to-
tal number of sensors. k = mEpaet® /D = mEy(R; + R,)/D is the
ratio between the rate of electromigration and diffusion (Péclet
nurnber. If x is larger, electromigration dominates diffusion,
and the sensors are more concentrated (note the extent of the
yellow region in Fig. versus b). We often want to think
about k as a ratio between the strength of the applied electric
field Ey and some characteristic field scale, 1/B, so we write
Kk = BEy, where B = m(R| +R;)/D, or in terms of the average
radius R = (R, +Ry)/2, B = mR/D, where m = 2m. ¢(v) is plotted
in Fig. [2h-b in conjunction with the electric field lines.

The concentration of Eq. gives the number of sensors per
unit length of boundary; we will need to work with #(v), the
probability density per elliptic angle v. Changing variables, this
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can be found as

P(V)=Z"e(v)hy,, (6)
where
y+r
Z= c(V)hy,dv. (7)
y—7

(See Fig. [S3]and Appendix [F for more details.)

Maximum likelihood estimation and Fisher information

Following®®?, we use maximum likelihood estimation to quantify
the cell’s estimate of the field’s direction. We ask ourselves “What
electric field direction maximizes the likelihood of observing a
given probability distribution of sensors?" The likelihood function
for N noninteracting sensors, each at elliptic angle v;, is given by

=

Z(Ey:{v) =[] 2, ®)

12

Il
-

however, the log-likelihood is easier to work with

N A
In? = Z [K‘COS(V,‘ -v) —b—lnhgﬂ —NInZ. ©
i=1

Here, hﬁg = a\/(cosh2p1y — cos2v;) /2, where the superscript i acts
as a label for sensor i. To minimize In.#, we differentiate, setting

dyIn.Z|y =0 to get an expression that gives us the estimator ¥
1Y 10z
— in(vi—§)=—-—-——. 10
Ni:Zlem(v, V) Zoy (10)

The integrals that define Z and dyZ on the right hand side of Eq.
have to be evaluated numerically in general, but have an
analytical solution in the limit of near-circular cells (see Appendix
H.1). In the special case of a circular cell, the elliptic angle v;
tends to the polar angle 6;, the right hand side of Eq. equals
zero, and the cell’s prediction r of the true field angle y can be
solved explicitly by the equation'3Y

. Y;sin6;
t =
any Ycosb;

(circular cells). 1n

This is an angle pointing in the direction created by the sum of
the radial unit vectors pointing to the sensors. The Fisher infor-
mation can also be derived from the log-likelihood by calculating
I = (785, In.Z) (see Appendixfor derivation):

7 = NK> {<sin2(vfl//)> f(sin(vfy/)>2]. (12)

We can compute the averages in Eq. numerically, (---) =
[+ ZP(v)dv. The Fisher information reveals how much informa-
tion the cell would have about the field direction given a par-
ticular distribution of sensors. The Fisher information is crucial
for quantifying the variability in the cell’s estimate. Since the es-
timate  is periodic in nature, we characterize variability in the
estimate with the circular variance 2(1— (cos ({ — y))), which will
reduce to the ordinary variance in the limit where the deviation
between y and y is small. The circular variance of { has a lower
bound given by an extension of the Cramér-Rao bound (derived
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in Appendix D of3Y)

2(1<cos(¢/u/)>)22(1,/1fﬂ> (13)

or, equivalently, (cos (¥ —y)) < +/.#/(1+.7). The lower bound
for the circular variance becomes more accurate as number of
sensors increases or the sensors become more polarized — in this
limit, the inequality becomes an equality. We will compute the
Fisher information .# for an elliptical cell in order to determine
the accuracy with which it can sense the field angle .

Stochastic simulations

In addition to our analytic and numerical results, we also conduct
stochastic simulations using randomly-generated configurations
of sensors. We generate a configuration of N sensors for each of
the Ny cells. The configurations were generated by the rejec-
tion sampling method, drawing N sensor positions independently
from Eq. (@)>L. Briefly, we propose a uniformly-distributed sen-
sor location v; ~ % ([y — m, y + 7]), as well as u; ~ % ([0, 1]). Then,
we compute p; = Z(v;)/sup{ Z(v)}. If p; > u;, then the proposed
v; is selected as one of the sensor positions. Otherwise the pro-
posal is rejected. This process is repeated until N sensors are
generated.

If we assume the cells are estimating the field by maximiz-
ing the likelihood, the cell’s estimate  is calculated by numer-
ically finding the ¥ that maximizes the log-likelihood, using Eq.
[©). We use the Nelder-Mead simplex algorithm (MATLAB’s fmin-
search)®2. We will also sometimes assume cells choose a direction
as the vector sum of unit normals pointing from the sensor loca-

. . | . )
tions. In this case, we compute the sum i = N}:ﬁv f; and find

the orientation s = arctan (fl,/fi,). This is a generalization to
an ellipse of the result Eq. for a circle.

During our simulations (for both MLE and vector sum), we fix
the average of the cell semi-major and minor axes as R =20 um
(typical keratocyte radius from Fig. 4a of®3). If A is fixed, it is
fixed at A = 3, the reasonable upper limit for aspect ratio of a
keratocyte; see Fig. 4b of23. R, was selected so (R; +Ry)/2 =
(1+A)Ry/2 = R remains fixed (see Appendix [A). We make this
choice because our later analytic results show that (R; +R»)/2
is the effective radius of an ellipse. This means that, averaging
over all orientations, an ellipse with radii R and R, has the same
amount of information about the field orientation as a circular
cell of radius (R; +R;)/2.

Results

Accuracy of galvanotaxis depends on cell orientation, aspect
ratio, and Péclet number x

The Fisher information .# tells us how much information the cell
has about the electric field direction from its sensor distribution.
It can be hard to draw intuition from Eq. as it must be
evaluated numerically. Fortunately, in the limit of nearly circular
cells with sensors whose motion is dominated by diffusion (small
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k), the Fisher information .# simplifies to (see Appendix [H)
1
7 = NK? (§+COCOS2W>' 14

The aeolotropic constant {, characterizes the anisotropic contri-
bution to the Fisher information. In other words, it accounts for
the cell’s deviation from a circle. It is a function of the aspect ratio
A 2
1A5—-1

o) =31
o is positive for all aspect ratios A > 1, and {, goes to zero for
circular cells and {y — {max = 1/8 for infinitely eccentric elliptical
cells e.g. one-dimensional lines (Fig. [3).

Eq. predicts that the cell’s amount of information varies
depending on its orientation with respect to the field, with the
Fisher information .# maximal when the field is along the major
axis and minimal when the field is along the minor axis. From the
perspective of the model, this is not surprising. We see in Fig.
that the sensors are more concentrated when the cell’s long axis
is parallel to the field. Therefore we expect more information
about the cell’s orientation in this configuration. How much in-
formation does the cell have when the field is parallel to the cell
(y = 0) versus perpendicular to the cell (y = n/2)? Because {
is at most 1/8, we can see from Eq. that the largest the ra-
tio between the maximum information at ¥ = 0 and minimum at
v = 7/2 is Rmax = 5/3. This corresponds to an at most ~ 67% in-
crease in information in the “best” orientation versus the “worst”
orientation. We note that this result depends on Eq. (14), which
is only valid in the limit of near-circular cells, where A is not too
far from unity. However, we see in Fig. that Eq. is a
suitable approximation for the full solution in Eq. even out
to A ~ 10 if Kk ~ 0.5. So for any reasonable cell shape, we are
confident in Eq. as long as k is sufficiently small.

The Fisher information, combined with the bound of Eq. (13),
tells us the minimum possible circular variance for an unbiased
estimate of the direction y. We plot in Fig. how the circu-
lar variance 2(1 — (cos ( — y))) varies with the Péclet number «.
Unsurprisingly, we see that 2(1 — (cos ( — y))) decreases with in-

(15)

0.2
) > O
Z0.1 oy = 1/8
32
0
10° 101

A

Fig. 3 Aeolotropic constant §y as a function of aspect ratio A; the
constant increases and saturates as a cell becomes more elliptical, ap-
proaching its maximum of 1/8.

Soft Matter

creasing k and increasing number of sensors N. In Fig. we
show the bound of using both the analytical solution for the
weak-field Fisher information approximation Eq. (dashed
line), and a full numerical solution to the Fisher information
(solid line), and stochastic simulations (symbols). The small-k
approximation deviates from the numerical solution and stochas-
tic simulations at large k, as expected.

