Soft Matter

a) Soft Matter
-

Chirality Effects in Molecular Chainmail

Journal: | Soft Matter

Manuscript ID | SM-ART-06-2024-000729.R1

Article Type: | Paper

Date Submitted by the

Author: 14-Aug-2024

Complete List of Authors: | Klotz, Alex; California State University Long Beach,

Anderson, Caleb; California State University, Long Beach
Dimitriyev, Michael; Texas A&M University, Materials Science and
Engineering

SCHOLARONE™
Manuscripts




Page 1 0of 18 Soft Matter

Chirality Effects in Molecular Chainmail

Alexander R. Klotz and Caleb J. Anderson
Department of Physics and Astronomy, California State University

Michael S. Dimitriyev
Department of Materials Science and Engineering, Texas AEM University

Motivated by the observation of positive Gaussian curvature in kinetoplast DNA networks, we
consider the effect of linking chirality in square lattice molecular chainmail networks using Langevin
dynamics simulations and constrained gradient optimization. Linking chirality here refers to order-
ing of over-under versus under-over linkages between a loop and its neighbors. We consider fully
alternating linking, maximally non-alternating, and partially non-alternating linking chiralities. We
find that in simulations of polymer chainmail networks, the linking chirality dictates the sign of
the Gaussian curvature of the final state of the chainmail membranes. Alternating networks have
positive Gaussian curvature, similar to what is observed in kinetoplast DNA networks. Maximally
non-alternating networks form isotropic membranes with negative Gaussian curvature. Partially
non-alternating networks form flat diamond-shaped sheets which undergo a thermal folding transi-
tion when sufficiently large, similar to the crumpling transition in tethered membranes. We further
investigate this topology-curvature relationship on geometric grounds by considering the tightest
possible configurations and the constraints that must be satisfied to achieve them.

I. INTRODUCTION

Many emerging materials are comprised at the microscopic scale of two-dimensional crystalline materials [1] or
topologically complex linked-ring molecular architectures such as polycatenanes [2] and Olympic gels [3]. Some
materials have combined both features into molecular structures that are both planar and topologically linked [4, 5].
There is currently an incomplete understanding about how the underlying topology of the molecular network affects
its equilibrium mechanical properties, as well as what role thermal fluctuations play in the stability of planar molecules
at finite temperatures. One emerging model system for studying these effects is kinetoplast DNA.

Kinetoplasts are the mitochondrial DNA of trypanosome parasites. Often described as molecular chainmail, they
consist of several thousand topologically linked DNA “minicircles” of a few thousand base pairs forming a planar
network as well as several dozen “maxicircles” of tens of thousands of base pairs (similar to our own mitochondrial
DNA) also linked within the network [6]. Their catenated (linked-ring) molecular structure and planar network
topology make them an interesting experimental system for researchers in both the topological chemistry and two-
dimensional materials communities.

In one of the initial studies characterizing the material properties of kinetoplasts in free solution, Klotz et al. reported
positive Gaussian curvature, giving kinetoplasts the appearance of wrinkled hemispheres [7]. There is no known
biological reason for this curvature, and it is likely not present in every species. Subsequent work attempted to
explain this curvature on physical grounds. Simulations by Polson, Garcia, and Klotz [8] showed that networks of
rigid linked rings, when thermalized, will replicate the curvature seen in Crithidia fasciculata kinetoplasts. In a
detailed simulated-supported atomic force microscopy investigation of kinetoplast DNA, He et al. [9] argued that the
incommensurability between the area of the kinetoplast sheet and its circumference, which is lined by a dense fiber
of excess DNA linkages, creates a tension that is resolved by curving the membrane.

Based on gel electrophoresis experiments [10], it was concluded that the network structure of Crithidia kinetoplasts
is that of a honeycomb lattice, with the average number of minicircles each minicircle is linked to, termed the valence,
most likely being three. Subsequent investigations, including that of He et al. [9], supported the average trivalence
but not the honeycomb picture, which cannot capture the observed complexity of minicircle arrangement. More
recent work has investigated the role of the edge loop in determining kinetoplasts topology [11], as well as that of the
maxicircles that are typically neglected [12]. The dependence of the equilibrium structure of a molecular chainmail
network on its lattice topology has not been fully explored. Preliminary work by Thomas O’Connor showed that
different medieval chainmail designs folded differently at low temperatures [13], while the simulations by Polson,
Garcia and Klotz showed slight differences in the concavity of hexagonal and square networks with non-uniform
valence [8]. The most detailed simulations by He et al. [9] used trivalent honeycomb networks, and highlighted the
role of link chirality as well as network topology.

When two solitary rings — curves that form closed loops in three-dimensional space — share a topological Hopf link,
a given projection may show that as the path of a single loop is traversed, the link is composed of an under crossing
followed by an over crossing, or an over crossing followed by an under crossing. In this case, either loop may be rotated
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FIG. 1: (a)-(c) Chainlink network topologies shown with unit cells highlighted in blue. Highlighed orange rings have labeled
over (‘O’) and under (‘U’) crossings. (a) Alternating chirality shows pattern of alternating over-under crossings as a loop is
traversed. (b) Non-alternating chirality has pairs of over-crossings next to pairs of under-crossings. (c) Semi-alternating consists
of a mix of paired crossings and alternation. Unit cells for (a) and (b) each contain the mass of a single ring; unit cell of (c)
contains the mass of four rings. (d)-(f) Initial configurations of 3 x 3 networks of each chainlink network.

about the plane of projection to change the over-under crossing order to an under-over crossing order. Similarly, a
linear chain of Hopf links can interconvert pairs of crossings via rotations of the constituent loops. However, more
general linked structures, such as closed necklace-like linked chains or the doubly-periodic chainmail networks shown
in Fig. 1, do not admit such flexibility — conversion of under-over to over-under may be achieved via an additional
twist of a given loop, rather than a rigid rotation, which adds additional crossings to the projection. Consequently,
there are non-equivalent choices of how a given ring passes over and under its neighbors, as encoded by the order
of under (‘U’) and over (‘O’) crossings, called the “chirality” of the link. We note that the term chirality here does
not have the same meaning as is used in knot theory and stereochemistry. For example, the links in Fig. 1(a), with
an “alternating chirality,” and the links in Fig. 1(b), with “non-alternating chirality,” are not mirror images of each
other.

