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We apply the hybrid Projectionless Dynamic Theory (hybrid PDT) formulation of the Elastically
DOI:00.0000/000000000x Collective Nonlinear Langevin Equation (ECNLE) activated dynamics approach to study dense fluids
of sticky spheres interacting with short range attractions. Of special interest is the problem of non-
monotonic evolution with short range attraction strength of the elastic modulus (“re-entrancy”) at
very high packing fractions far beyond the ideal mode coupling theory (MCT) nonergodicity boundary.
The dynamic force constraints explicitly treat the bare attractive forces that drive transient physical
bond formation, while a projection approximation is employed for the singular hard-sphere potential.
The resultant interference between repulsive and attractive forces contribution to the dynamic vertex
results in the prediction of localization length and elastic modulus re-entrancy, qualitatively consistent
with experiments. The non-monotonic evolution of the structural (alpha) relaxation time predicted
by ECNLE theory with the hybrid PDT approach is explored in depth as a function of packing
fraction, attraction strength, and attraction range. Isochronal dynamic arrest boundaries based on
activated relaxation display the classic non-monotonic glass melting form. Comparisons of these
results with the corresponding predictions of ideal MCT, and also the ECNLE and NLE activated
theories based on projection, reveal large qualitative differences. The consequences of stochastic
trajectory fluctuations on intra-cage single particle dynamics with variable strength of attractions
are also studied. Large dynamical heterogeneity effects in attractive glasses are properly captured.
These include a rapidly increasing amplitude of the non-Gaussian parameter with packing fraction and
a non-monotonic evolution with attraction strength, in qualitative accord with recent simulations.
Extension of the microscopic theoretical approach to treat double yielding in attractive glass nonlinear
rheology is possible.

1 INTRODUCTION

The microscopic understanding of the slow activated dynamics
and kinetic arrest of glass-forming fluids remains a major
challenge in the fields of statistical mechanics, condensed matter
physics, and materials science™™ . A core idea is that particles
experience prolonged local confinement in cages due to repulsive
interactions and strong packing correlations, the escape from
which requires activated hopping events®™ which underlies the
dramatic increase of relaxation times and viscosity2410, The
manner in which local hopping events are correlated in space
and time remains a topic of intense interest and debate.

In nanoparticle, colloidal, polymeric, and biological (e.g.,
proteins) soft matter, tunable strong short-range attractions can
exist. Thus, long-lived physical bonds emerge, the novel dynamic
consequences of which are coupled with repulsion-induced
caging. Specifically, increasing the strength of interparticle
attraction can elicit, in a spatial range and fluid packing fraction
dependent manner, distinctive phenomena such as re-entrant
glass melting and structural relaxation™21 non-monotonic
variation of the elastic shear modulus182223 and a 2-step dou-
ble yielding nonlinear mechanical response. The classic
qualitative picture12I4I927:30) i that as the attraction strength
(¢) intensifies, bond formation first competes with repulsive
cages, leading to frustration in the coherence of local cage
packing and more free volume. This accelerates the dynamics,
Departments of Materials Science ¢, Chemistry *, and Chemical & Biomolecular Engi- causing kinetic vitrification to occur at higher packing fractions,
neering ¢, and Materials Research Laboratory ¢, University of Illinois, Urbana, Illinois, resulting in “re-entrancy”. Further increase in attraction strength
61801, USA leads to the formation of an attractive glass state, characterized
“kschweiz@illinois.edu by very strong caging and bonding which effectively reinforce.
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This results in an even more pronounced slowing down of
dynamics compared to pure hard spheres. The corresponding
kinetic arrest boundary shifts to lower packing fractions (¢),
imparting a distinctive nose feature (see Fig[I) to the attraction
strength-packing fraction (e — ¢) kinetic arrest map. All these
behaviors depend on the range of the attractive potential which
enters, in principle, via both its effect on equilibrium structure
and the magnitude and spatial variation of attractive forces.

The microscopic ideal mode coupling theory (MCT)
SUSH4R1S1RSS does predict glass melting and re-entrancy of
the structural relaxation time. It can qualitatively describe the
form of the kinetic arrest boundaries seen in experiment and
simulation within the caveat of empirically shifting the idealized
critical packing fraction for hard spheres to a significantly larger
value than predicted 12, Ideal MCT predicts the relaxation
time grows as an inverse critical power law, which for hard
spheres diverges at ¢ = 0.515 based on Percus-Yevick (PY)
integral equation input for the structure factor. The latter value
is far belowl%3% the observed vitrification packing fraction
in colloidal suspensions or in silico. The predicted power
law can only describe the first few decades of the observed
growth of relaxation times, which typically crosses over to a
supra-exponential growth with packing fraction or attraction
strength®2. Moreover, ideal MCT predicts very weak dynamic
heterogeneity effects such as decoupling of the diffusion constant
and relaxation, and tiny non-Gaussian parameters on interme-
diate time and length scales. These limitations are generally
viewed to arise from the lack of ergodicity restoring activated
processes in ideal MCT, which motivated the development two
decades ago of the Nonlinear Langevin Equation (NLE) theory
approach®. In addition, the experimental dynamic elastic
shear modulus, a property determined at relatively short time
and length scales that reflects the strength of localization, is
also a non-monotonic function of attraction strength at high
packing fractions in the attractive glass regime%%23. This elastic
re-entrancy is not captured22l by ideal MCT, which replaces
the bare repulsive and attractive forces by a single effective po-
tential, the direct correlation function, via a projection procedure.

Relatively recently, a “generalized” version of ideal MCT
(GMCT) has been proposed that truncates the dynamic hi-
erarchy of time correlations functions at a higher than pair
level213738  This extension is necessarily an improvement
over standard ideal MCT. However, it comes at the cost of
much additional complexity associated with 3 and more body
correlation functions, the knowledge of which is poor. It has
been shown that truncation of GMCT at any finite level still
results in a divergent relaxation time=Z, albeit it moves to larger
packing fractions as more higher order many body correlations
are added. Recent interesting work with this approach for the
dense sticky sphere fluid4! of present interest does reduce the
extent to which one must shift the ideal kinetic arrest map to
higher packing fractions in order to align it with the region
where the distinctive phenomena are observed in experiments
and simulations. Much of the rich phenomenology associated
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with dynamic singularities (e.g., the A3 boundary) is retained,
albeit modified in detail?!®38, However, these computationally
and conceptually complex GMCT extensions do not provide a
tractable route to capture activated dynamical processes in any
predictive manner which requires an infinite order summation of
all orders of many body correlations®Z, and which are expected
to destroy the ideal MCT and GMCT singularities and special
boundaries. Moreover, the ability of GMCT to capture strongly
non-Gaussian or dynamically heterogeneous phenomena such
as decoupling of diffusion and relaxation, large non-Gaussian
parameters, and exponential tails in the van Hove function has
not been demonstrated to the best of our knowledge. In contrast,
the full solution of the stochastic trajectory level NLE activated
dynamic theory®® does capture well the latter single particle dy-
namically heterogeneous features for dense hard sphere fluids®<.