We see in Fig. [4h that the simulations generally agree with
the full numerical solution (solid lines) — but there is a small
systematic deviation at very low k (k < 1). In this regime, the
simulations yield slightly higher values than what the theory pre-
dicts. This behavior is expected, and similar to what we found
in®Y; see that paper’s Fig. 2. Eq. is a lower bound for the
circular variance, so it is always possible that the circular vari-
ance of the maximum likelihood estimator is above this bound.
We found previously that for circular cells®?, the circular vari-
ance of the maximum likelihood estimator converges onto our
modified Cramer-Rao bound in the limit of large amount of infor-
mation (large k and large N). (This convergence is guaranteed
because that the maximum likelihood estimator is asymptotically
efficient>%.)

In Fig. [4b, we see that circular variance 2(1 — (cos (§ — y)))
changes only slightly as aspect ratio increases while holding
constant. Changing aspect ratio A while holding k constant
means that (R; +R;)/2 is held constant while A = R| /R, is chang-
ing, meaning that as a cell simultaneously becomes longer and
thinner. This sort of change leads to only small differences in cir-
cular variance. The sign of the change of circular variance with
A will depends on y, since the Fisher information can increase or
decrease with aspect ratio depending on the sign of cos2y (Eq.
(@4)); we have plotted Fig. with the field at angle y = /3,
and the long axis of the cell, as always, along the x-direction.

Fig. |4c reveals that the error in the cell’s measurement depends
on its orientation relative to the field, as we expected from the dis-
cussion of Eq. (14). We see that the circular variance is minimal
when the field is pointed along the cell’s major axis (v = 0) where
there is the most information, and maximal along the minor axis
where there is the least information (y = /2). All of the plots in
the main body of Fig. 4k, which are in the range k > 0.5, show
good agreement between simulations and the bound of Eq.
(symbols near-exactly overlapping with the solid line). However,
as we mentioned above discussing Fig. [4p, we know that the
bound is no longer tight in the limit of smaller k¥ — the circular
variance will exceed the bound. We plot this limit in the inset
of Fig. [4k. Surprisingly, not only does the circular variance of
the maximume-likelihood estimate of the simulations exceed the
bound, but the maximal circular variance occurs at y = 0, where
the bound is minimal. This means that, in this limit of very small
fields, cells with their long axis perpendicular to the field will
have lower error in measuring the field angle. The origin of this
effect is not clear, and we explore it further below.
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Fig. 4 Circular variance changes as a function of the Péclet number k, aspect ratio A, field direction y, and number of sensors N. Solid lines are
given by Eq. (I3), which was calculated by numerically computing the Fisher information of Eq. and inserting it into Eq. (I3). Dashed lines are
the analytic approximation of Eq. (I4). Symbols are stochastic simulation averaged over 500 cells (a) or 1000 cells (b, c). Error bars (standard error
of the mean) are on the order of the symbol size. (a): Circular variance as a function of the Péclet number «, plotted for various values of number of
sensors N. The aspect ratio A =3. The field angle relative to the long axis of the cell is y = /3. (b): Circular variance as a function of the aspect
ratio A, plotted for various values of k. The number of sensors is N = 1000. The field angle is v = /3. (c): Circular variance as a function of the
true field direction v, plotted for various values of k. The number of sensors is N = 1000. The aspect ratio A = 3. The inset plots same thing as (c)
but for k¥ =0.05. Here, the shaded region around the simulation symbols represent the error bars, which is the standard error of the mean.

Modeling keratocytes as ellipses can minimize semi-minor
axis variance perpendicular to the electric field under weaker
field strengths

In Fig. [k, we have seen that, depending on k, cells’ best ori-
entation could be either with their long axis parallel to the field
or perpendicular to the field. Which of these limits is relevant
for real cells? We will fit our model to the case of fish kerato-
cytes, a well-studied model system for cell locomotion and gal-
vanotaxis10#053I5556]  gyp et al.57 measured the motion of fish
keratocytes in vitro exposed to a constant electric field, and de-
termined how the strength of the electric field controlled the di-
rectionality (directedness). Directionality is the average cosine of
the angle of the cell’s motion relative to the field direction. We
fit our model, assuming the weak-field limit of Eq. (14), to this
data; details of this fit are presented in Appendix [l We think of
the angle of the cell’s velocity as a proxy for its estimate of the
field direction ¥, so directionality is just (cos (¥ — y)). We can
then fit the directionality data to get the parameters of our model
by using the approximation (cos (f — y)) ~ e~ -2 (Appendix.
We note that our formula for .# does not separately depend on
N and « but only on their product Nk*> = NB?EZ, so we cannot
separately fit N and 8. We define, as in?, y> = NB%/2. 1/yis
a characteristic field strength. Then, Eq. can be written as
S = y*E}(1+2§ycos2y). We choose A =3 as a rough estimate
for keratocytes>, which sets the aeolotropic constant §(3) =0.1.
As keratocytes typically migrate with their long axis aligned per-
pendicular to the electric field1®>2 y = 7/2, and the Fisher in-
formation for keratocytes can be simplified to

g = 0.872E3 (keratocytes L to field). (16)

If we fit experimentally-measured directionality as a function of
the electric field using Eq. and (cos (Y —y)) ~ e /2 (see
Appendix and Fig. , we find y= 3.4 x 1073 mm/mV.

Do keratocytes have a preferred orientation in which they sense
more accurately? Fig. plots the circular variance as a func-
tion of field angle using our keratocyte estimate for y at a typ-
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ical field strength of Eyp = 150 mV/mm. We see that while the
bound given by Eq. predicts the minimal variance at y =0,
stochastic simulations predict the opposite trend — the minimal
circular variance is at y = /2. (This result does not depend
on the number of sensors N as long as we hold the magni-
tude of the Fisher information constant by keeping y*> = NB2/2
fixed; see Fig. in Appendix [J}) To illustrate where this tran-
sition in preferred axis happens, we plot the circular variance at
y=3.4x 1073 mm/mV for increasing field strengths in Fig. —
f. We can see a wide variety of trends, ranging from cells all
having near-uniformly distributed estimators with a circular vari-
ance ~ 2 (Ey = 10 mV/mm) to cells having minimal error when
perpendicular to the field (Ey = 150,300 mV/mm) transitioning
to a flat dependence on angle (Ey = 500 mV/mm) and eventu-
ally seeing the trend predicted by the Fisher information at larger
field ranges (Ey = 1000 mV/mm). This range of field strengths
is the experimentally relevant range. It goes from the weakest
field strengths that cells types such as neural crest cells have re-
sponded to (Eg = 10 mV/mm“2) to the strongest fields typically
used in galvanotaxis experiments (Eg = 1000 mV/mm=Y). Note
the difference between the peaks and troughs of the circular vari-
ance lower bound and simulations become smallest at low fields
(Ep = 10 mV/mm), high fields (Ey = 1000 mV/mm), and the tran-
sition (Ey = 500 mV/mm).

The result of Fig. [B]is somewhat dramatic. The trend in circular
variance of the maximum likelihood estimate can be the opposite
of the bound predicted by the Fisher information. This is sur-
prising! We certainly initially expected that even if the circular
variance exceeded the bound, it would follow a similar trend. We
do not have a clear explanation for why this occurs. One pos-
sibility is that this behavior arises due to some odd property of
the maximum likelihood estimator (or our numerical evaluation
of the estimator) — but we will see in the next section that a more
physically plausible estimator also has lower variance when the
field is perpendicular to the cell’s long axis.
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Fig. 5 Circular variance as a function of the field orientation y for keratocytes using MLE. The aspect ratio A =3, y=3.4x 107> mm/mV, and
the number of sensors N = 1000 are kept constant. Solid red lines are given by Eq. (I3), which was calculated by numerically determining Fisher
information of (I2), and plugging back into Eq. (I3). Dashed black lines are using the analytic approximation Eq. (I4). Symbols are stochastic
simulation averaged over 5000 cells is averaged over 50000 cells). Shaded regions around the symbols represent the standard error of the mean.