The effect of link chirality in polycatenanes and molecular chainmail was explored by Luca Tubiana and collaborators
in two studies. The first examined twisted circular polycatenanes [14], finding that a closed, untwisted, fully non-
alternating chain-link will be structurally relaxed at equilibrium, but adding twists before closing the chain link will
introduce a torsional constraint to the system that must be alleviated. They formulated a relationship between the
number of twists and the apparent writhe of the polycatenane that was analogous to the Fuller-White-Calugareanu
relation that applies to supercoiled DNA [15]. In a second study, the simulations used by He et al. to explore the effect
of tension due to the kinetoplast edge loop [9], randomized the chirality of each loop such that effects of chirality were
averaged out. During the writing of this manuscript, we became aware of parallel work by Luengo-Mérquez et al. [16]
examining the equilibrium properties of block-copolymer chainmail networks with two different link chiralities. The
networks simulated by Polson, Garcia, and Klotz [8] used “Japanese-style” networks in which tetravalent or hexavelent
rings on a lattice were connected by divalent linkers, eliminating issues with link chirality.

Here, we consider the effect of molecular chirality in square lattices of topologically linked loops. Although the
honeycomb lattice is typically used to describe kinetoplast DNA, we choose a square lattice, as the bipartite structure
ensures a consistent choice of linking chirality, i.e. without the “geometric frustration” characteristic of non-bipartite
lattices. Additionally, the 4-valent connectivity yields a bigger difference between the fully alternating and fully
non-alternating cases. The three square lattice chiralities that we study can be seen in Fig. 1. Each linked ring
contributes a separate over-under (OU) or under-over (UO) pair; since each loop is 4-valent, each loop can be labeled
by a sequence of four OU and UO pairs. The fully alternating configuration is given by UOUOUOUO; the fully
non-alternating is UUOOUUOQOQO; the semi-alternating is UUOUOQOUO. The semi-alternating pattern is known in the
armoring community as the European 4-in-1 weave [43]. The unit cells of these networks (highlighted blue in Fig. 1)
are not centered on the individual loops, but rather the junctions of four loops, with the exception of the semi-
alternating network, which is centered on a ring. In Alexander-Briggs and Thistlethwait notation, the unit cells of
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each network are 81/L8a21, 82/L8n8, and 83/L8n7. As U’s and O’s only exist in UO and OU pairs, one can consider
each pair as labeled with a collective label, e.g. an up or down “spin.” These chainmail networks then resemble
ordered spin arrangements, with the fully alternating case being “ferromagnetic” and the fully non-alternating case
being “antiferromagnetic.” This suggests a possible mapping of the equilibrium conformations of molecular chainmail
to Ising model-patterned elastic sheets, such as those in Plummer et al. [17].

In this work, we explore the configurations of molecular chainmail given these chiral topological constraints. We
use two complementary numerical methods and a simplified exactly-solvable model. The first numerical method is
Langevin Dynamics (LD), used to model the equilibrium behavior of polymer chains. We explore the equilibrium
configurations of chainmail networks parameterized to the properties of DNA in low ionic strength solvents, comparable
to about 13 mM, the second-lowest ionic strength explored in fluorescence experiments with kinetoplast DNA [18].
The equilibrium configuration of a polymer depends on a balance of entropy, excluded volume, and bending rigidity.
To reduce the degrees of freedom more directly investigate the relationship between topology and geometry, the
second method uses constrained gradient optimization (CGO) to find the tightest possible configuration of chainmail
networks, which might arise in synthetic chemical networks [5]. This algorithm is typically used to find the tightest
configurations of knots and links, and here is used to identify the minimal geometric factors that lead to the observed
membrane behavior. Finally, we develop a simple model of the preferred homogeneous embedding of these networks,
illustrating the emergence of intrinsic curvature and the necessity of loop deformation due to an apparent geometric
incompatibility between certain periodic linkages and constraints imposed by FEuclidean space.

II. METHODS

A. Initialization

We initialize our loops (a term we use interchangeably with links to refer to the individual components of the
networks) as 16-gons. These 16-gons are centered on square lattice sites, and can be thought of as inhabiting tiling
squares; initial configurations are shown for the three network chiralities in Fig. 1(d)-(f). Eight vertices of each 16-gon
lie in the zy-plane in an octagon, with four sides touching neighboring squares in the lattice. Between each two
octagonal vertices on the sides of the square, are points extending into the next square, one in the 4z direction and
one in the —z direction. The order of the £z extension determines whether the linkage is over-under or the reverse.
Each 16-gon has four linkage components, the alternating 16-gons have all four going over-under. The z—coordinates
on opposite sides of the 16-gon are flipped to create the fully non-alternating network. To create the semi-alternating
network, the z—coordinates are flipped on either the upper and right linkage, or the lower and left linkage, and the
network is created by a checkerboard tiling of those two cases.

We use spline interpolation to refine the mesh for each loop, increasing the number of vertices-per-loop to ~ 24.
Because the algorithms we use typically function better with smooth initial configurations, we import the generated
configurations into KnotPlot [19] and anneal them by treating each vertex as a charge and each edge as a spring,
which ensures evenly-spaced vertices and a safe distance between beads on neighboring links such that they will not
cross each other during simulation. After the loops in a medium-sized network have been annealed in KnotPlot, we
can extract the coordinates of an interior loop and tile them to create larger networks. Coordinates of these loops
and instructions for tiling them are available as ancillary data. For CGO, we also reduce the charge of each vertex
and apply a contour-minimizing force in KnotPlot, which allows the minimization to proceed faster.

B. Langevin Dynamics

We simulate molecular chainmail networks with M links using a model used to simulate topologically complex
polymers in previous works, and our descriptions may bear similarity to previous descriptions of these methods. In
short, each loop in the network is comprised of beads of diameter o (which sets the lengthscale of the system) at
position r;(t), connected by springs to their two neighbors. A finitely-extensible nonlinear elastic (FENE) spring
potential with a maximum extension of 1.50 is used. Excluded volume interactions between beads are enforced by a
truncated Lennard-Jones repulsive potential that applies when the centers of mass of two beads are closer than o. The
relatively short range of distances between the excluded volume of the beads and maximum extension of the springs
ensures that strands do not cross and the link topology is preserved. Bending rigidity is imposed by a Kratky-Porod
potential depending on the cosine of the angle between three successive beads. The strength of this potential sets the
persistence length of the polymer. The entire contribution to the energy of a bead is:

Utot = Uspr + Uev + chnd . (1)
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where € sets the energy scale of the repulsive interactions. The spring force is parameterized as:
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where k is typically 30 and sets the spring constant in units of €¢/0? and Rpax is the maximum separation of the
springs, and is 1.5¢0 in this work. The bending potential takes the form:

Ubend = %pk:T(l —cosb). (4)

The dimensionless ratio of the persistence length ¢, to the bead diameter is typically ¢,/0 = 5 in this work. The time
evolution of the i*" bead is determined by the Langevin equation:

mii(t) = —v1i(t) — Ve, Usor + V2ETym(t) . (5)

Here, ~ is the drag coefficient on a single bead, kT is the thermal energy scale, 1 is a delta-correlated normal random
variable, i.e. (n;(t)n;(t")) = 6;;6(t —t’), and an overdot represents a time derivative. The final term provides a
random force that emulates Brownian motion in a manner consistent with the fluctuation-dissipation theorem. These
equations of motion are solved by LAMMPS [20], which iterates the system forward in time using the Velocity Verlet
algorithm.