NLE theory=® is a microscopic, force level, single particle
statistical dynamical approach which captures thermal noise
driven activated motion at the stochastic trajectory level. In NLE
theory, the ideal MCT transition becomes a continuous dynamic
crossover. Cage constraints, in their simplest formulation, are
quantified from the pair structure, as done by MCT. The effective
caging force then enters via a displacement-dependent dynamic
free emergy (Fyy,), which renders the local mobility of the
particles dependent on space and time. NLE theory has been
more recently generalized to include nonlocal aspects for the
long time structural relaxation. Physically, these are associated
with the coupling of large amplitude particle hopping with
collective elastic fluctuation of all particles outside the cage, an
approach called the Elastically Collective NLE (ECNLE) theory=2,
ECNLE theory captures well the alpha time over the ~5—6
decades of slowing down in hard sphere fluids and colloidal
suspensions=240,

For systems with strong short range attractions, the simplified
single particle (“naive”) MCT (NMCT), NLE and ECNLE theories
have recently been generalized1"43l to explicitly treat attractive
forces. This stands in contrast to the standard projection-based
approach which encodes them indirectly only via changes of
the pair structure. The resultant activated NLE and ECNLE
theories predict the glass-melting effect# 43 under the very
high packing fraction conditions they are observed in an
experiment.The mechanism is both the change of structure
with attraction strength, and most critically the interference of
dynamic cross correlations between the effective repulsive and
attractive forces when the latter is of intermediate magnitude.
This basic mechanism of re-entrancy is qualitatively different
than in ideal MCT where glass melting is typically attributed
to the non-monotonic dependence with attraction strength of
the collective structure factor amplitude near its cage peak,
S(q*)42. Evidently, the latter non-monotonic behavior does not
extend to large packing fractions (¢) where elastic modulus and
structural relaxation??2l' behavior is experimentally observed.
Moreover, as mentioned above, very strong single particle
signatures of dynamic heterogeneity in attractive glasses on
intermediate (“in cage”) time and length scales are not captured
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by MCTRIOU0RIBI - To date, they also have not been analyzed
based on NLE or ECNLE theory formulated at the level of explicit
attractive forces.

The need for a new theoretical approach to the above prob-
lems is buttressed by the recent simulation study of Fullerton
and Berthier??. These workers employed swap Monte Carlo to
numerically extend the study of the typical re-entrancy features
to very large packing fractions deep in the attractive glass regime.
A nose-like isochronal kinetic arrest boundary is observed, but
far from any ideal MCT non-ergodicity transition, and far from
where S(g*) is non-monotonic. A non-monotonic behavior
of the Debye-Waller factor with attraction strength was also
found, suggestive of the experimentally observed elastic modulus
re-entrancy2223. Moreover, systems above and well beyond the
nose (attractive glasses) exhibited stronger dynamic heterogene-
ity on intermediate length scales. Overall, these workers argued
the singularities predicted by MCT, which, for example, leads to
the so-called logarithmic decay of the dynamic structure factor
at high packing fractions, cannot be employed to understand
the rich dynamics of ultra-dense attractive particle fluids in
the regime where activated motion is clearly of paramount
importance.

Although not the focus of the present work, we mention
in passing that the nontrivial, but rather subtle, dynamical
differences between a Lenard-Jones (LJ) fluid and its purely
repulsive counterpart, the Weeks-Chandler-Andersen (WCA)
fluid, is apparently not captured by ideal MCT## since these two
systems have very similar structure factors. The origin of this
failure remains debated, including the possibility higher struc-
tural correlations are important and other diverse ideas4>">1
This difference has been argued to be understandable based
on ECNLE theory extended to treat attractive forces explicitly
and avoid a literal projection approximation*!. This approach
is referred to as the Projectionless Dynamic Theory (PDT)>253
formulation of NMCT, NLE, and ECNLE theories.

In this study, we adopt a hybrid version of the PDT in the
ECNLE theory framework41#43l to address the following topics in
ultra-dense sticky particle fluids: (i) a much broader and deeper
exploration of the packing fraction, attraction strength, and
attraction range dependence of structural relaxation and kinetic
arrest diagrams, (ii) construction of the first understanding
of elastic shear modulus re-entrancy in attractive glasses and
comparision to experiment, and (iii) application of the full
stochastic trajectory version of NLE theory to study for the first
time the time-dependent mean square displacement (MSD) and
non-Gaussian effects in the attractive glass regime associated
with stochastic trajectory fluctuations on intra-cage length scales.

In section [2} we briefly review the underlying theoretical ap-
proaches employed. New results are presented in section [8|which
contrast the projected and hybrid PDT predictions of NMCT, and
new predictions are made for the elastic shear modulus and dy-
namic localization length re-entrancy. Section [4] analyzes all key
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length scales of the dynamic free energy which play a crucial role
for thermally activated dynamics, and presents results based on
the Brownian simulation solution of the NLE evolution equation
for the MSD and NGP of attractive dense fluids. Section 5] stud-
ies the non-monotonic structural relaxation times and constructs
isochronal kinetic arrest maps in the strongly activated regime.
The article concludes in section [6] with a discussion and outlook
to future directions that the present work facilitates.

2 THEORETICAL BACKGROUND

2.1 Projected versus Projectionless Formulation of Dynamic
Constraints

In single particle (naive) Mode-Coupling Theory (NMCT) and its
beyond MCT extensions, the force-force time correlation function,
K (1) = g <ﬁo (0).Fy (z)> is the starting point. Here, F (1) is the to-
tal force at time ¢ on a tagged particle due to its surroundings.
In classic MCT-like approaches, the slow force dynamics is as-
sumed to be governed by structural pair correlations, with real
forces projected onto slow bilinear density modes regardless of
how many different types of forces exist at a microscopic level.
While this is a benign simplification for the long wavelength clas-
sic problem of critical slowing down, or purely repulsive force
systems such as hard spheres, its accuracy for local dynamics in-
volving competing attractive and repulsive forces is unclear. Af-
ter projection, one has a four-point dynamic correlation function
which is then factorized into the product of two-point functions
in a dynamically Gaussian manner. In Fourier space, this factor-
ization yields:

K= 387" [ o i@ pS@Ts(anTe(an. M

Here, p is the particle number density, S(g) is the dimension-
less collective structure factor, and I'y(g,t) = <ei‘7‘<?(’)_?(0))> and
I'c(q,t) =S(g,t)/S(q) are the normalized single particle and col-
lective dynamic structure factors, respectively. The so-called force
vertex M (q) in Eq. replaces the real forces by pair structure
information :

Mywcr (4) = 4C(q)d. @

where C(q) = p~! [1-571(q)] is the direct correlation function,
and S(g), C(g), and the Fourier transform of the non-random
part of the pair correlation function, h(g), are related via
S(q) =1+ ph(q) and h(q) = C(q)S(g).This dynamical scheme
will be referred to as the “Projected” theory.

A projectionless dynamical theory (PDT)®2°3 was more re-
cently formulated#12l which explicitly retains the true pairwise
decomposable forces to construct dynamic constraints. The effec-
tive force is given by:

Hippr(q) = B [ drf(rg(re 3"

= 471:[3?/: rzf(r)g(r) sinq(fr) dr,

where f(r) is the bare interparticle force. The PDT approach
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as embedded in NLE and ECNLE activated dynamics theories
for pure hard-spheres has been shown to qualitatively capture
the slowing down in colloidal experiments and hard sphere sim-
ulations®!] but tends to quantitatively overpredict the activa-
tion barrier. To address this issue, a hybrid approach was pro-
posed#42 where the singular repulsive hard-sphere potential
was handled using the usual projected method, while the attrac-
tive force was treated in a projectionless manner. This strategy
follows a long history in chemical physics2%4 of acknowledg-
ing the strong differences between the dynamical consequences
of repulsive and attractive forces, and their treatment with differ-
ent physical ideas. For a system with a hard core repulsion and
short-range attraction described by Eq. (5, the hybrid effective

force s4li22l

Miy(q) ~ Mg (q) +Ma(q)
= Mywmcr () +Mppr (q) )

sin(gr)
qr

— 4Colg)g+4npF /0 2 £ () g(r) 2 gy,

The repulsive contribution (first term) arises from the hard sphere

system, while the attractive force is directly treated. In the
present study, we adopt the following pair potential
oo, r<o
V(r)= s (5)
—&¢ a, r>0

where ¢ denotes the attraction strength at contact, and a is
its spatial range. As widely discussed in the theoretical and
simulation community, we do not expect any of our core findings
are substantively affected by the precise form of the attractive
potential as long as it is short range with a well defined length
scale. Unless stated otherwise, dimensional energy is presented
in units of B~! = k3T, and dimensional length is in units of the
particle hard core diameter, G.