Vector sum is a biased but plausible sensing strategy

We have used the maximum likelihood estimation approach
in our earlier results because it is asymptotically efficient.
the limit of large numbers of observations, it should reach the
Cramer-Rao bound. However, as a model for a biological organ-
ism, it has the clear downside of being extremely complicated to
compute since cells presumably do not have Nelder-Mead opti-
mization easily available. We found in'*? that the maximum like-
lihood estimator for a circular cell is the direction of the vector
sum of vectors pointing to each sensor. This estimate could be
easily computed if the cell exerts a protrusive force localized at
each sensor, pointing normally outward (see Appendix K of3%),
This scheme is physically plausible, and consistent with the idea
that local charge regulates protrusion€. In this section, we study
the properties of cells that estimate directions with vector sum,
taking the sum of the unit normals fi; for each sensor i pointing
out from the ellipse,

In

o1&
u= ﬁzi:ﬂn 17
Yrys = arctan (L, /fiy). (18)

Unlike our results for circular cells, for an ellipse, the vector
sum estimator Yyg and the maximum-likelihood estimate Yn g
are not identical. In fact, we see in Fig. @a and @) that the vector
sum estimate is biased. In Fig. [6p, we plot the difference between
the vector sum estimate, averaged over 500 simulated cells, and
the true field orientation, Ay = (Jrys) — v as a function of the true

field orientation. We find that the bias in the vector sum estima-
tor vanishes, Ay = 0, if the field is pointing along the long axis
(y =0, 7) or the short axis (v = 7/2,37/2), and is a maximum
in between these orientations. We see that ({ys) does not point
precisely in the true direction y but has a consistent bias toward
the minor axis. This bias does not appear to depend on k (Fig.
@)). In addition to the simulations, we also calculate yryg from
the average of the unit normal,

Y+

<m:4%u

and, in a slight abuse of notation, Yvgs = arctan((fl,)/(fk))-
We can compute this integral analytically, finding that ({,) =
a/(x)sinhpgcosy and (fl,) = o/(x)coshpuysiny with o/ (k) =
2maly(x)Z~"', which is a function that depends on x and cell
shape. I (x) is a modified Bessel function of the first kind. Since
the aspect ratio of the cell is A = coshiy/sinhy (Appendix [A)),
we see that the vector sum points in the direction (cos y, A siny).
This means that the vector sum becomes more biased to be par-
allel to the short axis for more elongated cells. Our formula also
shows that the bias is solely geometrical. It does not depend on
k (Fig. [6b). (A minor technical note: our finding that Ay # 0
does not, strictly speaking, tell you that the estimator must be
biased in a periodic sense2%>2. However, we do also find that

(sin(Yys — y)) is nonzero.)

P (v)dv, 19

How accurate is the vector sum? If cells compute using the
vector sum, are they better at measuring when parallel to the field
or perpendicular to the field? We use parameters appropriate to
the keratocytes, as we did in Fig. and compute the circular
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Fig. 6 (a): Schematic showcasing the bias that vector sum introduces relative to MLE. (b): Vector sum as a function of field angle. Symbols are
simulation, averaged over 500 cells. Shaded area between the symbols indicates standard error of the mean. Solid lines are numerical calculation of
Eq. (I9). Here, we have N = 10000 and A = 3. ({iys) is computed here by first computing Jrys for each cell and then averaging. (c): Circular variance
plot for keratocytes calculated using vector sum. N = 10000, y=3.4 x 1073 mm/mV, and k=7 x 1073, Black line is the lower bound from Eq. (T3).
Simulations are represented by the symbols and are averaged over 5000 cells. Shaded region are standard error of the mean. (d): Circular variance
plot for keratocytes calculated using vector sum. N = 10000, y= 3.4 x 1073 mm/mV, and ka7 x 1072. Black line is the lower bound from Eq. (I3).
Note that the simulations drop below the lower bound, as the lower bound assumes an unbiased estimator, which is not true for the vector sum.

Simulations are represented by the symbols and are averaged over 500 cells. Shaded region are standard error of the mean. (e):

Circular variance

plot for keratocytes calculated using vector sum. N = 10000, y=3.4x 1073 mm/mV, and k=7 x 10~!. Black line is the lower bound from Eq. (I3).
Simulations are represented by the symbols and are averaged over 500 cells. Shaded region indicates standard error of the mean.
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variance as a function of the field angle (Fig. @). We find that
vector sum also predicts that the cell has the smallest variance
when the long axis is perpendicular to the field (y = +£7/2). In
fact, for y = £m/2, the cell is nearing our bound Eq. (Fig.
E}:). However, we note that the vector sum is not constrained
by this bound - it could give circular variances below the bound,
since we derived Eq. under the assumption of an unbiased
estimator. When « is increased from the physiologically relevant
value of k¥ ~ 5 x 1073 (Fig. @:) by a factor of 10 (Fig. @i), this
corresponds to increasing the field strength from 150 mV/mm
to 1500 mV/mm. However, even at this high electric field, the
variance of the vector sum is minimal when the cell’s long axis
is perpendicular the field, though there is a dip in the circular
variance curve near y = 0. This should be contrasted to Fig. |5} in
which a similar change in magnitude of electric field completely
inverts the trend. We also note that in Fig. @i, the vector sum
circular variance may fall below the bound, as is expected given
the biased estimation — our extended Cramér-Rao bound=? was
derived under the assumption of an unbiased estimator .

In Fig. [6k, K is increased further by two orders of magnitude
from the case of Fig. [6k. Though this limit is no longer experimen-
tally relevant, we see that increasing x magnifies the difference
in sensing accuracy between having a cell with one of it princi-
pal axis aligned with the field versus not having one aligned. In
this limit, the circular variance is at a minimum when the field
is either along the long or the short axis of the cell. We believe
this reflects the bias in the vector sum strategy. When k becomes
large, the error bound from stochasticity shrinks relative to the
size of the bias, and the systematic errors of order ~ 0.5 radians
shown in Fig. [6p are large relative to the variability from stochas-
tic sensor locations. When this bias is relevant, as in Fig. [, there
are strong consequences for not sensing the field along one of the
principal axes, as the error can be orders of magnitude higher off
of any main axis.

Cell shape expands parallel or perpendicular to the field, de-
pending on sensor mobility

Keratocytes migrate with their long axis perpendicular to the elec-
tric field. This could be because they sense more accurately along
the short axis, which our circular variance results may suggest,
and earlier work has also assumed®”. Another possibility is that
the keratocyte orientation to the field is a downstream effect of
the cell creating protrusions towards the electric field and then
elongating perpendicular to the field. Both scenarios hint at a
link between sensor redistribution and cell shape and orientation.
Up to this point, we have only measured the cell’s response to an
electric field while considering its fixed elliptical shape. Given
that cells may change shape in response to electric fields1:62,
want to link sensing mechanics with cell deformation and find out
whether cells tend to expand parallel to the field or perpendicular
to the field.

We build an initial simple model of cell shape coupled with field
sensing by describing the cell shape as arising from radial protru-
sions that are graded around the cell boundary?Y. As we dis-
cussed in the vector sum section, our idea is that the cell creates

we

Soft Matter

small protrusions perpendicular to its outer edge in areas where
there is a high concentration of nearby sensors. As a result, cell
direction and shape are controlled by protrusions normal to the
boundary4%>3, We will assume (to make a few later calculations
simpler) that the cell is near-circular. We can then describe the
cell boundary by the radius function #(6,r) in polar coordinates
(Fig. ) 4263164 wwhich can be expanded by Fourier series

R(0,1) =R+ SR(0,t) = Zo+ Y. pu(t)e™. (20)

The n = 0,+1 terms are implicitly excluded from the sum. The
n = 0 mode corresponds to a uniform expansion/contraction of
the cell, and the n = £1 modes correspond to simple translational
motion, which we include by assuming that the cell is initially
traveling with a constant speed. We assume the force balance for
the cell interface can be given by

TV(0,1) =K (0,1) + 0t (c(8,1) — ), 1)

where ¥ is the normal velocity of the cell interface, % is the
interface’s curvature, and c is the local concentration of sensors.
T is a friction coefficient, i.e. —7¥ is the frictional drag force
per unit length. The term proportional to the interface curvature
tends to minimize the cell perimeter (i.e. it reflects a line ten-
sion) — the coefficient 1 has units of force. The o (c(6,t) —c*)
term says that, if o > 0, the cell generates normally outward pro-
trusions where the sensor concentration is above a threshold con-
centration, ¢ > ¢*, and contractions elsewhere. Together these
assumptions are essentially those of the mechanical models in,
e.g. 41165166 gimilar equations of motion can be derived for inter-
faces in reaction-diffusion dynamics©Z.