The system is non-dimensionalized with o, v, m, kT and e taking values of 1, which defines a timescale 7 = o/m/e.
We iterate the simulation with a timestep of 0.01 7. We initially perform 500 iterations of the system with a simpler
harmonic spring potential to avoid overstretched FENE springs. We then iterate the system for hundreds of thousands
to tens of millions of timesteps depending on the system size, typically at least ten times as long as the initial transient
deformation of the network from its initial conditions. For each system size, we simulate at least five iterations with
different random seeds. To ensure the harmonic equilibration stage did not change the linking topology through
strand crossing, we compute the Gauss linking number of neighboring loops in the final configuration and verify that
everything is linked appropriately. In practice, this was only an issue for unfavorable initial conditions, which were
fixed in KnotPlot.

The equilibrium configuration of a polymer chainmail network depends on four lengthscales: the effective width
of the monomers, the persistence length, the contour length of each ring, and the total number of rings. In our
simulations, we primarily use a parameterization in which the effective width is set by the diameter of each bead,
the persistence length is five beads (representing a monomer anisotropy found in DNA in low-salt solutions), each
ring is 24 beads (about 5 persistence lengths), and the number of rings is varied. The simulated polymer rings are
comparable to the minicircles of Trypanosoma brucei, which are slightly below six persistence lengths in contour. The
minicircles in Crithidia fasciculata are each about 16 persistence lengths in contour, requiring 80 monomers per ring
in this model. While we primarily focus on the system with M rings of 24 beads and a persistence length of 50, we
will discuss the effect of varying the other lengthscales.

C. Constrained Gradient Optimization

We use constrained gradient optimization (GCO) to find the tightest configuration of molecular chainmail networks,
that which minimizes the total contour length of all the loops while treating each loop as a tube of unit radius and
respecting a no-overlap constraint. The width of a curve is defined as the minimum radius of a circle that is guaranteed
to pass through any three points on a curve. The ropelength of a knotted or linked curve is the minimum ratio of the
total contour length of the curve to its width. Conventionally, this is normalized such that the thickness of the curve
is 0.5 or 1, depending on whether it is treated as a rope with unit diameter or radius. The configuration of a knot
or link that minimizes ropelength is known as ideal. No exact value for the ropelength of a nontrivial knot is known,
but numeric analyses put the upper bound of the ropelength of the trefoil knot at around 32.74 radii [21].

To perform constrained gradient optimization (CGO) on chainmail networks, we use an algorithm called Ridgerun-
ner, developed by Jason Cantarella and colleagues. A full description of Ridgerunner can be found in Ashton et al. [21],
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FIG. 2: Representive images of 225-loop molecular chainmail networks simulated with Langevin Dynamics for (a) alternating,
(b) fully non-alternating, and (c) semi-alternating chiralities. Top row shows a top-down orientation, bottom row shows a side
view with an osculating surface. Links are color-coded by their distance along the surface normal direction. The arrows in the
bottom-left image represent the principal axes of the gyration tensor.

but in short it approaches the ideal configuration of an initial knot by perturbing its coordinates into many trial knots.
At each step, the next perturbation is computed by projecting the gradient of the length function onto a polyhedral
cone of perturbations of the current polygon which respect the no-overlap condition. When the projected gradient is
a small fraction of the length of the original gradient vector (typically 0.01 or 0.001) the algorithm terminates.

We initialized the three types of square lattice chainmail networks with 9, 16, and 25 loops, with 16 vertices per
loop. As a preliminary investigation we also tightened twisted polycatenanes, the system established by Tubiana et
al. [14] to study chirality effects in linked polymers, discussed in the appendix. We initially performed CGO on the
networks using an equilateralization force to maintain a constant distance between the vertices of each loop. When
the residual gradient reached 0.1 or the ropelength stopped decreasing, the final configuration was re-run without
equilateralization, towards its minimum. Compared to Langevin Dynamics and similar methods, CGO is generally
slower and limited in system-size as width-testing scales cubically with the number of nodes, and is susceptible to
strong local minima. Ridgerunner is not optimized for systems with configurations that have both straight and tightly
curved components, such as the links in chainmail networks. Thus, our results should be regarded as approximations
to length-minimizing links, within the constraints discussed above.

III. RESULTS AND DISCUSSION
A. Langevin Dynamics

For our primary investigation of alternating, fully non-alternating, and semi-alternating chiralities, we arranged
loops on square lattices with free boundaries, ranging from 3 x 3 = 9 loops up to 15 x 15 = 225 loops. We also
simulated a more circular network with 137 loops, and performed trial simulations of square Japanese-style chainmail
and Borromean chainmail (Appendix). Alternating and fully non-alternating networks were simulated with M = 9,
16, 25, 49, 81, 137, and 225. The behavior of the semi-alternating networks proved more complex, and thus they were
more densely sampled at M =9, 16, 25, 36, 49, 64, 81, 121, 137, 169, 196, and 225.

We begin with qualitative descriptions of the simulated networks, examples of which can be seen in Fig. 2. Videos of
three-dimensional rotations of each case may be found in the ancillary data. We observe that alternating networks be-
come bowl-shaped with positive Gaussian curvature, similar to Crithidia kinetoplasts. Fully non-alternating networks
become saddle-shaped with negative Gaussian curvature. Semi-alternating networks appear flat, although can fold
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along one axis when sufficiently large, discussed subsequently. In the first two cases, there is little apparent impact of
the initially square boundary geometry on sampled equilibrium configurations. Moreover, the edges of the alternating
configurations resemble typical edge shapes seen in kinetoplast DNA [7]. In contrast, the semi-alternating lattices
elongate along one pair of opposite corners and contracting along another, converging on a diamond configuration
with an aspect ratio of about two.

