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Abstract

Reversible dry adhesion is exploited by lizards and insects in nature, and is of interest
to robotics and bio-medicine. In this paper, we use numerical simulation to study how
the soft elasticity of liquid crystal elastomers can affect its adhesion and provide a tech-
nological opportunity. Liquid crystal elastomers are cross-linked elastomer networks
with liquid crystal mesogens incorporated into the main or side chain. Polydomain
liquid crystalline (nematic) elastomers exhibit unusual mechanical properties like soft
elasticity, where the material deforms at nearly constant stress, due to the reorientation
of mesogens. Our study reveals that the soft elasticity of nematic elastomers dramat-
ically affects the interfacial stress distribution at the interface of a nematic elastomer
cylinder adhered to a rigid substrate. The stress near the edge of the nematic cylinder
under tensile load deviates from the singular behavior predicted for linear elastic mate-
rials, and the maximum normal stress reduces dramatically. This suggests that nematic
elastomers should display extremely high, but controllable adhesion, consistent with
the available experimental observations.

Introduction

Adhesion that exploits the surface forces between the material and dry surfaces can be
significant, but reversible?. This is widely exploited in nature, for example by lizards and
insects®, and is of increasing interest in engineering, for example in robotics®* and in medical
adhesives?. It is now well recognized that contact mechanics and the distribution of stresses
are as critical to this phenomenon as surface energy and chemistry™®. This is because the
failure of adhesion occurs by a process of nucleation and growth of an interfacial crack.
This has motivated a number of approaches including the use of soft elastomers, shape,
and composite materials to affect the stress distribution and consequently the adhesion®*.
Recent experimental observations in probe-tack™M and peeling™® tests show that liquid
crystals elastomers display extremely strong, but controllable, adhesion. In this paper, we
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explore how the remarkable soft behavior of liquid crystal elastomers can affect its adhesion
to dry surfaces.

Liquid crystal elastomers (LCEs) are cross-linked elastomer networks with liquid crystal
molecules, also known as mesogens, incorporated into the underlying polymer chains. Meso-
gens are stiff, rod-like molecules that respond to temperature by changing their orientation
distribution. At high temperatures 7" > T,; (7}; denotes the nematic to isotropic transition
temperature), the LCE is in the isotropic state where the mesogens are randomly oriented.
At lower temperatures T' < Ty;, the LCE is in the nematic state where the mesogens are
aligned along a preferred direction. The degree of order observed in the mesogens deter-
mines the degree of anisotropy. When an isotropic-genesis LCE (one that is cross-linked in
the isotropic state) is cooled down, it undergoes a phase transition from its isotropic state
to a nematic state and forms an isotropic-genesis polydomain nematic LCE with domains
on the order of 1-2 um™?; see Fig. [1A.

A fascinating characteristic of isotropic-genesis nematic LCEs is the soft elasticity be-
havior: when subjected to an external uniaxial tension, the material stretches at almost zero
stress, resulting in a soft plateau region in the stress-strain curve'®% This phenomenon
is attributed to the reorientation of the mesogens through polydomain-monodomain transi-
tiont¥ ALY Practically, nematic elastomers exhibit a non-ideal ‘semi-softness’ response due
to the presence of internal constraints, leading to an initial linear elastic regime before the
stress plateau. This produces a non-zero stress plateau until the full chain re-alignment is
achieved. Several microscopic mechanisms contribute to this non-ideal semi-softness response
including the polydispersity of network chains*®, the effect of anisotropic cross-linkers™, and
the entanglement of nematic chains®”. Recent research indicates that the soft elasticity of
LCE makes its mechanical behavior differ dramatically from that of rubber in various prob-
lems including the wrinkling of thin sheets?!| energy absorption in impact?, and Hertz
contact®. Interestingly, recent experiments™ exhibit that the adhesion force between
glass and a polydomain nematic LCE is higher than that between glass and silicone rubber.
In this paper, we study how the soft elasticity of nematic LCE contributes to a stronger
adhesion.