The above is the main working theory adopted in this article,
and will be referred to as the hybrid PDT. Note that we are not
using any wavevector-dependent switching between the projec-
tion and projectionless theories as was discussed in ref.42. The
dynamical force vertex includes a negative interference or cross
term between the attractive (negative) and repulsive (positive)
contributions, which can reduce the net dynamical constraints.
Consequently, for small attractions, the hard sphere constraints
are reduced, leading to glass melting®2. As attractions become
stronger, the diagonal square term associated with strong physical
bonding starts to dominate, enhancing the dynamic constraints.
This leads to a non-monotonic variation of dynamic and elastic
properties at high packing fractions. This explicit force effect is
not present in theories based on projection, where attractive in-
teractions only enter as they modify the pair structure. The next
section concisely reviews the basic aspects of the NMCT, NLE, EC-
NLE approaches.

4 Journal Name, [year], [vol.], 1

2.2 Naive Mode Coupling Theories

NMCT predicts ideal kinetic vitrification via a self-consistent dy-
namic closure at the most elementary mean squared displacement
(MSD) level. A Vineyard-type># approximation including the'3620
deGennes narrowing effect is employed to connect the collective
dynamic structure factor and its single-particle counterpart.

re(a.n) =T (a/V/S@).1) 6)

The very large importance of the deGennes correction to the col-
lective dynamic structure factor in NMCT=2Z, and especially for
activated dynamics (NLE, ECNLE levels), has been recently estab-
lished by Ghosh®, A Gaussian approximation for the arrested
solid state amorphous structure is adopted>2=8 corresponding to
a harmonic Einstein glass characterized by a single dynamical lo-
calization length, r;:

22

I(q,t — o) =€ "6

(7

The localization length follows from the derived self-consistent
equation=©

;- 1/ ol Ps(ge 1 @) ®)
7 9) (2m)? '

The first emergence of finite value of the localization length indi-
cates particle localization and the ideal kinetic arrest transition.

All theories require accurate input for the structure factor,
typically from integral equation theory. While the PY=4 closure
is frequently used for hard and sticky spheres, recent studies,
including comparison to simulations in the deeply metastable
regime of central interest in this work, indicate that the modified
Verlet (MV)3280 closure provides significantly more accurate
structural correlations at the high packing fractions relevant to
strongly activated dynamics®?, Thus, we adopt this closure. One
finds an ideal NMCT kinetic arrest at ¢, = 0.44, essentially the
same as found based on the PY closure since this packing fraction
is not in a deeply metastable regime.

Adopting the philosophy that slow stress fluctuations and den-
sity fluctuations are strongly coupled, the elastic shear modulus
(G") at the NMCT level follows as®L:

oo 2 2,2
G = %/0 dgq {fpS(q)d%q)] exp (—fS(FqL)) )
Here, C(q) is proportional to the Fourier transform of the effec-
tive force experienced by a tagged particle in a literal projection
formulation. For the hybrid PDT approach that explicitly distin-
guishes repulsive and attractive forces, and hence for consistency
with Egs (@) and @), one has

- - 2 2,2
o T g {qus(q)dﬂMt(izﬂ/Q)} exp(_ o ) 10)

"~ 60m2 3S(q)

with M (¢) given in Eq.().
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2.3 Activated Dynamical Theories

To go beyond ideal NMCT, the NLE theory was formulated us-
ing dynamic density functional ideas at the non-ensembled aver-
aged level=® to construct a stochastic nonlinear evolution equa-
tion for the dynamical displacement of a particle from its initial
position. In the overdamped limit of interest, three forces en-
ter: a short time and distance frictional drag, the corresponding
fluctuating random force, and a particle-displacement-dependent
effective caging force on a tagged particle due to all the particles
denoted as —dFyy,/dr, where F, is the dynamic free energy.
The force-balance evolution equation for the angularly averaged
scalar displacement of a tagged particle is :

dr  F,
—¢E - S8/ =0 an

Here, {; denotes the friction constant associated with non-
activated very local and short time dissipative processes, and the
thermal noise obeys (61 (0)8f (t)) = 2kpT {6 (¢). In this article,
time will be expressed in terms of the corresponding short time
scale 7, = B¢;02, where the explicit expression for spheres can be
found in ref.2®, Without a noise term, the NLE equation reduces
to the self-consistent NMCT localization length equation where its
solution corresponds to the minimum of F;y,. In the presence of

ergodicity restoring thermal fluctuations, the dynamic free energy
+ol36
is=0,

P IH@PS) 2y 12

ﬁden(r):_:;ln(r)_ﬁlo 1+S71(q)

A typical dynamic free energy is shown in Fig. [4(a). Beyond the
NMCT ideal arrest transition, a local barrier Fg emerges at r = rp.
One can determine the mean barrier hopping (barrier crossing)
time using the Kramers formula as a proxy for the mean alpha
relaxation time:

hop
- / " dx PFan®) / "dy e BFan0) (13)
Ts L L

NLE theory has been extended=? to account for the effects of
out-of-cage elastic distortions associated with large amplitude lo-
cal hopping events on the activated alpha relaxation time, an ap-
proach called ECNLE theory. It is based on the idea that a cage es-
cape event requires, or is facilitated by, a spontaneous elastic dis-
tortion of all the surrounding particles, resulting in an additional
elastic barrier®"%, The elastic barrier is calculated within the
Einstein glass framework as F, = 47 [ r*pg (r) (%Kou(rf) dr,
where Kj is the harmonic spring constant of Fgy, at its minima,
and u(r) is the displacement field required for a cage escape with
r the distance from the centre of the cage. The displacement field
is constructed in the spirit of continuum elasticity®¥, since the re-
quired elastic displacements are predicted (not assumed) to be
very small, u(r) = Areff (r“—r‘“)z for r > reage, and reqge is identi-
fied as the distance at the first minimum of g (r). The amplitude
(Ar.sp), or effective cage expansion, follows from a microscopic

analysis of the mean extent to which cage scale hopping results
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in a particle displacement larger than the cage size. Defining the
microscopic jump distance Ar = rg — ry, this analysis yields 39,

3 rzageAr2 r(,ageAr3 At
Aropp e —— - 14
Tl ( 32 192 3072 19

The alpha time for the 2-barrier based ECNLE theory follows
by introducing the extra multiplicative factor e in Eq. .
The final expression for the mean alpha time for systems where
activation barriers are predicted is:

Ty = T/OP PPt (15)

Importantly, the elastic barrier requires only information
contained in the dynamic free energy. ECNLE theory predicts
at sufficiently low packing fractions or high temperatures for
thermal liquids, the elastic barrier is unimportant, and the
activated event is local®?. However, with sufficient densification
or cooling, since the elastic barrier is predicted (not assumed)
to grow with these control variables faster than its local cage
analog, eventually the elastic barrier becomes of paramount
importance in the determination of the alpha time. Hence,
the alpha relaxation process becomes a coupled local-nonlocal
character. The precise manner this interplay of barriers evolves is
system-specific®2/60l