In order to obtain a measure of curvature of each chainmail assembly, we first need to extract a suitable represen-
tation of a surface from a given assembly. Here, we generate a Delaunay triangulation of center of mass of each ring,
based on the square lattice connectivity. This creates a membrane of plaquettes that meet at nodes, and techniques
derived from discrete differential geometry can be used to compute the local Gaussian curvature K and mean curva-
ture H at each node [22]. The Gaussian curvature, here measured in computational units of 0~2, characterizes the
intrinsic geometry of a surface, with positive Gaussian curvature indicating spherical geometries, negative indicating
hyperbolic geometries. The node- and time-averaged Gaussian curvature is then a macroscopic representative of
intrinsic geometry and is on the order of the inverse square of average radius of gyration of the fluctuating networks.
As shown in Fig. 3, the averaged Gaussian curvature is function of network size, with the alternating and fully non-
alternating networks exhibiting peak magnitudes at M = 16 before approaching zero. The maximum at M = 16
can be regarded as a balance between two competing trends: for small M, the polymer rings are subject to fewer
constraints and are thus able to undergo larger conformational fluctuations, reducing the orientational correlations
needed to establish a well-defined curvature; for larger M, bending modes of the membranes are more easily excited
by thermal fluctuations, leading to inhomogeneous curvature distributions that reduce the average curvature. The
semi-alternating networks have a curvature much closer to zero than the others, as expected, but is consistently
negative at about —0.00030~2 rather than fluctuating about zero, approaching zero with system size. The notable
exception is the circular sheet at M = 137, which may be due to the reduction of constraints from a reduced average
valence. While the averaged Gaussian curvature of the largest non-alternating network passes zero, Fig. 2(b) reveals
that it still samples saddle-shaped configurations. This is confirmed by an alternative surface-construction procedure
in which the networks are fit to quadric surfaces, as illustrated in the lower panels of Fig. 2 and discussed in the
Appendix.

The parallel work by Luengo-Mérquez et al. [16] examined two chiralities of the honeycomb lattice and also observed
negative Gaussian curvature in systems equivalent to our non-alternating chirality. They examined the local variation
of Gaussian curvature across the membrane, and their analysis showed that the time-averaged curvature at each
vertex on the surface matched the local curvature of the time-averaged configuration, suggesting that the curvature
is stable over long time periods.

To characterize the dimensions of the equilibrated networks, we compute the gyration tensor based on the position
of each of N beads relative to the center of mass:

N

Gar = 5 D = (ral)(rsg = (1), (6)

=1

where r; , and r;; represent the position of the i* bead in dimensions a and b, and the angle brackets denote the
center of mass in that dimension. The eigenvalues of this tensor represent (squared) lengthscales describing the
distribution of the network along three perpendicular axes, the eigenvectors corresponding to each eigenvalue. The
square roots of these eigenvalues are the principal radii of gyration, and when ordered by size are referred to as the
minor, medium, and major axes. For sheet-like networks, there are typically two eigenvectors that point within the
plane of the sheet with comparable eigenvalues, and a third pointing transverse to the sheet with an eigenvector that
scales with a weaker exponent than those in the plane, sometimes called the roughness exponent. This is known as
the “flat” phase [23], as membranes will extend asymptotically farther in their chemically-defined plane than fluctuate
transverse to it. In the flat phase, the in-plane gyration eigenvalues typically grow close to linearly with molecular
weight (consistent with area-mass proportionality). Scaling arguments put the roughness exponent near 0.7 [24],
which is consistent with simulations [25-27]. The simulation of chainmail networks of rigid circles by Polson et al. [§]
found in-plane exponents between 0.92 and 1.02 and roughness exponents between 0.73 and 0.84, likely higher than
the tethered membrane flat phase due to curvature effects. Fig. 4 shows the scaling of the gyration eigenvalues with
system size for the three chiralities. The power-law scaling parameters for each eigenvalue can be found in Table 1.
Here we report the dependence on the squared principal radius scaling with molecular weight; other literature may
report either the radii or their squares, and either the molecular weight or the side-length, leading to two possible
factor-of-two differences in how the exponents are presented (e.g. the major eigenvalue in the flat phase is reported
in various studies to be close to 0.5, 1, and 2).

The characteristic squared radii of each chirality behave differently with the number of links, and we will discuss
them individually. The positively-curved alternating networks have middle and major squared radii that scale with
a size exponent between 0.76 and 0.79. This is lower than what is typically found in tethered membrane simulations,
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FIG. 3: Gaussian curvature as a function of network size for alternating (black), fully non-alternating (red) and semi-alternating
(blue) networks. The datum at M = 137 in each set was taken from a circular rather than square network.

Eigenvalue | Alternating| Non-Alternating | Semi-Alternating
Minor 0.66 £ 0.02 |0.74 4+ 0.02 0.44 +0.02
Medium |0.79 +0.02 |0.73 £ 0.01 0.93 £ 0.01
Major 0.76 +0.02 |0.71 £ 0.03 0.95 +0.01

TABLE I: Best-fit scaling exponents of gyration tensor eigenvalues.

including the linked-ring simulation study [8]. The minor exponent of about 0.66 is comparable to some simulations
of the flat membrane phase, but should be interpreted as representative of curvature, e.g. the depth of the bowl shape
adopted by the membrane, rather than roughness. The minor exponent is about 5/6 that of the major exponents,
which is comparable to what was observed in the linked ring simulation for rings of finite thickness. The fact that
the depth of the bowl grows with a weaker exponent indicates that asymptotically large networks may not appear
significantly curved. If, ignoring wrinkles and fluctuations, the membrane took the form of a spherical cap with
constant solid angle, all eigenvalues would scale similarly. The smaller transverse scaling is consistent with this
angle decreasing with length, or equivalently, the effective radius of the osculating sphere increasing faster than the
dimensions of network size. We note that although there is no reason to suspect that kinetoplast DNA has alternating
chirality, simulating alternating molecular networks may be a useful method of inducing curvature in future kinetoplast
simulation studies.

The negatively-curved, fully non-alternating networks have three principal squared radii that scale with roughly
the same exponent, between 0.70 and 0.75. This indicates that they asymptotically adopt an isotropic configuration.
Negatively curved saddle-shaped membranes are not common in nature or in synthetic materials, but it is possible
to induce negative curvature in origami sheets with specific folding patterns [28]. There have been predictions of
nontrivial electronic effects in negatively curved graphene [29], but this has not been synthesized.

The flat semi-alternating sheets display the most complex behavior. The major and middle squared radii grow
with a power close to 1, which is consistent with previous simulations of flat-phase membranes. The roughness
exponent takes a value just below one-half, which is smaller than in tethered membrane simulations. We note that
the fluctuations of the membrane are anisotropic, taking the form of bends along the long axis of the diamond shape of
the membrane, with the short axis remaining stable. This distinctive anisotropy can be rationalized by the underlying
symmetry of the network, which possesses a 4-ring unit cell with mirror planes along one diagonal, as opposed to
the non-alternating network, which has mirror planes along both diagonals of the unit cell. The correspondingly
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FIG. 4: Squared principal radii of gyration from the eigenvalues of the gyration tensor for alternating (a), full non-alternating
(b) and semi-alternating (c) networks as a function of molecular weight, with power-law fits. Each eigenvalue is labelled black,
red, and blue in increasing size. The asterisk indicates the 137-ring circular networks that were not used for fits. If not visible,
error bars are smaller than points.

anisotropic shape fluctuations are analogous to the highly anisotropic elasticity that is seen in knitted fabric, which
similarly possess mirror planes along a single direction; the semi-alternating sheets in fact possess a linking motif
resembling that of the garter stitch [30]. The lack of fluctuations along one direction likely suppresses the roughness
exponent. The finite thickness of the network, due in part to the tendency of each ring to lie with a normal in the
plane of the membrane, may suppress roughness further. Notably, the minor eigenvalue of the largest membranes
grows faster than the trend set by smaller membranes. This happens when the fluctuations of the long diamond
axis become sufficiently large as to cause the membrane to fold over itself, displacing the center of mass from within
the loops. This bears similarity to the thermal crumpling transition predicted for tethered membranes, in which the
distribution of surface normals lose correlation above a certain thermal lengthscale [31]. It also bears similarity to a
backfolding transition observed in nanoconfined DNA that occurs when a molecule exceeds its “global” persistence
length [32]. A video of a fluctuating semi-alternating network may be found in the ancillary data.