Consider a flat-ended cylinder perfectly attached to a rigid substrate at one end; see
Fig. [IA. If the cylinder is linear elastic and subjected to a tensile load at the other end,
the maximum normal stress on the cylinder-substrate interface occurs at the edge where the
cylinder touches the substrate. In fact, the normal stress distribution is singular at this edge
and is of the form ¢ = Kd", where the intensity K depends on the applied load, d is the
distance from the edge, and n = —0.406“*. This stress singularity results in a crack being
initiated at the edge, and this eventually leads to the failure of adhesion. In this work, we
examine the stress distribution on an LCE flat-ended cylinder perfectly attached to a rigid
substrate at one end and subject to an applied tensile load at the other. We find that the
soft elasticity dramatically changes the interfacial stress distribution in the LCE cylinder.
The stress is no longer singular at the edge and the location of the maximum stress shifts to
the interior. We discuss the implications for adhesion and compare the results with available
experimental data.

Model
We consider a cylinder under normal loading as shown in Fig. [TJA. The bottom surface of
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the cylinder is fixed in all directions to model adhesion to a rigid flat substrate, while the top
interface of the cylinder is quasi-statically displaced uniformly in the axial or z-direction with
no displacement allowed in other directions modeling the fact that the cylinder is bonded to a
stiff support plate at the top. The lateral surfaces are traction-free. We consider a relatively
long cylinder with overall height H = 10mm and radius R = 1mm to eliminate end effects on
the stress distribution at the interface. We model the cylinder as a 2D axisymmetric model
in the commercial finite element package ABAQUS Standard®. The cylinder is discretized
using four-node bilinear axisymmetric quadrilateral hybrid elements (Abaqus CAX4H).

We use the constitutive model for an isotropic-genesis polydomain nematic elastomer
developed by Lee et al?®. We provide a brief overview of the model here. This model
introduces two scalar state variables A and A that describe the spontaneous deformation
associated with the local domain pattern. These are closely related to local polydomain order
parameters: A with the degree of orientation S, and A with S+ X where X is the degree of
biaxial orientation. These state variables describe the spontaneous change in material metric
(the Cauchy-Green stretch due to domains) G = P diag(A?, A?/A?,1/A?)PT where P is a
rotation matrix, and A and A can take values in the region {(A < /6, A < A2, A > /A}
where r is the chain anisotropy parameter (related to the degree of nematic order @)). A
monodomain has A = /3 and A = r%/¢ so that G is the step-length tensor £ of the
neo-classical theory??, and an isotropic polydomain state where the nematic directors are
equidistributed has A = A = 1 so that G is identity. The biaxial polydomain state where all
the nematic directors are confined to a plane but equidistributed in the plane has A = r1/12
and A = 7'/% so that G = P diag(r/!2,71/12 7=1/6) PT The model postulates a coarse-
grained free energy W = W, + W, where W, = 1u[tr(FTG~'F) — 3] is the entropic energy
in the polymer chains for a deformation gradient F' relative to an isotropic reference state,
with g the rubber modulus, and W, = C(A — 1)/(r'/® — A)* is the energy of domain
patterns required to overcome fluctuations. The deformation is determined by the equation
of mechanical equilibrium while the state variables evolve according to overdamped dynamics
aph = —OW/OA, apnA = —9W/IA. The model has been validated against experiments
and verifiably implemented as a UMAT in the finite element package ABAQUS; further
details can be found in®®. The typical material properties we use in our simulations are
1 = 0.26MPa, C' = 0.6kPa, apn = 30MPa.s, ay = 0.0laa, £ = 2, and r = 6 for a nematic
LCE cylinder. Note that we can include the neo-Hookean rubber into this model by setting
r=1.