To summarize, the hybrid PDT-based version of ECNLE theory
employed in this work differs from conventional ideal MCT for
sticky particles in the following respects: (1) explicitly treats at-
tractive interactions via the hybrid force vertex (Eq. ) in the
calculation of all dynamical properties, (2) thermally-induced ac-
tivated motion is included for all “uphill” processes on the dy-
namic free energy, including intermediate length scale “in cage”
displacements, (3) the longer range collective motion of particles
outside the cage is included, which is generally critical for the
larger displacement associated with barrier crossing and the al-
pha time, but not for smaller displacements that control the elas-
tic modulus and time-dependent MSD and non-Gaussian trajec-
tory fluctuation effects inside the cage. Point (1) will be demon-
strated below to be crucial for understanding the elastic modulus
re-entrancy effect. Points (1) and (2) are essential for under-
standing intermediate time and length scale dynamical phenom-
ena. Points (1)-(3) are critical for slow activated relaxation, and
constructing isochronal kinetic arrest maps for the emergence of
a solid on the experimental timescale. We emphasize there are
no divergences in the theory above zero Kelvin or below RCP,
and the NMCT “transition” becomes a smooth crossover to an
activated dynamical regime ruled at the trajectory level by the
dynamic free energy. All calculations employ the MV closure for
structural input®”, Finally, comparison with elementary aspects
of conventional ideal NMCT framework are achieved by omitting
the noise term and utilizing the projected force vertex.
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Fig. 1 Ideal kinetic arrest map in attraction strength (in units of thermal
energy) versus packing fraction space based on NMCT with the projected
effective force (dashed curves) and its hybrid projectionless analog (solid
lines) for four different short ranges of exponential attractive forces. The
Aj singularity line is also shown for projected, a = 0.02 case, while it does
not exist in the hybrid theory.

3 DYNAMIC LOCALIZATION AND ELASTIC
SHEAR MODULUS

3.1 Ideal Kinetic Arrest Boundary

Figure [ shows the NMCT ideal kinetic arrest boundaries as solid
curves based on the hybrid-PDT dynamic force vertex, for sev-
eral choices of attraction ranges. A non-monotonic re-entrant
behaviour is predicted, which decreases in amplitude with in-
creasing attraction range. The dimensionless energy scale of the
“nose” feature lies in the range of 0.5 — 1.0 and varies with at-
traction range. The corresponding NMCT arrest boundaries using
the projected vertex are shown as the dashed curves. Key dif-
ferences include: the non-monotonic aspect is weaker, decreases
more quickly with growing attraction range, and the attraction
strength at the nose is larger. These differences reflect the explicit
treatment of attractive forces and the presence of an interference
term between repulsive and attractive forces in the hybrid PDT
approach absent in its projected analog. Very importantly, we
find the A3 line12%8l extending to the right of the nose feature
predicted by the projected NMCT theory is not present for the
hybrid PDT calculations. This result seems consistent with the
findings of recent simulations2? that challenge the existence of
this feature.

3.2 Localization Length and Shear Modulus

In NMCT the dynamic order parameter is the localization length
ri. Figure [2(a) illustrates its variation at a packing fraction
¢ = 0.60 based on the hybrid-PDT approach (solid curves) and
the projected calculation (dotted curves). Large qualitative
differences are seen. Within the projected description, the local-
ization length monotonically decreases with attraction strength,
per the typical MCT behaviori? (in terms of Debye-Waller
factor) at high packing fractions. In contrast, the hybrid-PDT
based theory predicts a non-monotonic behavior where the
localization length initially increases with attraction strength,
and then decreases, and is of order the attraction range at high

6| Journal Name, [year], [vol.], 1

=a=0.02
-a=0.05
-a=0.10
=a=0.15
a=0.25
a=0.50

— Hybrid
------ Projected

-$=0.50
- $=0.55
-$=0.58
- $=0.60

$=0.62

.. =047
Projected

—a =0.02
--a=0.10

Fig. 2 (a) Localization length normalized to its corresponding hard sphere
fluid value as a function of attraction strength for different attraction
ranges at a fixed value of packing fraction ¢ =0.60. Solid (dashed) curves
indicate prediction based on the hybrid-PDT (projected) vertex. The red
point marks the spinodal point. (b) Attraction amplitude dependence
of localization length using the hybrid-PDT theory for different packing
fractions. Solid lines are for attraction range a = 0.02, while the dashed
lines are for a =0.10. The ¢ = 0.47 dotted curve obtained using the
projected theory shows a discontinuous jump per a A3 singularity.

attraction strengths. Such non-monotonic behaviour is supported
by simulation studies at high packing fractions
finding of a non-monotonic Debye-Waller factor which indicates
non-monotonicity of the dynamic localization length and plau-
sibly the dynamic plateau shear modulus, and is not explained
by MCT based on the standard projection approximation2,
This difference will be shown to have huge consequences for all
dynamical properties at both the NMCT and activated NLE and

ECNLE theory levels.

0 in terms of the

We note that the common operational approach of shifting the
ideal MCT predictions based on literal singularities at packing
fractions lower than relevant to experiment or simulation to
higher-¢ yields a discontinuous jump in the localization length
associated with the A3 singularity!22l, However, as mentioned
above, recent simulations?? suggest the latter does not exist in a
high packing fraction attractive glass regime. A related point is
within the projection-based NMCT the localization length does
exhibit a discontinuous jump per a Az singularity close to the
NMCT phase boundary (see Fig.[2|(b) for ¢ =0.47), but, crucially,
not in the very dense regime of prime interest in experiments
and simulations.

Fig. a) also illustrates the non-monotonic behavior of the
localization length for various attraction ranges, a € [0.02 —0.50],
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with an amplitude that varies non-monotonically with range. The
suppression of the amplitude for the longest range attraction,
a=0.5 (calculations limited by the presence of a spinodal), seems
consistent with the idea attractive forces have little dynamical
consequences at high concentrations per the classic van der
Waals paradigm®?. Figure b) shows the localization length
variation with dimensionless attraction strength, €, for different
packing fractions scaled by the hard sphere value for two spatial
ranges a = 0.02 (solid lines) and @ = 0.10 (dashed lines). The
magnitude of the non-monotonic behaviour increases at higher
¢, and also requires a larger attraction strength to achieve the
maximum glass melting state.

Using Eq. (10), the elastic shear modulus has been determined.
Figure [3(a) illustrates its dependence on attraction strength for
various attraction ranges at a fixed high packing fraction. An
elastic re-entrant behavior is predicted based on the hybrid PDT
vertex. The modulus first decreases with increasing attraction
strength, followed by an eventual increase due to the formation
of strong bonds. The elastic shear modulus is also favorably
compared with the theoretically derived micro-rheological
relation G’ ~ %39‘70 in terms of the inverse localization
length squared (Lshown as red points), which provides a simple
physical interpretation of the full numerical results. The plot
shows the starkly different NMCT results using the projected
vertex, where the modulus increases monotonically with at-
traction strength. The packing fraction dependence of these
behaviors is shown in Fig. b). The non-monotonic evolution
is very similar to that of the localization length, as expected.
Figure c) illustrates the growth of G’ with packing fraction
for different attraction strengths at a fixed short range. The
modulus of the repulsive glass increases in a rapid and elastically
fragile exponential manner as previously discussed”l, while
the attractive glass has a higher modulus but exhibits a weaker
response to packing fraction akin to an elastically strong behavior.

Overall, we again emphasize that the rich variation with
attraction range in Figs. 1-3 (including some non-monotonic
variations), and the differences compared to NMCT predictions
with a projected vertex, reflect both the change of pair structure
as it enters the force vertex via g(r) in the hybrid theory, and
the direct explicit effect that the bare attractive force increases
as €/a and there are cross correlations between the different
sign attractive and repulsive forces. We note that based on
the recent predictions of the non-ergodocity parameter of the
GMCT approach for sticky particle fluids“, we expect that the
non-monotonic elastic modulus behavior is also not captured at
this higher level of MCT based on force projection.