To characterize this folding transition, we note that the diamond-shape networks only fold in the direction of the
diamond’s long axis, leading to much larger fluctuations in the distance between the two corners separated by the long
axis (Dp,), compared to the two corners separated by the short axis (Dg). Typically, the short axis is highly aligned
with the medium gyration eigenvector, the eigenvalue of which displays much lower-amplitude fluctuations than the
other two, which are anti-correlated. In extreme folding events, the major eigenvector will become aligned with the
short axis of the diamond, as can be seen in Fig. 5. These folds are also marked by a displacement of the center of
mass of the network away from the geometric center of the middle loop, which greatly increases the minor gyration
radius. We can characterize the scale of these fluctuations by measuring the variance in Dy and Dg and plotting
their ratio as a function of system size (Fig. 5(b)). This ratio increases with the number of links, but increases much
more strongly beyond 100 links. There is evidence of a local maximum at 49 loops that may be indicative of a phase
transition.

In contrast to tethered membranes with isotropic interactions that undergo a crumpling transition, the semi-
alternating chainmail networks are an anisotropic 2D material, and undergo what can be described as a folding
transition rather than a crumpling transition. The thermal lengthscale for crumpling is on the order of ¢y, = k/kT/Y
where x is the bending modulus and Y is the Young’s modulus. Although beyond the scope of this work, future
simulations applying uniaxial extension or clamped boundaries may measure these moduli to further clarify the
lengthscale associated with the folding transition.

There are many possible extensions to this model that can be explored, and as the main focus of this manuscript
is chirality we will only comment on them qualitatively. Other lattices besides square can be studied, and we direct
readers to the works of Luengo-Marquez et al. [16] and He et al. [9] for simulations of honeycomb lattices. Rings
may be removed from the networks to simulate kinetoplast degradation experiments; we observe that when 10% of
the rings are randomly removed the curvature is not affected, but the networks lose their sheetlike properties when
20% are removed. Introducing a small number of random lattice defects with the opposite chirality does not impact
the overall curvature, but there likely exists some critical fraction of defects that will. The Lennard-Jones repulsion
in our simulations ignores the screened electrostatic repulsion between DNA segments; if the charged repulsion is
included the simulations, the same curvature is observed but segments in each ring become significantly stretched .In
the two previous kinetoplast simulation studies, the minicircles were rigid or effectively rigid: Polson, Garcia, and
Klotz simulated rigid circles [8], and He et al. simulated rings with a contour length half of the persistence length [9].
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FIG. 5: Left: a partial time series of the three gyration eigenvalues (major, medium, and minor labelled blue, red, and black
respectively) of a 225-loop semi-alternating membrane during which a large-amplitude folding event occurs, causing the major
axis to align with the width of the diamond-shaped membrane. Delaunay triangulations of the membranes are shown from the
side at three stages of this event. Right: ratio of the variance of the distances between the corners along the long axis of the
membrane to the variance of the short axis. Error bars represent standard error over multiple runs. Inset shows a side view of
a folded membrane, showing its center of mass as a black circle displaced from the loops, and smaller dots pointing along the
minor eigenvector.

As mentioned, the minicircles in T. brucei kDNA are about 1000 base pairs or six persistence lengths, while in
Crithidia fasciculata they are about 2500 base pairs or 16 persistence lengths. Alternating networks can pucker when
the persistence length is increased, similar to puckering observed by He et al. [9]. Fully non-alternating networks
lose some isotropy and become more taco-shaped. Semi-alternating networks remain diamond-shaped. When the
persistence length is kept the same but the loops are increased to 80 beads to mimic Crithidia minicircles, we do not
see curvature effects as strongly. This is likely due to the reduced excluded volume interactions between the rings,
and we expect that sufficiently large networks would revert to the established trends.

B. Constrained Gradient Optimization

We annealed towards the ideal configurations of the three square lattice chiralities with 9, 16, and 25 loops. Larger
networks were attempted but did not converge on a minimal configuration, even with more vertices per loop. As a
preliminary investigation, we annealed polycatenanes with varying degrees of twist to measure the effect of intrinsic
twist on ropelength, described in the Appendix.

We begin with a qualitative description of the ideal networks. Examining the tight configurations in Fig. 6, the
alternating, non-alternating, and semi-alternating networks display positive, negative, and null Gaussian curvature
as in the polymer simulation. The semi-alternating case in particular remains effectively flat with increasing size.
Quantitatively, we can measure the total contour length of the network, in addition to the radii of gyration and the
Gaussian curvature.

The lower bound on the ropelength of a linked network follows a result from Cantarella et al. [33] that each loop in
the network that is Hopf linked to @ neighbors cannot be shorter than a curve that is parallel (and one unit separated)
to the minimum convex hull around ) unit-radius disks. While the minimum convex hull is a challenging optimization
problem when @ is large, each link in square lattice molecular chainmail has either 2, 3, or 4 linked neighbors. The
ideal divalent link is a stadium curve of length 47 + 4, the ideal trivalent link is a rounded triangle with length 47 4 6,
and the ideal tetravalent link is a rounded square or thombus with a length of 47 +8. A square network with M = L?
components will have (L — 2)? tetravalent links in the interior, 4(L — 2) trivalent links on the edges, and 4 divalent
links in the corners. For networks of side length L = 3, 4, 5, this gives lower bounds of approximately 161.1, 297.1,
and 474.2.

We can compare the total contour length of each network to the lower bound. In all cases, the excess contour
increases with the number of links. The alternating network exceeds it by the most, by 31%, 39%, and 47% with 9,
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FIG. 6: Renderings of the tightest configurations of (from left to right) alternating, fully non-alternating, and semi-alternating
chainmail with 25 links, with osculating surfaces. Links are colored by their position along the surface normal direction.