We are primarily interested in whether the shape expands par-
allel to or perpendicular to the field — this is information that is
encoded in the n = 42 Fourier modes. Following#2 and expand-
ing the normal velocity ¥ and the curvature .# in terms of the
Fourier modes, we can find an equation of motion for the n = 42
modes,

dpi> _ a /“’*” 26
= = — dfc(8,t)e™ 22
& Mp2toz ), . c(6,1)e™, (22)

where 7] = 3n%,?t! and @ = at~!. Essentially, this equation

reflects a balance of the line tension trying to make the cell more
isotropic (7} term, which decreases the amplitude of this Fourier
mode) and the distribution of protrusion around the cell bound-
ary in the & term, which could make the cell more anisotropic. We
are primarily interested in how the cell tends to break symmetry,
whether it elongates parallel to or perpendicular to the field, so
we will start by assuming that the cell is near-circular and so we
use the formula for ¢(0,t) appropriate for a circle. In this limit,
Eq. becomes ¢(8) = coeX°(?~¥). We will choose the normal-
ization constant c( so that the concentration integrates to 1, i.e.
ek(t)cos(ﬂfu/)
2l (K (1))
into the prefactor o.) Calculating the integral from Eq. gives
us

c(0,t) = . (This absorbs the total number of sensors

dp+r 2 L(k) Fi2y
o paato 170(1()6' . (23)
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Sensors

Cell Velocity

———————
E

Fig. 7 (a): Schematic of cell whose protrusions occur at the sensor locations (black points). The radius Z = %)+ 6%. (b): Plot of t(k) showing that
it is nonnegative for both positive and negative k. (c): Cell with either sensors transported parallel to the applied electric field (k > 0), causing the
cell to expand parallel to the field, or with sensors transported opposite to the applied electric field (k < 0), causing the cell to expand perpendicular
to the field. Cells in (c) are migrating towards the electric field.

10 | Journal Name, [year], [vol.], 1



Page 11 of 24

We then predict that at steady state, the Fourier modes settle to

a h(x) +py
=_—=—= , 24
pP+2 27”0(’()6 : (24)
where @ = &/1). Moving back to real space, if we only include the
n = £2 Fourier modes, we then see how the cell’s radius deviates
from R as

SH(6) = pre?® +p_re 20 (25)

= gt(K‘) cos[2(6 — y)], (26)

2 12(1()

where (k) = Tho()’ Eq. shows that, if @ > 0 (a > 0), the

cell will expand symmetrically along the field direction (Fig. [7k).
Changing the electric field strength (changing «) will change the
magnitude of this expansion, but not its sign, as t(k) does not
change sign when k varies (Fig. [7b). We have so far assumed
that a > 0 implicitly by considering the mobility m as nonnega-
tive. This is a remnant of our earlier work where we assumed that
sensors led to a net outward protrusion?, If the sensors are trans-
ported in the direction of the electric field, as we've illustrated in
Fig. net forces in the direction of the sensors will push the
cell in the direction of the field. However, there is no constraint
that our mobility m (and subsequently k) must be positive2?! If
sensors are instead transported to the back of the cell (m < 0) -
as suggested by recent experimental measurements®® — all of our
earlier results will still hold — the results on Fisher information,
etc. are insensitive to the sign of k. However, if the sensors are
instead at the back of the cell, the “vector sum” must have the
opposite sign — the cell needs to generate contractile force where
the sensors are highly concentrated. Therefore, for sensors that
are swept to the back of the cell, we should have a negative value
of a, and thus, cells will expand perpendicular to the field (Fig.
[7k). This suggests that one possible interpretation of the observa-
tion that many cells tend to galvanotax perpendicular to the field
is that they may have sensors that are swept to the cell rear.

We note that there are many caveats on our analysis here. The
first is that cell shape is not just influenced by this radial protru-
sion, but also by any pre-existing cell polarity. Keratocytes, for
instance, are elongated whether or not there is a field applied,
and this elongated shape may arise from a wide variety of dif-
ferent models, independent of the field®36202,  Qur calculation
essentially describes the tendency of a cell to deform relative to
its initial shape when a field is turned on. A second caveat of
this calculation is that, to get an analytically tractable answer, we
have restricted ourselves to assuming c(0) is given by the steady-
state limit for a circular cell. A more rigorous approach would
be to initialize the cell with a uniform concentration of sensors,
apply a field, and solve for the coupled transport of the sensors,
shape change of the cell, and the change in the external field due
to cell shape change in tandem. This is a much more complicated
problem, and not within the scope of the current work.

Soft Matter

Discussion

Are cells better sensors of an electric field with long axis parallel
to the field or perpendicular to the field? We find a fairly compli-
cated answer. Figs. [5] and [f] show that the best choice depends
both on the strength of the electric field, with the choice switching
within the typical field range of 10-1000 mV/mm, and whether a
cell estimates the field direction with a maximum likelihood esti-
mation (likely difficult to compute) or a vector sum (plausible to
compute).

Many groups have studied the fundamental physical limits of
measurement accuracy of chemotaxis and chemosensing=270-76|
Often, this work implicitly assumes that the cell can compute a
maximum likelihood estimate — an estimate that may be phys-
ically intractable for the cell to compute due to its complexity.
Our related work on galvanotaxis shows that simple, physically-
plausible estimators like the vector sum may be biased for cells
that don’t have circular symmetry. This bias, however, is limited
if cells’ long axes are perpendicular or parallel to the field.

Many cell types migrate in an electric field with their long
axis perpendicular to the field, including keratocytes, fibroblasts,
multipotent mesenchymal stem cells, endothelial progenitor cells,
neurons, neural crest cells, etc, 1055177-79I79180I80H84 though Dic-
tyostelium discoideum is a notable exception®. Do cells orient
this way because it gives them a benefit during galvanotaxis©2?
This is plausible — there may be large increases in accuracy if cells
are correctly oriented, especially if they are using the vector sum
estimator (Fig. [6)). However, cells may also just naturally travel
with their long axis parallel to their direction of polarity even in
the absence of field — as keratocytes do. The most dramatic exam-
ple of cell reorientation and shape change is Schwann cells, which
would normally migrate with the long axis parallel to their direc-
tion of travel in the absence of a field, switch orientation to have
the long axis perpendicular when in the presence of an electric
field8°.

A second possibility explaining why cells tend to migrate with
long axes perpendicular to the field is that this orientation occurs
as a side effect of a mechanism where sensors drive protrusion.
Our results show that a cell would expand parallel to the field
if the sensors are in the front of the cell (x > 0), and expand
perpendicular to the field if the sensors are at the back of the
cell (x < 0). If this simple mechanism is reasonable, cell shape
would directly indicate whether sensors localize to the cell front
or cell back. Because Schwann cells®®® and MDCK cells#3l expand
perpendicular to an applied field but do not have this orientation
in the absence of field, our model would predict that they have
sensors that localize to the cell back.

Our results in Fig. [4show something somewhat disturbing and
interesting for theorists of fundamental limits: the maximum like-
lihood estimator has a circular variance that is not only larger
than our modified Cramer-Rao bound, but which has an opposite
trend to the bound at small field strengths. While it is well known
that the maximum likelihood estimator is only efficient (reaching
the Cramer-Rao limit) in the limit of large numbers of samples%
(here, large numbers of sensors), it is striking that the Fisher in-
formation can be completely misleading. Within our calculations,
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the Fisher information is always maximal when the electric field
is oriented parallel to the cell’s long axis. However, the maximum
likelihood estimator’s variance can be maximal in this circum-
stance — in other words, the variance of the maximum likelihood
estimator is not even a monotonic function of the Fisher informa-
tion. This result may encourage some revisiting of earlier works
applying maximum likelihood estimation and related Cramer-Rao
bounds=2708788 and more emphasis on understanding the de-
tails of how cells can compute these estimates®229 _ which are
not well understood for gradient sensing. In particular, earlier
results on chemotaxis in elliptical cells? may potentially have
similar discrepancies between MLE and Cramer-Rao. The Monte
Carlo simulations within®? do show agreement — but it is not
clear whether this would hold in the more experimentally rele-
vant regime where the difference between the circular variance
and variance matters.
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A Elliptic coordinates fundamentals

Elliptic coordinates are a standard orthogonal coordinate system
that generalizes polar coordinates#®21793l 1n elliptic coordinates
every point is determined by an elliptic radius p and elliptic angle
v, analogous to the radius and polar angle in polar coordinates.
A constant elliptic radius lies on the boundary of an ellipse, while
a constant elliptic angle lies on a hyperbola that is horizontally
oriented (Fig. [SI). Ellipses and hyperbolae centered at the origin
can be parameterized by (R cost, R, sint) and (o sect, o tant), re-
spectively. R}, R, are the semi-major and minor axes of the ellipse.
2a; is the distance between the two vertices of the hyperbola.
oF = a®> — a?, where a represents the focus point of the ellipses
and hyperbolae, a = /Ry —R;. t is the variable of parameteri-
zation, where ¢ € [0,27]. The angle between the x-axis and the
hyperbola asymptote is v, which can be computed from the equa-
tion v = arctan 20y o / (0 — a3)].