Figure d) contrasts the theoretical results for the elastic
re-entrancy effect with experiments on colloid-polymer mix-
tures?? at a high colloidal packing fraction of ¢ ~ 0.6. The
experimental data is extracted from the frequency-dependent
storage modulus obtained from small amplitude oscillatory shear
measurements in the linear regime as a function of polymer
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Fig. 3 (a) Shear modulus normalized by its hard sphere value as a func-
tion of attraction strength for different attraction ranges at a fixed value
of packing fraction ¢ = 0.60 using the hybrid PDT vertex (solid), and the
projected vertex (dotted). The red points compare the shear modulus
with the micro-rheological relation, G’ ~ %. (b) Evolution of scaled

shear modulus with attraction strength for different packing fractions.
Solid lines are for attraction range a = 0.02, while the dashed lines are for
a=0.10. (c) Growth of the dimensionless shear modulus with packing
fraction for repulsive and attractive glasses. (d) The elastic re-entrancy
predicted by the theory for the 1-component fluid with exponential at-
tractions of three ranges is compared with the experiments of ref.22 on
colloid-polymer mixtures.
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concentration which tunes the entropic depletion attraction
strength. The specific system studied consists of sterically
stabilized poly(methylmethacrylate) (PMMA) colloids with a
hydrodynamic radius (R) of 130nm, mixed with dilute solutions
of varying concentrations (c,) of the non-adsorbing polystyrene
polymer of a radius of gyration (Rg) of 11nm. Crudely, at the pair
potential level (an approximationZ273)  the depletion attraction
can be described by the simplified Asakura Oosawa potentialZ47>
which models polymers as small “phantom” spheres that do not
interact with each other, but interact with the larger colloidal
particles as hard spheres. The dimensionless range of this
potential is estimated as the ratio R,/R (=~ 0.084), while the

attraction strength has the magnitude of72 ~ 322 X Here ¢},

2c¢;, R
p g
is the dilute-to-semidilute overlap concentration, and c,/c}, is

varied in range € [0 —0.238].

To compare with the theory results based on a 1-component
monodisperse fluid that interacts via a short range exponential
attraction, the model parameter € is identified with %%’{R% the
values of which are experimentally known. Figure d)’ shows
that the hybrid-PDT theory qualitatively captures all the features
of the non-monotonic elastic response observed in the exper-
iments. However, quantitative deviations are evident, which
seem inevitable for multiple distinct reasons. These include that
the theory is approximate, the model is not a polymer-colloid
mixture, and the functional form of the effective attraction
is not an exact representation of the depletion attraction. In
addition, the experimental data of ref.2? is based on measure-
ment of the finite-frequency elastic modulus, which is not of
a flat frequency-independent form for all the samples. Hence,
there is some polymer-concentration-dependent uncertainty in
extracting a single value of the plateau elastic modulus from
frequency-dependent measurements, as discussed by the authors

of ref.22,

4 INTERMEDIATE TIME AND LENGTH DY-
NAMICS

4.1 A. Dynamic Free Energy, Length and Energy Scales

As the attractive interaction is increased, the dynamic behavior of
dense sticky particle fluids undergoes changes beyond the typical
glass melting phenomenon discussed in the context of long time
relaxation and flow. For attractive glasses, simulations have found
that the mean squared displacement (MSD) exhibits a long sub-
diffusive regime on length scales smaller than the particle diame-
ter before the eventual crossover to diffusive Fickian motion1720,
This suggests the dynamical importance of additional local, in-
cage, time and length scales beyond the small transient localiza-
tion length, but before the structural relaxation event associated
with activated barrier crossing. Such effects can be potentially
captured by the NLE theory spatially resolved dynamic free en-
ergy concept which predicts a displacement-dependent effective
force on a particle driven by uphill thermal fluctuations.

Figure [4(a) shows example dynamic free energy curves for
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Fig. 4 (a) Examples of the dynamic free energy for different attraction
strengths and range a = 0.02 at a packing fraction ¢ = 0.60. The solid
curves are the calculations with the hybrid PDT vertex, while dotted lines
are the corresponding projected ones. The dynamic free energy minimum
for € = 1.0 is indicated by the blue circle, the inflection point is marked
by the red star, and the barrier location is denoted by the yellow square.
(b) The negative of first derivative of Fyy, defines the effective force on
a tagged particle. The indicated points are in the same position as those
shown in the panel (a) above. (c) Variation of different length scales
with €. Here, rp is the dynamic localization length, R* is the location
of inflection point or the point of maximum force on the dynamic free
energy, and rp is the barrier location.
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different attraction strengths of a short range a = 0.02 system at
a high ¢ = 0.60. The solid curves employ the hybrid vertex, while
the dotted curves are for the projected theory. Figure [4(b) shows
the corresponding effective forces, —dF,,/dr. The projected
dynamic free energy for the attractive systems resembles that of
hard spheres but with a deeper well, indicating large confining
forces. The absence of non-monotonic behavior with attraction
strength in the localization length, local cage barrier, and all
features of the dynamic free energy is evident. Conversely, the
Fyy,, obtained using the hybrid dynamic vertex exhibit qualitative
differences. Clear non-monotonic trends are seen such as the
inflection point of maximum confining force shifting outward
with increasing attraction strength (see Fig. c)), and the
force magnitude does not change much despite the local barrier
becoming much larger. These features result in a wide window
of displacements between the localization length and barrier
locations, potentially providing a theoretical basis for the long
sub-diffusive regime of the MSD observed in simulations 220,

Figure [4(c) summarizes the variation of the different dynam-
ical length scales: localization length (rz), inflection point (R*),
and barrier location (rg), as a function of attraction strength
for the projected and hybrid force vertex based theories. In the
projected scenario, the largest length scale (barrier location)
remains invariant with respect to attraction strength. However,
in the hybrid PDT theory, it exhibits a non-monotonic trend,
consistent with dynamic glass melting. Additionally, the point
of maximum force shifts outward with increasing attraction
strength in the hybrid theory, while it moves inward in the
projected theory. These displacement dependent features must
have major consequences for the stochastic trajectories of a
moving particle predicted by the NLE evolution equation, and
hence various ensemble averaged properties which weight the
trajectories in different ways.

4.2 Stochastic Trajectories

Within NLE theory, one can obtain stochastic trajectories by
numerically solving the overdamped non-linear Langevin equa-
tion (Eq. (II)) using the dynamic free energy (Eq. (I12)). This
method was successfully applied by Saltzman and Schweizer.®
to study the MSD and non-Gaussian or single particle dynamic
heterogeneity (DH) effects (and many other properties) as-
sociated with stochastic trajectory fluctuations in dense hard
sphere fluids. Note these are entirely dynamic fluctuation effects
since possible structural disorder would induce a distribution of
dynamic free energies. This aspect has been studied within the
NLE and ECNLE theory frameworksZ%ZZ, but is not our present
focus. Rather, we employ the same stochastic trajectory method
as before®? but now solve the NLE for sticky particles based on
the hybrid-PDT approach.