FIG. 7: Individual links in tightened networks from the interior (orange), edge (magenta), and corner (blue) of networks with
alternating (a), non-alternating (b), and semi-alternating (c) chiralities.

16, and 25 links. The non-alternating exceeds the minimum by 7%, 13%, and 29%, and the semi-alternating is the
closest to the ideal configuration, exceeding it by 4%, 6%, and 12%. It may be argued that the larger networks are
simply not being annealed as efficiently, but it is likely that the loops on the edge do not need to twist as much to
accommodate the topological constraints, and larger networks have a larger proportion of interior loops. The mean
and Gaussian curvature of each network can be compared to the expected behavior of surfaces. Here, we expect the
ratio of Gaussian curvature to the square of mean curvature to be unitary for surfaces of positive Gaussian curvature,
to diverge to negative infinity for surfaces with negative Gaussian curvature, and zero for flat surfaces. Examining
the 25-link tightened networks in Fig. 6, we find values of 0.999982, -201.824 and 0.779 respectively. We note that
the curvature of a tight configuration does not necessarily dictate the equilibrium conformation of a polymer model
of the same network. For example, a Japanese-style square network can be constructed in a plane out of ropelength-
minimizing components, but maintains positive Gaussian curvature as a polymer (Fig. 11).

Although the annealed networks approach the lower bound of ropelength to within tens of percent, it is clear from
visual inspection that many of the configurations have not reached their true minimum. This is likely due to the
fact that Ridgerunner is optimized for tightening sections of densely linked curves, but not for reducing the length
of the straight segments of each link. While these results do highlight the role of topological constraints in the
chirality-curvature relationship, they remain qualitative.

In addition to the overall properties of the tight networks, we can examine the tightest shape of the links from
the interior, edges, and corners of the networks. Examples for each position and chirality are seen in Fig. 7. The
out-of-plane deviation of each ring must accommodate its neighbors according to the chirality, with the flat networks
remaining the most planar. The divalent corner loops in the alternating case appear to be twisted into a figure-8 shape,
which is also observed in the corner loops in the networks simulated using Langevin Dynamics. Although kinetoplast
minicircles are typically not supercoiled, this indicates how an “open circular” molecule may have a twisted shape
due to external topological constraints.
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FIG. 8: (a) Depiction of the twist angle ¢» and bend angle 6 for two linked rings. (b) A non-closed configuration of a chain of
linkages, where R is the ring radius, ¢ is the ring thickness, and u is the vector joining the end of the chain to the beginning.
Closed circuits are shown on the diagrams representing the (¢) non-alternating chainmail and (d) alternating chainmail, where
the order 1-4 shows the counterclockwise ordering of the path. (e) and (f) show these linkage circuits in Euclidean space, where
1 = /10 and 6 minimizes |u|2, for non-alternating and alternating chainmail, respectively; arrows represent the orientations
of these rings. (g) and (h) show the Gauss maps of these circuits, with clockwise path indicating a negative curvature and
counterclockwise path indicating a positive curvature.

IV. LINK CHIRALITY AND GAUSSIAN CURVATURE

We can now derive a relationship between linking chirality and the Gaussian curvature of a chainmail sheet by
considering a minimal geometric model of linked rings. In the systems considered so far, the fundamental unit is a
closed loop of material whose equilibrium shape deviates from a circular ring of some radius R. In the case of ring
polymers, the expected circular conformation is the ensemble-averaged configuration of a solitary ring polymer; for
tight ropes, the circular ring minimizes ropelength while maximizing the amount of area that the rope can enclose.
Deviations from these ideal states can arise from interactions between linked loops: there may be either a reduction in
conformational entropy or an increase in ropelength when rings become linked. Since each ring has a finite thickness
t, two rings that are linked together are required to pierce through the interior of the other ring, so that of the ~ 7 R?
of interior area, each linked ring decreases the amount of “empty area” by ~ t2, constraining the states available
to the rings: ropes cannot be tightened to arbitrarily small lengths and ring polymers experience a reduction in
conformational entropy. Since this threaded area depends on the orientation of the two linked rings, given by the
normal unit vector N, via a function that increases with N1.1N?2 (here, 1 and 2 index the two linked rings), the optimal
configuration is one Where the rings are mutually orthogonal. Just as Hopf links between pairs of rings in a linear
chain can freely exchange the order of over-under crossings, such linear chains can freely rotate so that neighboring
rings have orthogonal orientations. Similarly, as ring networks lack this freedom to exchange the order of crossings,
rings cannot remain orthogonal in these networks — we now explore consequences of this linking frustration.

To describe the geometry of a collection of rings, we first define an orthonormal frame {&1, &2, N} for a given ring,
where du (v =1,2) lie in the plane of the ring. Arranging these rings on a square lattice, we can then index the rings
by a pair of integers (i, 7). If each ring is assumed to be identical (ignoring boundaries), we can treat the chainmail
sheet as a homogeneous surface, where points on the surface correspond to ring centers r(*7); the normal vector at
each point is N9 and the tangent space at each point is spanned by the vectors &L” ). Next we will orient the
tangent basis vectors such that d{") is parallel to r(+1:9) — r(3) and d{™ is parallel to r@+1) — r(23) both in the
limit that R — 0. The orientations of neighboring rings can be related by a pair of Euler angles — a bending angle
6, and a twisting angle 1, — that detail the rotation of a ring’s normal vector into its tangent plane. The rotation
matrices R, (0,,1,) (provided in the Appendix) that describe this rotation operation then define a discrete affine
connection. Importantly, rotations that fix the normal vector do not play a role. Next, consider a situation in which
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FIG. 9: (a) compares the degree of nonclosure, expressed as Alu|? = (Ju(6,4)> — [u(0,4)[*)/R?, as a function of bend angle ¢
for twist angle ¢ = 7/10. (b) compares the minimum value of the non-closure |u*|* /R? = [u(6*(¢),)|* /R? as a function of
twist angle .

t < R and linked rings are in contact at their boundaries. Then neighboring ring centers can be related via

p(i+1d) _ pia) o B (A ¢ aget)
; (7)
P D) _ plid) g (agz‘,j) n ag,jﬂ))
and the configuration can thus be constructed given a set of bending and twisting angles.
Given the affine connection and Eq. 7, we can then assess the degree to which the chainmail sheet can be approx-
imated by a smooth, homogeneous membrane in Euclidean space. We do this by examining a closed circuit along
the lattice — a path r(49) — p(thi) oy p(tLi+l) y p(i+h) y §(h7) — and determining the magnitude of the
displacement vector u required to join the ring center r(7) (the origin of the circuit) to the ring center #(07) (the
end-point of the circuit), as depicted in Fig. 8(b). The lattice circuits for non-alternating and alternating chainmail
are shown in Figs. 8(c) and (d). Lattice symmetry dictates the values of the bending angles 6, and twisting angles
1, such that for the non-alternating lattice, 63 = —61 = —6 and 2 = —¢; = —, and for the alternating lattice,
0y = 0, = 0 and o = 9 = 1. Since vanishing values of the twist angle ¢ result in rings whose boundaries pass
through each other, thus requiring rings to deviate from their preferred circular shape, we fix ¥ to be non-zero and
then consider values of § that minimize [u|>. The case of 1) = /10 is shown in Figs. 8(e) and (f) for non-alternating
(6 = 0) and alternating (6 = 0.513) chainmail, respectively, revealing that these linkages do not generally close in
Euclidean space. At fixed v, the magnitude of non-closure is shown as a function of bending angle 6 in Fig. 9(a).
While non-alternating sheets minimize their non-closure by twisting without bend (6 = 0), alternating sheets adopt
one of two non-zero bend angles +60*(¢)). In a small-angle approximation, we find for alternating sheets that the
degree of non-closure is given by