There are multiple conventions for representing Cartesian vari-
ables with elliptic variables. In this manuscript, we use the con-
vention where x = acoshpicosv and y = asinhusinv. The unit
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Fig. S1 Elliptic coordinate system displaying confocal ellipses and hyper-
bolae. Every point corresponds to the intersection of an ellipse (i) and
a hyperbola branch (v). The foci for the ellipses and hyperbolae are at
+a.

vectors and scale factors are

N a (sinhucosv
=— 27
K hy <cosh,u sinv> ’ @27
. a [—coshusinv
hy \ sinhucosv

hy=hy —a /cosh2u; c0s2v. 29)

Note hy, and hy are equal. For our elliptical cell, placing the
cell boundary at elliptical parameter u = yy means that the semi-
major and semi-minor axes are Ry = acoshy and R, = asinh 1.
A =R /R, is the aspect ratio.

To produce the field lines in Fig. |2|in the main text, it is some-
times easier to produce a grid in polar coordinates first, then to
obtain expressions for both u and v in terms of the polar coor-
dinates r and 6. There are established relationships we can use
to map between Cartesian, polar, and elliptic coordinates, which
we summarize here. We start with x = rcos® = acoshpicosv
and y = rsin@ = asinh g sinv. Using Euler’s formula and complex
trigonometric relations cos v = coshiv and isinv = sinhiv, we can
derive a relationship between polar and elliptic coordinates.

re'® = r(cos 6 +isin@) = a(cosh L cos v + isinh g sin v)
(30)
= a(coshpcoshiv +sinh i sinhiv) = acosh (1L +iv).

We now see that there is a straightforward relationship between
(,6) and (u,v):

u(r0)=xR [arcosh <2e"9>} , 3D

v(rn0)=3 [arcosh <2ei9>] , (32)

where 3R(-) and 3(-) are the real and imaginary parts, respectively.
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The solutions are*
1 = arcosh (M) , (33)
2a
sin @ Q[+ —2A_
= m arccos (T)’ (34)

where A4 = V/r2 +2ra-cos +a?. An equivalent result for v has
been derived#+

in O
= \211?19\ arccos (RLI cos 9) (35)
_ 51.n9 Arccos RiR>cos 0 36)
|sin )| R1\/(Rsin8)2 + (Rycos 0)2

= 31-n 0 arccos cos 6 , 37)
|sin 6| V/A25sin? 6 + cos2 6

where A = Ry /R, is defined as the ratio between the semi-major
axis and the semi-minor axis lengths.

For completeness, we can also map from elliptic coordinates
back to polar coordinates. We know that 2> = x> +y* and y/x =

tan®. If we make use of the identities cos?v +sin’>v = 1 and
cosh? it — sinh® u = 1, we arrive at the identities®
r=ay/ (cosh? u —sin?v), (38)
0 = arctan (tanh ptan v). 39)

B Note on different assumptions between this work
and Nwogbaga, Kim, and Camley 2023

In our prior manuscript®? we assumed u = KE |, where Eq was
the applied field and p is a mobility constant (not the elliptic ra-
dius!). In this manuscript there is a subtle difference. Here, we
have assumed u = mE |, where E| is the local electric field tan-
gent to the cell boundary and m is a different mobility constant.
We think our assumption in this paper is the correct physical one
— but the two assumptions are essentially equivalent for circu-
lar cells. For circular cells with nonconductive membranes, the
tangential component of the local electric field E; is just twice
the tangential component of the applied electric field E |, and
other reasonable boundary conditions also make E proportional
to Eg 25 Therefore for a broad range of assumptions about cell
boundary conditions, for circular cells, u = uEy | is correct, with
the boundary condition only changing the definition of i (see Ap-
pendix A of*%). However, for elliptical cells, this is not the case —
the tangential component of the local field is not just the tangen-
tial component of the applied field. Therefore, we have chosen
the more physically-realistic assumption u = mE.

When looking at the circular limit of our results, to agree with
the calculations in®?, our current definition § = mR/D, where
m=2mand R = (R| +R,)/2, will limit onto the previous definition
B = uRy/D, with Ry the circular radius if p = m.

Soft Matter

C Boundary conditions on the electric field

We assume a no-flux-like boundary condition, i.e. that there is
no electric field normal to the membrane of the cell, E-fi = 0.
This boundary condition is physically motivated by the high re-
sistivity (poor conductivity) of the cell membrane. The resistivity
of the cell membrane is high (10°-10% Q.-m)#496:9%8l compared to
the resistivity of the surrounding aqueous solution (~0.008-0.8
Q-m?899) and the cytoplasm (3 Q-m®3). Why does this lead to a
no-flux boundary condition? One form of Gauss’s law is

where D is the displacement field and py is the free charge density.
In linear media, D = €E. Using this relation and the definition
E = —V®, we can recast Gauss’ law:

—V-(eV®) = py. (41)

Taking the time derivative on both sides and using the continuity
equation d;py 4V -Jr = 0, we can again rewrite Gauss’ law:

0P
V. [evZZE ) = —v. 2
(8 o ) Ars (42)
where J is the current density. At steady state, V-J; = 0. Ohm’s
law tells us that J; = cE = —oV®. o is the conductivity. This
means that for Ohmic materials, the potential will obey02

0=V- (sv‘;—?) +V-(oVD). (43)
We assume that there is an effective steady state, the electric field
is not changing rapidly, so we neglect the first term. Thus, the
potential — inside the cell, outside the cell, or on the membrane -
will obey

V. (cV®)=0. (44)

We can use this to establish the boundary conditions. To be in
steady state, the current flux across a boundary must be contin-
uous, so at the membrane-exterior fluid boundary, the field must
obey

J?embrane = J?uid A, (45)
Omembrane (V(b) A = Ofiq (Vq)) ‘R, (46)

If the conductivity of the membrane can be neglected,
Omembrane = 0, then the boundary condition at the membrane sur-
face reduces to simply V& i = 0.

D Electric field around a circular cell

Before finding the electric field for the elliptical cell, doing so for a
circular cell will provide some intuition. We solve Laplace’s equa-
tion in cylindrical coordinates. We will assume that the potential
is zero along the axial direction. Under this asumption, Laplace’s
equation takes the form:

2
qu):li(a@)Jrl&@

57 =0 47)

ror rﬁ
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The most general form of the potential is01

O(r,0) =ag+ajlnr+ Z (AkrkJerr*k) (CrcoskB + Dy sink9) .
k=1

(48)
We can choose a reference point for our potential, so we can set
ag = 0. Far away from the cell, we know that ® = —E(xcosy +
ysiny) = —Egr(cos@cos y +sinOsiny) = —Egrcos(6 — y). This
implies that the r! term is nonzero, while the remaining * terms
go to zero. The r—* terms are permitted, since we are only solving
for the potential outside the cell, so the divergence at the origin
is not a problem.

®(r,0) =— Epr(cos O cos ¥ +sin O sin y) (49)
+ Y (Crcoskd + Dysink8) Byr ¥, (50)
k=1

subject to the boundary condition d,® = 0 when r = Ry.