We first briefly review the technical details as discussed in

depth previously®2. For each trajectory, Eqs. (11), (4), and
are numerically solved. We perform 103 independent simulations
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Fig. 5 (a) and (c) Mean Squared Displacement (MSD) based on the
hybrid PDT vertex as a function of dimensionless time corresponding to
the high packing fraction states of ¢ = 0.60 and ¢ = 0.55, respectively,
for various indicated values of attraction strength. The attraction range
is fixed at a = 0.02. The solid circles indicate the time and MSD value
corresponding to the most non-Fickian or sub-diffusive state defined as
when the local time scaling power law exponent is a minimum. The
corresponding Non-Gaussian parameters (NGP) are shown in panels (b)
and (d), respectively. For visual clarity, the solid circles indicate the
location of the maximum of the NGP. The color codes in the bottom
panels are identical to those defined in the upper panels.

that are initiated at r = r;, and propagated until the particle es-
capes the cage defined as crossing the barrier at r = rg. Subse-
quently, the particle is considered to follow simple Brownian dy-
namics based on a Langevin equation with an enhanced friction
coefficient of s — {5+ {p,p. The hopping friction coefficient is
computed based on an elementary Fick’s law procedure:

2
1 :lz g .
Gop NS 61IPT

1

(16)

Here, ;77T represents the first passage time of a specific trajec-
tory i to cross the barrier. We use a total of 50,000 samples to
obtain {,,. This is the identical algorithm as used in Ref.8.
Our focus here is the ensemble-averaged MSD and non-Gaussian
parameter. In this section we are only interested in the relatively
small displacements that define the “in cage” intermediate
regime. Hence, collective elastic effects, which scale as the 4
power of displacement, are unimportant.

4.3 Mean Square Displacement and NonGaussian Parameter

Figures a) and (c) shows the MSD, <Ar (t)2> = <\r(t) — r(0)|2>,
for different attraction strengths at a fixed short range and two
high packing fractions of ¢ = 0.60 and ¢ = 0.55. The € =0
curve (blue) is the hard-sphere result which shows a significant
sub-diffusive regime (plateau-like behavior) for both packing
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Fig. 6 (a) The peak height of the non-Gaussian parameter (0% ;) for
fluids with an attraction range of a =0.02 is shown (solid lines) to ex-
hibit nonmonotonic behavior with attraction strength for different pack-
ing fractions. The inset presents a log-log cross plot of 0 . versus
the maximum confining force amplitude for three different high packing
fractions. A global power law fit yields the relation @ ;qy < f,}l'ai. The
main panel compares the attraction strength dependence of f.> (dashed
lines) and @ mqx (b) The corresponding timescale of the NGP peak scaled
by the mean alpha time as a function of attraction strength for 3 high
packing fractions is depicted.

fractions. The glass melting behavior is manifest by an increased
localization length (MSD plateau) and decrease of the early stage
of the cage escape time. As attraction strength sufficiently grows,
a reversal in behavior is predicted indicating the formation of
physical bonds that slow down particle motion, in a manner that
depends on the packing fraction.

Figure b) and (d) show the corresponding non-Gaussian
parameters (NGP), o (1) = 3 <<AA::((;))>>2
strengths at ¢ = 0.60 and ¢ = 0.55, respectively. As expected,
the NGP peak exhibits a non-monotonic behavior with increasing
attraction strength, initially decreasing, and then steeply increas-
ing. This indicates a large amount of trajectory heterogeneity on

intermediate time and length scale in attractive glasses.

— 1.0 for different attraction

The evolution of the NGP peak value is shown in Fig. |§|(a),
and the timescale of the maximum scaled by the respective
mean alpha time in Fig. [6(b). The NGP peak is known to
occur on a timescale smaller than the alpha relaxation times,
and increasingly so as the alpha time grows. This behavior is
observed for the three packing fractions shown, and is correlated
with the NGP peak height. The simplest physical intuition for the
location in time and displacement, and peak amplitude of the
NGP, is it qualitatively correlates with the theoretically predicted
maximum effective caging or confining force f,x = — &gdr"’” |r=r* 5
The inset of Fig. [6[@) shows a log-log cross plot between these
two quantities, motivated by prior the NLE theory prediction
for dense hard sphere fluids that o .y o f,z,{zig. Since the
dense attractive fluids of present interest involve three variables
(packing fraction, the attraction strength, and range) versus
only one for hard spheres, we do not expect any collapse of
the data. The results in the inset of Fig. [f(a) confirm this
expectation, although a global fit does yield a rough power law
with an exponent of 1.5, close to the 1.75 value found for hard
spheres®. The difference between effective exponents of 1.50 and
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Fig. 7 (a) Two different isochrones based on using the hybrid-PDT ver-
tex and constructed based on a fixed value of the mean alpha hopping
times corresponding to states of variable packing fraction and attraction
strength at a common attraction range of 0.02. The indicated dimen-
sionless mean hopping times are 11.3 and 292, which correspond to local
cage barriers of 8.4 and 12.0, respectively. The points indicate the specific
isochronal state points studied in detail for 7/’ =292. (b) The dynamic
free energy curves for the state points indicated in panel (a), with the
corresponding forces shown in the inset.

1.75 is not surprising given the presence of physical bonding in
addition to caging changes the precise form of the dynamic free
energy as a function of displacement, and hence the effective
spatially-resolved forces. However, interpretation of this modest
quantitative difference of apparent exponent is difficult. The
main panel of Fig. @(a) plots f1-> and the peak NGP as a function
of attraction strength. A strong non-monotonic evolution with
attraction strength is found for the maximum NGP, that grows in
amplitude as packing fraction increases. Crudely, this behavior is
captured by the evolution of the maximum caging force, thereby
providing a simple zeroth order interpretation.

4.4 MSDs and NGPs Along an Isochrone

As discussed in the previous section, the variation of the MSDs
and NGPs with increasing attraction strength at a fixed attraction
range and packing fraction reflect the glass melting phenomenon
on relatively short (per the MSD plateau) and intermediate (per
the NGP peak magnitude and location) time and length scales;
the corresponding behavior of the activated barrier hopping time
(tg) is discussed in next section. Here, we seek to probe the
changes of these short and intermediate length properties along
an isochrone defined as a fixed mean activated barrier hopping
time (longest relaxation time) with variable attraction strength
and packing fraction.

Fig. [7(a) shows two such isochrones with fixed mean alpha
times that differ by a factor of ~ 30.
corresponds to a non-monotonic evolution of packing fraction
with increasing attraction strength, with one end of the curve
corresponding to the hard sphere repulsive glass, and the other
end an attractive glass at large €. Fig.[7[(b) shows the correspond-
ing dynamic free energy curves along an isochrone when the pure
hard sphere repulsive glass state occurs at ¢ = 0.60, while the
inset presents the corresponding forces. The barrier heights are
very similar which is an expected consequence of the isochronal
alpha time condition. On the other hand, the evolution of the

The isochronal curve
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Fig. 8 Hybrid-PDT vertex based calculations of the MSD (a) and NGP (b) along an isochrone (blue curve in Fig. a)) with fixed mean dimensionless
hopping time, TZ”” = 2921, corresponding to a local cage barrier of 12.0 for an attraction range of 0.02. Panel (c) plots the maximum of the NGP
(02.max) extracted from panel (b) as a function of attraction strength along two isochrones with the indicated mean hopping times differing by nearly

a factor of 30. The corresponding MSD and NGP results for the r,’;”” =107, isochrone are shown in the SI.