Ala@,9) _ [u@,9)] - u0,9))* 5 5, 1,
2 = 2 ~ *51/) 0° + 59 ) (8)

2

so that the optimal bending angle is 6*(¢) ~ :I:\/gw.

Each circuit in the lattice may be treated as enclosing a dislocation core and the closure of these circuits requires
an elastic deformation from the preferred state, the cost of which scales with |u|® [34, 35]. Since the amount of
dislocation grows with the number of rings enclosed by the lattice circuit, the elastic cost grows super-linearly with
respect to network size, requiring increasingly large deformations at the boundary of the sheets, thus limiting their
maximum sizes [36, 37], and resulting in large differences in the shapes of bulk and boundary loops, as illustrated
in Fig 7. As shown in Fig. 9(b), the cost of elastic deformation is smaller for non-alternating sheets, increasing as
lu*(¥))* /R ~ 191, whereas for alternating sheets, [u* ())* /R2 ~ 4% — 224, Consequently, alternating sheets are
under higher residual stress when forced to maintain closed links in Euclidean space.

Finally, we can calculate the expected curvatures of these sheets by studying the transport of the ring frame around
a lattice circuit. The curvature is related to the net rotation of the frame around a closed circuit, which is given by
the commutator of R and Rg, namely Raire. = Ry 17%1_17?,27?,1. Taking the small-angle approximation, we find that

(Reire.)ij = 0i5 — (0102 + Yr112)€ijs 9)

where €;;5 is the Levi-Civita symbol. We find that to leading order in the bending and twisting angles, the frame
undergoes an in-plane rotation when transported around a circuit, indicating that the Gaussian curvature K is given
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Knonoae ~ - (10)
for non-alternating chainmail and
K ~ 1 (1)

for alternating chainmail. Therefore, we confirm that non-alternating chainmail is characterized by negative Gaussian
curvature (i.e. is hyperbolic) and alternating chainmail is characterized by positive Gaussian curvature (i.e. is spher-
ical), as seen in the results of both simulations. The identification of the alternating chainmail as spherical allows
us to interpret the two preferred bending angles as corresponding to the two choices sign for the mean curvature
H ~ +./5/2¢)/R. Beyond the small-angle approximation, we additionally consider transport of the normal vector

N around the lattice circuit. The unit vectors are mapped to the unit two-sphere $? via the Gauss map, and the
individual ring normals form the corners of the paths shown in Fig. 8(g) and (h) for non-alternating and alternating
chainmail, where the segments of the path are found using linear interpolation. The solid angle formed by the paths
on $2 is proportional to the integrated Gaussian curvature of the surface patch that they represent, and the orien-
tation of the path is controlled by the sign of the Gaussian curvature, providing a secondary confirmation that the
two chainmail sheets have different curvatures [38]. Notably, these paths do not close, indicating a net rotation of the
normal that is not found in the small angle approximation. This suggests a net twist or torsion of the frame as it is
transported around the circuit. Since surfaces are not allowed to have torsion, this is another source of stress that
must be accounted for by ring deformation in order for the sheet to be embedded in Euclidean space.

V. CONCLUSION

The most significant result of this work is a set of simulation data showing the connection between the chirality of
links in molecular chainmail and the Gaussian curvature of the surface. We have demonstrated this both for a DNA-
parameterized polymer model, and for geometrically tight ideal configurations. We have observed that networks with
semi-alteranting chirality that are flat at small molecular weights will undergo a transition to folded configurations
above a certain size, analogous to the crumpling transitions predicted for tethered membranes.

Analogous systems are subject to theorems relating curvature to chirality in some way. The Fuller-White-
Calugareanu theorem relates the topology and geometry of a twisted ribbon (or a DNA double-helix), constraining
the sum of twist and writhe of the ribbon to the linking number of its two edges (or helices). Likewise, the Gauss-
Bonnet theorem relates the Gaussian curvature of a surface to its donut-hole genus. An analogous theorem may be
developed to relate the chirality of a linked surface to its Gaussian curvature. Drawing on the similarity between
the polymer and tight networks in Figs. 2 and 6, a constraint may be established (for example) between the Mobius
energy of the links and the Helfrich energy of the surface. As a first step towards such a relation, we have developed
an understanding of the topology-curvature relation through a model system of linked rigid rings. This purely kine-
matic construction, which shares similarities with geometric relations for periodic origami [39], defines a discrete affine
connection based on the constraints introduced by the configuration of Hopf links between pairs of rings. Intrinsic
curvature is then derived from the holonomy of this discrete connection. Since this construction is purely based on
local rules, without a priori postulating a specific manifold structure, we find predictions for rings that preferen-
tially lie in defect-ridden lattices, suggesting that a geometry-curvature relationship for periodically-linked rings in
the spirit of Fuller-White-Calugareanu may resemble the relationships between topological defects and curvature of
flexible crystalline membranes [40]. Notably, our model establishes the emergence of curvature as a consequence of
“linking frustration,” originating from the topological constraints on linking in each ring network that is not present
for linear chains; it may be regarded as a many-body effect. Moreover, the observed relationships between link sym-
metry and membrane shape draws parallels with similar relationships between stitch topology and fabric shape and
mechanics in the context of knitted fabric [30], which we leave for future explorations. Finally, we emphasize that
the networks studied here are quite different in structure from kinetoplast membranes, which are unlikely to have a
uniform chirality and whose curvature is likely boundary-controlled. Nevertheless, we find preliminary evidence that
the predicted sign of Gaussian curvature survives modest changes in coordination and removal of rings, suggesting that
the averaged membrane curvature depends on a more general distribution of network chiralities; such a relationship
between linking statistics and intrinsic geometry remains unexplored. We hope that this work allows the discovery
of a more complete understanding of the topology-curvature relation for surfaces, and guides the rational design of
future planar materials with topologically complex chemistry.
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Appendix: Tight Twisted Polycatenanes and Bonus Networks

Here we discuss the results of constrained gradient optimization of twisted polycatenanes using Ridgerunner. For
an introduction to twisted polycatenanes we direct the reader to Tubiana et al. [14]. We initialized polycatenanes as
circular networks of 22-gons, each with two possible link chiralities. The polycatenanes had an even number of links.
If all links have the same chirality, the network is fully non-alternating and untwisted. If a link had the opposite
chirality of its two neighbors, it gives the network alternating crossings and excess twist. A network is said to be
maximally twisted if half the links contribute to twisting the network. When the polycatenane is fully non-alternating
and untwisted, each link may be minimized to a stadium curve with ropelength 47 + 4 [33], and the network takes
on a familiar chain-link configuration with a ropelength of M (47 +4). The simplest links that admit this pattern are
the 4-component 83, 83, and 8% with zero, one, and two twists.