Applying the boundary condition to the potential on the outside
of the cell gives us:

—Ep(cos B cos y+sin@siny) — Z k(Cycosk6 + Dy, sinkG)BkRak*l =0.

k=1
6D

Matching the trigonometric terms order-by-order, all k£ # 1 terms
are zero, and we find —Eycosy = ClBlRa2 and —Eysiny =
D1B1Ry 2. We can then use this to rewrite the potential ® as

2
O(r,0) = —Eprcos(0 — ) —EORTOCOS(G — V). (52)

The electric field can be found as E = —V®:

2 2 )

R R
E=E, (1 — rg) cos(6 — )t —Ey (1 + rg) sin(0 — y)B. (53)

We see that, as we demanded, far from the cell the field is simply
the applied electric field Eext = EoE. However, close to the cell,
the field deforms around the cell boundary — choosing r = Ry we
see that the field is completely tangential at the cell’s surface, as
required by our boundary condition. It is easy to see that the field
tangent to the cell at the cell surface r = Ry is

EH = —2E0 sin(9 — 1[1)9 (54)

E Electric field around an elliptical cell

We want to calculate the electric field along the boundary of the
cell. To accomplish this, we solve for the tangential electric field
in elliptical cylindrical coordinates. That first requires solving
Laplace’s equation V2® = 0 in 2D. Laplace’s equation in ellipti-
cal coordinates is:

) 1 (2’ J*®
ch:hyhv Tuﬁﬁ =0. (55)

hy = hy are scale factors and a = /R? —R3, assuming R| > R,
where R; and R, are the lengths of the semi-major and minor
axes, respectively. We can multiply both sides of Laplace’s equa-
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tion by hyhy to simplify further. Let ®(u,v) = M(u)N(v). By
substituting and dividing through by ®, we get:
19N 5

1 9°M

Ma—'uzzfﬁa—vz_k. (56)
By inspection, solutions for N have the form Cie™*V. For M, we
have to consider two cases. If k=0, M(u) =cj 1 +co. f k#0, it is
advantageous to guess a solution in the form M(u) = ¢y, coshku +
c3sinhkpt 4 cape™ + cspe %, This produces a general solution of
the form

‘1)([.17 V) =cotciu+ Z Ckeikv [C2k coshku +c3; sinhkp +C4kek“ +C5k€_k“} .

f=1
(57)

Just like for a circular cell, the cell is in a uniform applied field.
We know that, far away from the cell (u — o), the electric field
potential outside should take the form ® = —Ej(xcos y+ysiny) =
—aFEp(coshcosveosy + sinhusinvsiny). This implies that our
solution should take the form

® =—aFEy(cosh L cos veos v+ sinh psin vsin y)

o (58)
+ Y (ckcoskv + g sinkv) e kK,
k=1
Similar to the circle case, we have the boundary condition
0P
M =0. (59)
Hlu=po

We can see by matching trigonometric terms order-by-order that
all terms with k # 1 are zero. The boundary condition then tells
us that

—akq(sinh L cos v cos W + cosh Ly sin vsin ) = (c; cos v + 0y sinv) e Ho,

(60)

Collecting like terms for cosv and sinv,
¢| = —aEye* sinh ug cos v, (61)
0 = —aEye cosh g sin y. (62)

With substitution and some algebraic manipulations, the poten-
tial is expressed as:

® = —Eya (cosh y + sinh piget ™) cos v cos y
(63)
—Epa (sinh 1 + cosh pioe* ™) sinvsin y.

(This is a well-known result; see Eq. 10.1.28 of40)

The electric field outside the cell can be easily derived by taking
the gradient in elliptic coordinates:

1o®, 109,

E—-vo——— 225 1%
g out "y v

(64)
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Fig. S2 Plot of magnitude of E; normalized by Ep. Discussed in the
main text, this is proportional to the speed of sensors on the cell surface.
A positive value means the tangential field is pointing along +V, which
is defined in the counterclockwise direction.

The outer field in its full form is

E— @ el — g2Ho—H
hy 2

_ Ega et 2ok N
cos(V—y)i — — ————sin(v—y)V.
hy 2
(65)
It is easy to see that the field tangent to the cell at the cell surface
= is
aeto N
EH =—FEy— Sin(V - l[/)V, (66)
h.uo
where hy, is hy evaluated at u = py. Fig. plots Eq. for
different field directions .

As a quick sanity check, does the result reduce to what
we found for a circle? Note that for a circle, a — 0 as
Uop — . That manifests as acoshpy = asinhyy = Ry, hy, =
ay/(cosh2uy —cos2v)/2 = Ry, and aeo = a(cosh iy + sinh )
2Ry. In this limit, the cell boundary is x = Rgcos v and y = RysinV,
so the elliptic angle v is the same as the polar angle 6, and the
tangential electric field is

A

EH = 72E0 Sil’l(e — 1[/)9 (67)
as we found above.

F  Probability distribution

We have derived the concentration of sensors c¢(v) =
coexp[kcos(v—vy)], the number of sensors per unit length
of the membrane, in the main text. From this, we want to
determine the probability density function for the elliptic angle
v of sensors. We know that the probability #(v)dv to be in
the region (v,v +dv) is proportional to c¢(v)d/ — where d/ is
the amount of arclength in this region. Changing variables, we

expect

P(v)dv ~¢(v)dl (68)
d/

=c(v) v dv (69)

= c(V)hy,dv. (70)

Soft Matter

We want our probability density to be normalized [, #(v)dv = 1,
where the integral is evaluated over the region [y — 7, y + 7]. We
then get

P(V)=Z""e(v)hy, (71)

where i
Z:/c(v)hmdv. (72)
Y

Fig. |S3|shows examples of this distribution for different values of
k. We note that even the limit of a uniform distribution (x = 0)
does not appear trivial — but this is only because of the compli-
cated relationship between the perimeter of the cell and the ellip-
tic angle v. Taking this into account is essential to correctly sam-
ple sensor locations. If you, instead of sampling from Eq. (71)),
attempted to generate uniformly distributed points by sampling v
uniformly over [0,27], you would get an incorrect distribution of

points (Fig. [S4).
G Maximum likelihood and Fisher information
In the main text, we constructed the log likelihood function

N
lnﬁzz

[K‘COS (vi—vy) +lnh,(f(2} —NInZ, (73)
i=1

and derived an expression for the estimator { by differentiating
with respect to y. From here, we can also derive an expression
for the Fisher information:

2 2 2
g T EN_ |12 (19Z
oy? Z oy? Z oy

+ Nk (cos(v—y)).

74
We can easily compute from Eq.
19z\* , . )
With some work, we can also see that
19’2 /.,
Ea—wz—lc <sm (vfl[/)>71<(cos(vfl//)>. (76)

By combining the results and doing some algebra, we arrive at
the Fisher information introduced in the main text:

7 =N«* [<sin2 (v— w)> — (sin(v —y))?/|. 77)

This result simplifies in the appropriate limits. For a circle, we
know that (sin (6 — y)) = 05,

/:NK2<sin2(9—q/)> (78)

2
= %K(K)/ysin2 (6 —y)exp[kcos(0 — y)]dO. (circle) (79)

In this limit, the Fisher information becomes

Nk [xh() - xb(9)] _ o (k)
S = 1000 { 5 } 7NK10(1<) (circle), (80)

which is what we expect for a circle.
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Fig. S3 Probability distributions at y =0 as a function of the elliptic angle v. The cell aspect ratio A =3. (a): Z(v) for k =0. This is a uniform

distribution on an ellipse. (b): Z(v) for k =0.5. (c): Z(v) for Kk =2.

Incorrect

Correct

Fig. S4 Showing points sampled on ellipse. Incorrect sampling leads to
higher density of points along high curvature regions.

H Perturbation calculations

To determine the maximum likelihood estimator for y and com-
pute the Fisher information .#, we need to evaluate integrals for
Z and 9Z/dy, where Z = [}" T ¢(v)hy,dv as given in Eq. (@).
These are then used in Egs. (I0) and (I2). We can evaluate
these integrals numerically, and do so to compute the numerical
bounds, but there is no general analytical solution. However, in
this Appendix [H} we derive simpler expressions for both the MLE
and the Fisher information in certain relevant limits. In Appendix
we assume that cells are nearly circular, simplifying the MLE
in Eq. and providing one simplified expression for the Fisher
information in Eq. (I2). In Appendix we derive two more
simplified expressions for the Fisher information, one assuming
that electric fields are weak, and another incorporating both as-
sumptions, assuming that cells are nearly circular and that fields
are weak simultaneously. In Appendix [H, we summarize all the
approximations for the Fisher information and explore some of
their limiting behaviors.