functional form of the dynamic free energy on smaller length
scales is highly variable. Specifically, the localization length, bar-
rier location, and displacement and magnitude of the maximum
confining force state exhibit non-monotonic variations along
the isochrone. The state of maximum confining force is located
just below the nose feature of an isochrone. The localization
length and barrier location shift to smaller displacements with
increasing € until the nose is reached at € ~ 0.4, after which
they reverse their dependence on attraction strength and move
outwards. The non-monotonic evolution of the localization
length can be understood as primarily a consequence of its
non-monotonic packing fraction variation along an isochrone. In
contrast, the non-monotonic evolution of the larger length scale
barrier location is more subtle since it cannot be explained by
the non-monotonic variation of packing fraction. The maximum
confining force initially increases with attraction strength, and
then decreases to significantly lower values beyond the nose.
This reduction in maximum confining force, and its outwards
shift in particle displacement in the attractive glass (high &)
regime, is expected to result in a broader sub-diffusive regime of

the MSD. The latter effect has been observed in simulations:Z/20,

Fig. [8(a) presents the MSD plots for the state points indicated
in Fig. [/(@). Their overall form is, to leading order, quali-
tatively similar, with non-monotonic features clearly evident.
The intermediate time plateau (dynamic localization length)
first modestly decreases with increasing attraction strength
along the isochrone as a consequence of the increasing packing
fraction. Based on this behavior, one can say the introduction
of weak attractions along an isochrone results in more localized
repulsive-like glasses. As the attraction strength increases further,
the corresponding packing fraction along the isochrone then
decreases, resulting in a MSD plateau that significantly increases,
corresponding to weaker localization. This behavior does tends
to saturate at high enough attraction strength. These trends are
all qualitatively consistent with what is expected based on the
rich evolution of the length-scale-dependent dynamic free energy
in Fig. [7[(b). Moreover, for the attractive glass cases, an interest-

ing apparent power law sub-diffusive regime emerges on time
scales before the plateau is reached. Though differing in detail
given differences in the models studied (form of the potential,
its range, polydispersity) and state points, this behavior seems
roughly akin to what has been observed in simulations1220 of
attractive glasses, and which has been suggested to be associated
with a broad range of dynamically-relevant length scales. In
the context of the present microscopic theory, the latter is
naturally captured via the predicted distinctive changes of the
shape of the dynamic free energy curves in Fig. [7(b), and hence
displacement-dependent force on a moving tagged particle,
which undergo nonperturbative changes as attractions become
strong enough. Specifically, we beleive this feature relates to the
fact that in the attractive glass regime the dynamic free energy is
predicted to be less steep for displacements far below the barrier

(see Fig.[7[(b)).

Fig. [B(b) shows the temporal evolution of the NGP for the
same systems as in Fig. a), while Fig. c) plots the peak value
of the NGP, both along the isochrone with increasing €. Starting
from the hard sphere case, the value of the maximum NGP
decreases along an isochrone, indicating a reduction of single
particle dynamic heterogeneity effects associated with stochastic
trajectory fluctuations. As attraction strength further increases
and the nose of an isochrone is approached (¢ = 0.4), the NGP
maximum amplitude sharply increases, resulting in an overall
non-monotonic behavior of this property. Upon further increase
of € into the attractive glass regime, the NGP amplitude goes
through a maximum and again decreases. Overall, a rich doubly
non-monotonic evolution of this property along an isochrone is
predicted. Physically, as one moves along an isochrone starting
from the pure hard sphere system, there is a transition from
caging-dominant repulsive glass behavior to bonding-dominant
attractive glass states. The predicted peak in the maximum
NGP at an intermediate value of attraction strength reflects a
frustration-like effect on particle trajectories. Specifically via
the spatially-resolved bonding and caging kinetic constraints
as embedded in the dynamic free energy as the attraction
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Fig. 9 (a) Local barrier in units of the thermal energy as a function
of attraction strength for different attraction ranges at a fixed value of
packing fraction ¢ = 0.60. (b) Corresponding results for the collective
elastic barrier. All solid curves employ the hybrid-PDT vertex while dot-
ted curves employ the projected analog.

strength and packing fraction are simultaneously varied along an
isochrone at a fixed barrier or mean hopping time.

The corresponding MSD and NGP results along an isochrone
for the smaller mean hopping time system of T(hx”p =11.3 (green
curve in Fig.[7(a)) are shown in the Supplementary Information.
Fig.[8|(c) shows the corresponding behavior of the NGP maximum
amplitude. Beyond the expected smaller overall magnitude of
the NGP maximum for these less localized states, the functional
dependence on attraction strength is qualitatively the same, al-

beit the amplitude of the non-monotonic features is much weaker.

5 LONG TIME DYNAMICS AND KINETIC AR-
REST PHASE DIAGRAMS

We now consider the long time relaxation that is controlled
mainly by the height of the local cage and the longer range
collective elastic barriers, and the corresponding activated mean
alpha relaxation times and isochronal kinetic arrest maps.

5.1 Local Cage and Collective Elastic Barriers

Figure [9] shows the evolution of the local cage barrier as a
function of attraction strength for various ranges at a high
packing fraction of ¢ = 0.60. Importantly, this state is very far
beyond the ideal NMCT boundary (a dynamic crossover), and
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Fig. 10 (a)The ratio of elastic barrier to the local barrier with increasing
attraction strength for different attraction ranges for a packing fraction
¢ =0.60. (b) The same for different packing fractions for range of a =
0.02. All solid curves employ the hybrid-PDT vertex while dotted curves
employ the projected analog.

the local barrier does not exhibit any non-monotonic behavior in
the projected description (dotted curves), whereas strong non-
monotonic upturns are evident with the hybrid dynamic vertex
(solid curves). Notably, the barrier height undergoes a substantial
increase after the upturn, indicating strengthening of physical
bonds. The non-monotonic feature is also predicted to shift to
larger attractive strengths with increasing range, accompanied by
a reduction in magnitude. The maximum glass melting occurs at
€ = 0.5 for a range of a = 0.02, a value that is roughly two times
smaller than found for the localization length at ¢ = 0.60 (see
Fig.[2). More generally, the minimum local barrier state occurs
at larger attraction strength with increasing range, and also is
not as deeply suppressed. When the attraction range reaches the
large value of a = 0.5 typical of nonpolar atoms and molecules
(like the LJ potential) with slowly varying attractions, the barrier
melting effect has essentially disappeared, as physically expected.

Fig. P[b) shows the corresponding results for the collective
elastic barrier as a function of attraction strength for various
ranges at the same high packing fraction in the attractive glass
regime. One sees that based on the hybrid dynamic vertex, the
elastic barrier first decreases rapidly, and remains small until
the local barrier starts to increase. Eventually, the elastic barrier
overtakes the local barrier in a manner similar to the behaviour
observed with increasing packing fraction. In qualitative contrast,
for the corresponding projected case, as can be inferred from the
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increased curvature at Fyy, minima in Fig. (4, the elastic barrier
increases monotonically with attraction strength.

The ratio of the elastic to local cage barriers is the key measure
of “cooperativity” and dynamic fragility in ECNLE theory®©=2/00,
Figure [I0fa) shows a nonmonotonic behaviour is predicted as
a function of attraction strength, with a low amplitude, nearly
flat “glass melting” intermediate regime. This strong suppression
occurs for almost all spatial ranges and extends to rather high
values of attraction in the hybrid theory. Thus, for attraction
ranges of a = 0.1 and higher, the alpha process becomes less
cooperative or less fragile in this sense. However, for very small
attraction ranges, the barrier ratio does become significantly
larger than unity at high enough attraction. Overall, as attraction
strength grows from zero the system evolves from a fragile
repulsive fluid, to an effectively strong fluid, and then again a
fragile system at high enough attraction strength. Fig.[10|shows
that the opposite behaviors are predicted based on the projected
force vertex where the barrier ratio always increases strongly
with attraction strength.

Figure [IO(b) presents calculations of the packing fraction
variation of the barrier ratio. For a low enough packing fraction,
the degree of cooperativity remains small with increasing attrac-
tion strength, showing very little non-monotonicity. However,
at sufficiently high attraction, physical bonding impacts relax-
ation, marking the onset of an attractive glass. Since generally
increasing packing fraction increases the relative importance of
collective elasticity, the ratio is larger, for almost all attractions
strengths, as the fluid packing fraction increases. Subtle curve
crossings emerge at very high attractions.