We measured the ropelength of twisted polycatenanes with M from 6 to 18 loops, varying the twist from zero to
M /2. Untwisted polycatenanes formed circular chain-link configurations as expected, and as the twist was increased,
each component in the network became twisted. The final configuration often picked up the symmetry of a regular
M /2-gon, for example the 8-loop polycatenane forming a square (Fig. 10a). The process often involved a buckling in
which the normal vector of each loop was forced to rotate 180°. Since the ropelength depends more strongly on the
number of loops than their twist, we plot the ratio of the measured ropelength to the untwisted minimum, against
the degree of twist ﬁ’b ranging from 0 to 1. Fig. 10b shows this data for polycatenanes with 4, 8, and 16 loops.
Although the excess ropelength similarly increases with twist for each sized network, the maximum excess ropelength
at maximum twist is largest for the smallest networks. The excess ropelength at maximal twist as a function of the
number of loops in the network is plot in Fig. 10c, where it decreases roughly as 1+ 2/M. The tightest knot is not
necessarily the smallest [41], and the maximally twisted polycatenanes, despite having a greater ropelength, occupied
a smaller volume as defined by their convex hull. This may have implications for the evolution of supercoiling in
bacterial DNA.

In a square lattice chainmail network, each set of 3 x 3 loops maybe treated as an 8-loop polycatenane constrained
by a ninth in the middle. We expect alternating networks to have loops that are more deformed from their ideal
configuration than the comparable maximally-twisted 8-loop polycatnenaes in Fig. 10a, acquiring at least 6% excess
ropelength. Although direct comparisons between polycatenanes and chainmail networks are difficult, this was a
necessary first step towards our current understanding.

Figure 11 shows the patterns and sample LAMMPS configurations of Japanese 4-in-1 chainmail, studied by Polson
et al. [8], and Borromean chainmail, based on a design by Luc Devroye [42]. Japanese chainmail has no chirality
effects, and no two links in Borromean chainmail share a direct topological link. We have not done quantitative
analysis on either, but both adopt positive Gaussian curvature. The Japanese chainmail network can be constructed
out, of ropelength-minimizing components in a plane, implying that an ideal configuration need not have the same
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FIG. 10: (a) Ideal configurations of untwisted and maximally twisted 8-loop polycatenanes. (b) Excess ropelength ratio of
ideal twisted polycatenanes, as a function of their relative twist as defined in the text. (c) Excess ropelength ratio of maximally
twisted polycatenanes as a function of the number of loops.
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FIG. 11: Design and LAMMPS configurations of Japanese and Borromean chainmail.
curvature as a polymer configuration.

Appendix: Quadric surface fitting

To perform the quadric surface fitting, we first calculated the center of mass r} for each ring 7 and the center of
mass (r) for the full chainmail assembly. We then calculated the gyration tensor G, defined in Eq. 6 and found the
normalized eigenvectors {é;, 62, €3}, ordered from largest to smallest eigenvalue. The quadric surface is then given
by the set of points o, expressed using the Monge representation as

o (u1,ug) = (r) +u1€ + uges + ((u1,uz)es, (12)
where the Monge height function ¢(u,v) is given by
1
<(u17 u2) = §up,0p,1/uu + Buuu + AO ) (13)

where Ay is a scalar, B,, are components of a vector B, and C},, are components of a symmetric matrix C (where
C12 = C31). The quadric surface is then fit to ring center of mass data by minimizing the residual functional

M
1
1[40,B.C) = 353~ (ris = C(ri130))° (14)
i=1
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over the parameters Ay, B, and C. Here, the ring centers r} have been expressed in the {&,é2,é3} frame as
r; =71} _€&,. Finally, the Gaussian curvature K is approximated as

. detC (15)
(1+BJ)*
and the mean curvature H is approximated as
1+ B2 —2B1B 1+ B?
H~ (1+ B5)C1 1B2C12 + (14 Bf)Ca . (16)

2(1+ |BJ2)*?

Appendix: Discrete affine connection

The discrete affine connection is a pair of rotation matrices R1 and Ro. The first of these, R, maps the orthonormal
frame at ring (4, ) to the frame at (i + 1, 75) via

&?“’j) cosf; —sinfqsiny; —sinf; cos &ﬁi’” cAlgi’j)
agl+1’j) = 0 cos 1 —sinyn Elgm) =R1(61,9n) Eig“’) (17)
N(i+1.5) sinf; cosfysinty;  cosby cosihy N () N(@-9)

The second, R, maps the orthonormal frame at ring (¢, 7) to the frame at (¢,7 + 1) via

&Y‘j“) COS o 0 sin 9 &5’*” &?’ﬂ
(Aiémﬂ) = sinfysinyy cosfy — sin By cos 1y (Aigw) = Ra (b2, 12) (Ai(;’]) (18)
N(si+1) —cosfysinty sinfly  cos by cos iy N () N ()

Taking the small-angle approximation, we R, ~ 1 + A,,, where

0 0 -6,
.Al = 0 0 —’(/}1
0 0
1 ™ (19)
0 0 o
Ay = 0 0 —6-
—2 B2 0
which allows us to approximate the resultant rotation matrix Reiy.. around the closed circuit as
Rcirc. ~ ]]- + [AQa Al] ) (20)

yielding the result in Eq. 9. Here, the commutator [Az, A;] = A24; — A;. A3 measures the holonomy of the discrete
connection and represents a discrete calculation of the curvature two-form [38]. Note that the only non-zero component
of the commutator is a generator of rotations that leaves the normal fixed, allowing us to immediately relate the
magnitude of this term to the Gaussian curvature.
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Data Availability Statement for “Chirality Effects in Molecular Chainmail.”

Upon publication of this paper, initial configuration files and data used to make graphs
will be included as supplementary files. Raw data in the form of LAMMPS and
Ridgerunner simulation outputs will be uploaded to the Harvard Dataverse, a public
repository.