H.1 Perturbation calculations for MLE and Fisher informa-
tion for nearly circular cells

To derive a tractable analytical solution, we can assume that our

cells are not too elongated. This approximation allows us to make

a perturbation argument that simplifies the integrals and derive

an expression for both the MLE in Eq. and the Fisher in-

16 | Journal Name, [year], [vol.], 1

formation in Eq. (I2). The scale factor hy, contains a square
root that makes the integrals intractable. (Even integrating the
scale factor by itself yields elliptic integrals!). Fortunately, it can
be simplified greatly with a power series expansion. First, it is
advantageous to rewrite the scale factor:

cosh2uy —cos2v a* cosh 21y cos2v
hyy =a = 1— .
2 2 cosh2py

(81)
If the cell is nearly circular, cosh2py gets very large as p tends
to infinity (required as A — 1), allowing us to Taylor expand the
scale factor to first order in (cosh Zuo)’lz

1 cos2v
hy ~Rp|1l— = ——— | —--]. 82
Ho 0{ 2(c0sh2p,0) } (82)

We will start by evaluating the partition function Z in the limit
of a near-circular cell. We see

Z:/yc(v)hmdv (83)

1 [ cos2v
~ Ro/yexp [Kcos(v—y)] {1 —3 (m)} dv. 84)

The integral over 7y is a shorthand for the integral over the 27
range of v, usually from y — 7 to y + . We also took the normal-
ization factor ¢y = 1 without loss of generality — this will drop out
of any probabilities. We can integrate this using some standard
results for modified Bessel functions and using a substitution to
o =v—y, finding

! M[ (x) (85)

VA 27TRO IQ(K') — E COShzlJ,() 2

=x(l—-¢), (86)

where y = 2wRylo(x) and & = cos 2wl (k)[2Iy (k) cosh2up) L.

Similarly, we can evaluate the derivative gTZ/’ which is used in
Eq. (1I0), using the approximation for &y,

0z 1 cos2V

v %R()/yK'SIIl(Vf y)exp[Kcos(v—y)] [1 ) (m)} dv

In this formula, the zeroth-order term in (cosh2ug)~! will vanish
because the integrand is odd. The next term can be evaluated
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similarly to the earlier integral,

Soft Matter

where in the last step we distribute the (1 + ¢€) term and neglect
all terms of order &2 since the prefactor (cosh2ug) ! ~ &, which is

2z in2 S
— ~27 OMIQ(K). (88) the small term we are expanding in.
oy cosh 2yl

Armed with this result for %3—5’, we can find an approximate

.. . 197 . . .
To finish the calculation of Z oy’ which is on the right hand formula for the maximum likelihood estimator from Eq. (10),

side of Eq. for nearly circular cells, we expand Z~! in the

limit of nearly circular cells (which corresponds to small €): sin2y L(k)

N
% X wesin(vi— ) = 93)

. | " cosh2pg Ip(x)’

z7 21—

1
z%(1+£+0(82)). (89)
Using the identity sin(v — {) = sinvcos y — cos vsin {, we can

Finally, we have recast the equation as

sin2y

1 N N
—=— =~ —(14+€)x2nRy L(x (90) 1 . N 1 L 1 L(x)] . ..
VA v 2 ( ) COShz/JO ( ) ﬁ;bmv" cosy — Ni:ZICOSVi sy = mm 511121[[
_sin2§ h(k) ] %49
"~ cosh2ug Io(K) (1+e) €2 The equation is in the form A cos { — Bsin {y = Csin2{. We do not
have an analytic solution to this, but we have solved this numeri-
_ sin2y h(k) +o( 82) 92) cally and find consistent answers with our numerical optimization

to find the maximum likelihood estimator.

More importantly, we can use this same perturbation technique to evaluate the integrals in Eq. (I2) for the Fisher information. From
Eq. (©4), we see that in the limit of large N, N~' ¥sin(v — y) — (sin(v — y)) ~ (cosh2yy)~". Since the Fisher information contains
(sin (v — w))?, this term will be proportional to (cosh2u) 2, which will be small in our Taylor expansion. Thus, we can ignore it and

calculate the Fisher information in a more reduced form:

7 %NK2<sin2 (vfu/)>. (95)
Expanding like we have done before:
(sin (v—y)) = ! /sin2 (V= W)e(v)hg,dv (96)
ZJy
N Ro [ .2, _ 1/ cos2v
~ (o)) /ysm (v— ) exp[cos(v — )] {1 ] (coshzuoﬂ dv. ©7)

Using the substitution a = v — y again, the identity sin® o = (1 — cos2¢)/2, and common modified Bessel function relations, we can
evaluate each of the two terms of the Taylor expansion in the integrand.

Y _Ro 1 B  2mh(k)cos2y | 2mcos2y
(sin? (v=y)) = (1 +e) [2 2o () = 2 ()] = =% 45 o, oK)+ 1(x)]
(98)
_1h(x) | cos2y | Ni(k)D(k)  K[2D(k) —Io(K) — L4 (K)] 2
= 5 — +0(e%).
k Ih(x)  8xcosh2puy I5(x) 4lo(x)
We see now that, in the limit of nearly circular cells, the Fisher information reduces to
_ v Ji() cos2y (4L (k)h(x)  K[2h(K) —Io(k) —I4(K)]
=N ) TV  Reosham | 2 (n) To(x) ‘ (99)
The first term is exactly the Fisher information for a circle?, where
while the second term is the first order correction. This can be
rewritten A [411<;<>12<x> K200 o) ~ B g0
SN (II(K) + Czcos2W> : (100) cosh2o | - I(x) 0(x)

Io(x)
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H.2 Small x limit Fisher information

Experimentally, we suspect that the weak-field limit is most rele-
vant. In our previous manuscript studying the physical limits of
galvanotaxis on round cells®?, we discovered that the Fisher in-
formation for round cells simplifies to Nx2/d, where d = 2,3 for
the dimension (circle versus sphere). Thus, it would nice to de-
rive an expression for the Fisher information in this weak-field
limit for an elliptical cell. This requires doing a Taylor expansion
in k. The concentration ¢(v) is the only function that depends on
k and will be perturbed. We want the Fisher information to be of
order k2 since it has a prefactor of k2. That would require us to
expand the concentration to zeroth order in k, meaning ¢(v) ~ 1.
We noticed that at weak fields (small ), dyZ ~ 0, meaning that
(sin (v — y)) ~ 0. We know this because

Loz '/ylcsm(vfl//)(1+--~)h”0dv

Zdy /(1+~-)h,,0dv
14

(102)

where --- indicates terms neglected in the limit of small k. The
numerator integrates to zero since

/sin (v—wy)hy,dv=0. (103)

Y

This gives us Eq. again for the Fisher information:
ﬂr"\:NK‘2<Sin2(VfI[/)>. (104)

We only have to evaluate the average <sin2 (v—v)) to zeroth or-
der in x — i.e. we evaluate it for a uniform distribution on the

ellipse, or ¢(v) = 1. This gives us

sin® (v — y)hy,dv

<sin2 (v— 1,1/)> = %/);sinz (v —y)c(v)hy,dv =~

Applying sin?x = (1 — cos2x) /2:

. 1 1
<sm2 (v— l[/)> 3~ W /ycos 2(v—w)]hy,dv  (106)

(=&)- (107)

1

2
Overall, we see that at small k, the Fisher information takes the
form

S ~ N2 (%Jrf), (108)

where

L
£— — /y cos [2(v — y)Jhdv. (109)

2fyhllo
& is the anisotropic contribution, i.e. the contribution to the
Fisher information from the eccentricity of the cell. The y
dependence can be factored out of £&. We must evaluate the
integral to see this. The integral [cos[2(v—wy)]hydv was
evaluated in the interval [0,27]. This should be equivalent

to integrating in the interval [y — m,y + n]. We see that

1 -1
/cos 2(v = y)]hg,dv = fgcosm[/ (cosh g + cosh3ptg) & <T> + 2sinh g cosh 2 g & (72)}
Y cosh” Ly sinh” up

— gcos2l,l/ {—ZSinhuO sinh 2y % (

where 7'(-) and &(-) are complete elliptical integrals of the first
and second kinds, respectively, having the forms

/2 1 /2
%(A):/ iV — é”(A):/ dvV1—Asin?v.
0 V1—Asin?v 0
111)
We can also evaluate
h2uy — 2
Z(KZO):/thv:/a,/de 112)
Jy Jy

1 —1
=2a|& | ——— huy+ & inh .
“{ (cosh%)cos Ho (sinhzuo)sm H 0}
(113)

18 | Journal Name, [year], [vol.], 1

) —2cosh g sinh 249 % (iﬂ , (110)

cosh? g sinh? g

This normalization factor at zero field is simply the perimeter of
the ellipse. We can see in Eq. (1I0) that we can extract the y
dependence:

&= Ci(uo)cos2y. (114)

£, is another constant of aeolotropy, whose value is determined by
the elliptical cell radius py, which defines the cell surface. More
anisotropic cells have smaller values for py. Fully expanding, &,
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appears as

1
cosh lpé& (v1) + sinh & (v7))

1 (ko) = 2

x| (cosh ig + cosh3pg) & (v1) + 2sinh g cosh 248 (02) (115

—2sinh g sinh2pp# (v1) — 2 cosh g sinh 2y 2" (02)}

where v; = 1/cosh? yy and vy = —1/sinh? y1y. Now, we can express
the Fisher information:

7 ~NK? (%+C| cos21//>. (116)

We derived Eq. from assuming the weak-field (small «)

limit and expanding Eq. from the main text. We can also do

a weak-field perturbation from Eq. which was derived solely

for a nearly circular cell. Expanding each term so that the entire
expression is of order x?, we see that

K cos2y 5 (1
f%NK(* ) NKk—-— T ) =N — 2 R
2 ) N S s KT =K (2+C0C°s "’)
a17)

1 1

Soft Matter

1

where {y(uog) = (8cosh2uy)~" is the aeolotropic constant dis-

cussed in the main text.