5.2 Mean Alpha Relaxation Times and Isochronal Kinetic Ar-
rest Boundaries

We now employ ECNLE theory and Eq. to study the alpha
relaxation times, and the corresponding kinetic arrest boundaries
based on a chosen timescale criterion. An example of such
isochrone boundaries has been briefly discussed theoretically
previously?2 (and also in simulation??) and shown to exhibit
glass melting features at extremely large packing fractions, and
here are studied in much more depth.

Figure a) shows the non-monotonic evolution of alpha
times as a function of attraction strength for different spatial
ranges at a fixed high packing fraction based on the hybrid PDT
ECNLE approach. The trends closely align with the predictions
for total barriers, as expected. The maximum glass melting effect
of ~ 7 decades of speed up is observed for the shortest range
attraction, consistent with the predicted 14 units decrease of the
total barrier. On the other hand, when comparing the maximum
speed-up achieved with the introduction of an attractive potential
at different packing fractions, the speed-up increases at higher
¢, as illustrated in Fig. [II|(b). This indicates that the slower the
baseline repulsive system is, the greater its accelerated relaxation
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Fig. 11 (a) Alpha time (in units of the short process timescale, 7,) as a
function of attraction strength for different attraction ranges at a fixed
value of packing fraction ¢ =0.60. (b) Mean alpha time now in units of
its analog for the hard sphere fluid as a function of attraction strength for
different packing fractions. Solid lines are for attraction range a = 0.02,
while the dashed lines are for a =0.10. All curves employ the hybrid-PDT
vertex.

is at modest attraction strengths.

Calculations of isochronal maps, curves of constant reduced
alpha time in ¢ — & space, are shown in Fig. Their basic
forms are relatively similar with increasing 7, magnitude kinetic
arrest criterion. Note that Fig. extends the idealized NMCT
kinetic arrest boundary (black curves) to much larger packing
fractions of typical experimental relevance. The dashed curves
represent the isochrones/kinetic arrest boundaries based on
the projected force vertex, while the solid curves depict those
with the hybrid-PDT vertex. Each color corresponds to different
choices of the alpha relaxation time that defines the kinetic arrest
criterion. This plot clearly demonstrates that NMCT theory with
the projected vertex fails to predict any glass melting at such
large packing fractions. While arbitrarily shifting ideal MCT
theory curves to larger ¢ might seem to indicate this behaviour,
we believe this is not justifiable since the physics at high con-
centrations involves activated dynamics and large, but finite,
relaxation times. On the other hand, the hybrid-PDT ECNLE
theory does capture the non-monotonic behavior in Fig. as
a consequence of activated relaxation and explicit treatment of
attractive forces. We note that the recent GMCT work?l' does
predict a significant shift of the ideal kinetic arrest boundaries
to higher packing fractions. However, the underlying theory
remains MCT-like in that it adopts the vertex projection strategy,
and predicts the alpha relaxation time diverges and other
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Fig. 12 Kinetic arrest map is depicted as isochrones for different reduced
mean alpha relaxation time criteria, constructed using projected (dashed)
and hybrid (solid) theory. The black lines represent NMCT phase bound-
aries for each case. Solid lines correspond to 74/7; including the elastic
barrier contributions, while the dotted lines represent isochrones obtained
by considering only local cage barriers.

dynamical singularity features remain. The latter is in qualitative
contrast to the central importance of activated dynamics and
explicit treatment of attractive forces in the present ECNLE theory.

The dotted curves in Fig. show the corresponding hybrid
vertex ECNLE theory isochrones obtained by considering only the
local barriers. As seen in Figs.[0land[10] the elastic barriers dimin-
ish rapidly with increasing attraction strength, and to a greater
extent with increasing ¢. This shifts the isochrones based on only
local cage barriers to higher attraction strength before the nose
feature is reached. However, the elastic barrier grows rapidly af-
ter the glass melting point is reached, leading to a curve crossing
of isochrones with and without elastic barriers. Overall, our re-
sults based only on local cage barriers are qualitatively the same
in form as those that include the elastic barrier. This nontrivial re-
sult reflects the predicted strong correlation between elastic and
local barriers2:40,

6 CONCLUSIONS AND FUTURE DIRECTIONS

We have utilized the hybrid-PDT ECNLE theory to study, for
the first time, the problem of elastic modulus re-entrancy in
dense fluids composed of spheres interacting via short-range
attractions at very high packing fractions far beyond the ideal
MCT nonergodicity boundary. The dynamic force constraints
(vertex) are formulated without adopting the literal projection
approximation for constructing an effective attractive force from
structural pair correlations. Instead, it retains an explicit treat-
ment of the bare attractive forces that drive transient physical
bond formation, while a projection approximation is employed
for the singular hard-sphere potential. The resultant interference
between repulsive and attractive forces contributions to the
dynamic force vertex results in the prediction of localization
length and elastic modulus re-entrancy, qualitatively consistent
with experiments22, Such elastic re-entrancy is not captured by

14 | Journal Name, [year], [vol.], 1

ideal MCT based on force projection, nor apparently its GMCT
extensions’l. Of course, as we mentioned above, in experiments
the elastic re-entrancy effect can depend on measurement
frequency. As a future direction, our approach can be extended to
address this by explicitly analyzing the stress relaxation storage
modulus in Fourier space.

The non-monotonic evolution of the structural alpha relaxation
time predicted by ECNLE theory with the hybrid PDT approach
has been explored in far greater depth than previously®2 as
a function of packing fraction, attraction strength, attraction
range, and under isochronal conditions. In addition, a detailed
analysis of the length and energy scales of the dynamic free
energy has been performed. Comparisons of these results with
the corresponding predictions of ideal MCT based on projection
and no activated dynamics, and also ECNLE and NLE theory
based on projection, reveal large qualitative differences.

We have also investigated, for the first time, the consequences
of stochastic trajectory fluctuations intrinsic to the NLE evolution
equation description on intra-cage single particle dynamics with
variable strength of attractions. The mean square displacement
and non-Gaussian parameter were determined. The numerically
observed¥ large single particle dynamical heterogeneity effects
for attractive glasses are captured as demonstrated by the
rapidly increasing amplitude of the non-Gaussian parameter with
packing fraction and a non-monotonic evolution with attraction
strength. These behaviors reflect thermally driven “uphill”
particle motion on the dynamic free energy profile, and have
nothing to do with ideal MCT singularities which do not exist in
NLE or ECNLE theory in the presence of thermal fluctuations.
We have also constructed dynamic arrest boundaries based on
activated relaxation determined isochrones, which display the
classic non-monotonic glass melting form. The latter behavior
arises directly from the explicit treatment of attractive forces
(hybrid PDT) and activated motion, and disappears if the
standard full projection approximation is employed in ECNLE
theory. These new results appear to be in qualitative accord
with recent simulations that have employed swap-Monte CarloY.

Looking to the future, we suggest new simulations and experi-
ments can more deeply test our results for both intermediate time
and length scale single particle dynamics, and long time scale
based isochronal kinetic arrest maps. Concerning new theory
development, the present study, in combination with recent
advances in the ECNLE theory of nonlinear rheology of dense
glass forming hard sphere fluids and colloidal suspensions=>/78,
sets the stage to construct a theory of nonlinear rheology of
dense attractive colloidal suspensions. Due to the competition
between caging and bonding, such systems are experimentally
known22125179 ¢ exhibit the remarkable phenomenon (with
nonuniversal features) of “double yielding,” for which no micro-
scopic theory exists to date. Our work in this direction will be
reported in a forthcoming publication.
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