H.3 Fisher information approximations and aeolotropic
constants

We have been able to show that the Fisher information can be
approximated in three different regimes: small k, nearly circular
cells, and both conditions combined. The approximations are

So=N K2 (% + §ycos 21p) (small x, near-circular), (118)

S, = NK> (% +& 00521;1) (small x), (119)
_ 11 (k) .
S =Nk To(%) + & cos2y | (near-circular), (120)
0

where {y, &, and {, are the aeolotropic constants

_! 121
% 8 cosh2ug’ (121)
¢ = 1 (cosh g +cosh3pg) & (vy1) +2sinh g cosh2ptpé (v2) — 2sinh pg sinh 249 (v ) — 2cosh pg sinh 219 %” (v7) (122)
712 cosh tp&’ (1) + sinh & (v2) '
1 415 () (x K[2L (k) —Ip(x) — L4(K
&= 1(2) 2(K) _ (21> (x) — Ip (k) — 14(x)] (123)
8cosh 2 13(x) Io(x)

&y and &, can easily be written in a more intuitive manner by
representing them in terms of the aspect ratio A. Recall that
coth iy = A. This means that

2
cosh2uy = cosh[2arcoth(1)] = % (124)
We can now rewrite the constants {, and &,
1221
Go= SA2 11’ (125)
4h(k)h(x) k2D (k) —Io(K) —I4(x)]

_ _ = CoA(K).

& =20 2(x) To(x) SA(k)
(126)

The Fisher information consists of two components: the circular
portion and the anisotropic portion. The circular portion rep-
resents the Fisher information for a circular cell. In contrast,
the anisotropic portion accounts for the cell’s eccentricity and is
governed by aeolotropic constants. These aeolotropic constants

should vanish when the Fisher information pertains to a circular
cell. It is trivial to check that {y = §; =0 when A = 1. {; is less
obvious. To see this, note that when we have a circle, all the el-
liptical integrals evaluate to /2. This is because in the limit of
a circle, A — 1 implies that py — «. Then, by multiplying {; by
1 = a/a, the numerator of {; becomes

1 1
am (2 cosh g + 7 cosh3ug

— sinh yg sinh 2ty — (sinh 2 cosh g — sinh g cosh 2u0)> .
(127)

We can use the identity sinh(x —y) = sinhxcoshy — sinhycoshx to
simplify the above expression

1 1
arw (5 cosh iy + 3 cosh3 g — sinh gy sinh 2y — sinhu0> . (128)
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Similarly, we can use cosh(x+y) = coshxcoshy = sinhxsinhy to
simplify our expression in the numerator of §; further:

am (cosh g —sinh ly) = w(Ry — Ry). (129)

Since R; = Ry = Ry for a circle, {; = 0 and we have our desired
limit.

We just showed that the aeolotropic constants have a minimum
value &, = 0 for a circle, which occurs when A = 1. What are the
values when we have an infinitely eccentric cell (1-dimensional
line)? Do they have maxima? An infinitely eccentric cell oc-
curs when gy — 0" (4 — ). In this limit, it is easy to see that
8o — 1/8and & — A(x)/8. Checking for {; is a bit tougher. We see
that in this limit, coshpy = 1, sinh g =0, ¢ (v2) =0, & (vy) = 1.
¢ (v1) becomes a complex number, where R[# (v])] — o and
3| (v1)] = . Meanwhile, & (vy) — . Fortunately, sinhpy de-
creases at a faster rate than J#(-) and &(-) can blow up. That
means that {; - (2+0—-0-0)/12 = 1/6. Armed with that infor-
mation, we can summarize our findings:

Jim C0,61,62 = Gmin =0 (circle), (130)

A(x

. 1 . 1 . .
lim Co:§7 M}I_I}(lﬁglzav M}gr(lﬁCz:T) (line). (131)

Uo—0F

| Normal approximation and fitting y

a b
1 1
0.8 0.8
§0.6 0.6
éo.4 0.4

202 0.2

0 K—exp -I71/2 0
-+Keratocyte Data
0 1 2 0 0.5 1 1.5
vEo vEo

—vZ/(1+1)

-+Keratocyte Data

Fig. S5 Plots fitting Eq. (133) directionality to keratocyte data where
7 =0.8(yE)?. (a) Fit with ¢” '/2, yielding a fit value of y=3.4 x 1073
mm/mV. (b) Fit with \/.# /(% + 1), yielding a fit value of y=2.3 x 1073

mm/mV.

In the main text, we claim that the directionality, the measure
of how well cells follow electric fields20192 is (cos (§ — y)) ~
e~/ /2. This is an alternate formula to (cos (f—wy)) =~
/Z /(1 +.9), which we used in®?, We show fits to both forms
in Fig. This alternate directionality formula was derived
by taking advantage of the property that maximum likelihood
estimators are asymptotically normal in the limit of large sam-
ple sizes10310%  Thuys, for a sufficiently large sample of sensors

N, even the periodic estimator LNy% (w,.#~1). (Note that in
the literature, the Fisher information per observation .#y is often
used, making the limiting variance (N.%y)~! = #~1). That means
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the density for { can be approximated by a Gaussian distribution

1)\ Lo [ -]

With this probability density function, {(cos (¥ — y)) can be com-
puted

(132)

o0

(cos (W)~ [ cos(y—wis(pan=e 2,

—oo

(133)

We derive the Fisher information limit appropriate for kerato-
cytes in Eq. in the main text. We use this result to fit the di-
rectionality (cos ( — y)) to keratocyte experimental data from=Z
to determine a reasonable value for 7, the characteristic electric
field strength. Data of keratocyte directionality as a function of
field strength was fitted using Eq. and plugging it into Eq.
(I33). This fitting process produced y = 3.4 x 103 mm/mV (Fig.
[SBR). We see in Fig. that the normal-approximation assump-
tion is a slightly better fit to the experimental data, though we
are not confident that this data can really discriminate between
the two models. The difference in v in fitting to these two models
is relatively small. However, there would be minor quantitative
changes if we chose the alternate value of y=2.3 x 1073 mm/mV.
This sets the scale of electric field the cell can sense, and would
make the transition in trends in Fig. [5|in the main text occur at a
higher field strength and the magnitude of the variance decrease
more slowly as the electric field strength is increased.

J Circular variance derived from MLE for kerato-
cytes as a function of sensor number N

We found that the Fisher information does not depend on 8 and
N independently, but only on the combination y = NB2/2. How-
ever, because in the limit of weak fields, the maximum likelihood
estimator’s variance is above the Cramer-Rao bound, it is possi-
ble that the MLE variance depends separately on N and 3. Here,
we show how the circular variance changes while the number of
sensors N changes, while keeping y constant — and thus keep-
ing the magnitude of the Fisher information constant. If we fix
y=3.4x 1073 mm/mV, then the behavior of the circular variance
is unaffected by changing N (Fig. [S6). According to the simu-
lations, the circular variance remains maximal when the electric
field is parallel to the cell’s long axis and minimal if the field is
parallel to the cell’s short axis.
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Fig. S6 Circular variance plots for keratocytes calculated using MLE. 22

y=3.4x10"3 mm/mV is kept constant. Simulated for 5000 cells at
a field strength Eg = 150 mV/mm. Varied for N = 100 (x ~ 7 x 1072),
N =1000 (kK ~2x1072), and N = 10000 (k ~7 x 1073). Solid lines is the
lower bound from Eq. (I3)). Dashed lines are the lower bound from Eq.

(T4). Shaded region are error bars for standard error of the mean.
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