The exact stress value at the corner of the cylinder is sensitive to the mesh size due to the
presence of a singularity. Therefore, a very fine mesh is used close to the corner of the cylin-
der to increase the accuracy of the results there. The mesh near the contact interface and
the free edge is refined, and mesh convergence is verified with further refinement resulting
in less than 0.5% difference in the average normal stress. We verify that we resolve the sin-
gularity at the edge by plotting the stress on a semi-log plot and verifying the slope against
known theoretical values for linear elastic materials as shown in Fig. [I[|C. We note that as the
anisotropy parameter r increases, the model requires finer mesh size for convergence at the
corner stress; see, for instance, Figure S1 in Supplemental Materials. Our converged model
possesses a total of 26015 elements with the smallest mesh size of 2 x 10~%mm at the corner.
We use the same mesh size around the adhesion region for all the simulations resulting in
less than 0.5% difference in the average normal stress.
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Results and Discussion

Interfacial stress distribution. Fig. displays the distribution of normal stress along
the adhered interface for a linear elastic material, a neo-Hookean hyperelastic material (LCE
with 7=1), and a nematic LCE with r = 6 at various values of the applied load. We present
the results in a logarithmic scale to highlight the details of the stress singularity near the edge
of the cylinder. For the linear elastic cylinder, a significant stress concentration is generated
at the edge of the interface in the form of o,, = Kd" with n = —0.406 as anticipated in the
classical theory?*, thereby providing a verification of the numerical method. This singularity
exists at all values of the applied load, with the intensity K proportional to the applied load.
A neo-Hookean hyperelastic cylinder (r = 1) follows the linear elastic theory for small values
of the applied load (e.g., 3.5 kPa), but then deviates from it at larger values of the applied
load. At 04 = 160kPa, there is no singularity at the edge. Further, the value of the normal
stress at the edge is significantly less than that in a linear elastic material, but looks similar
away from the edge except it is slightly elevated at the center (to give the same average

stress).
Finally, we turn to the LCE cylinder with » = 6. At low applied loads (04 = 3.5kPa),
the stress distribution follows the linear elastic theory with an exponent n = —0.406. This

is because of the initial elastic regime in the stress-strain response of the non-ideal LCE; see
the stress-strain curve in Fig. [[[B. However, it soon deviates as we increase the load. The
singularity at the edge vanishes and the level of stress at the edge is significantly reduced
compared to the other two materials, at 04 = 19kPa. As the load increases further, the stress
distribution is still regular. Further, the value at the edge remains unchanged despite the
increased applied load and increases in the center of the cylinder instead, see 04 = 160kPa.
Thus the stress at the edge is significantly smaller in the LCE compared to that in the other
two cases, but higher in the center.

To gain insight into the reason for this dramatically different stress distribution in the
LCE, we study the domain pattern and its evolution. Fig. shows the distribution of the
state variables A and A, and the ratio A/v/A in the vicinity of the adhered region at three
different applied loads o4. The color scale in Fig. for A and A are chosen so that blue
corresponds to the smallest value (1 for both) while red corresponds to the largest theoretical
value (r'/3 = 1.82 for A, r'/6 = 1.35 for A). However, the color scale for A/v/A is chosen
to be limited to be close to 1 (the possible maximum value for A/v/A is 7/® = 1.25 but our
scale only goes to 1.1). As the applied load 04 increases, A evolves significantly, especially
near the edge of the cylinder with the maximum value at the edge. This maximum A at the
edge reaches the saturation value of ~ 1.71 at the higher applied load (04 = 160kPa) and
this is close to the theoretical maximum value of 1.82 (the material hardens significantly as it
approaches the maximum value in the constitutive model). We observe that A also evolves
and reaches the value of ~ 1.31 (close to the maximum values of 1.35) at the edge of the
cylinder at the higher load. However, the ratio A/ VA =~ 1 everywhere along the adhered
interface in all cases. The ratio A/ VA = 1 indicates a pure uniaxial deformation. Therefore,
we conclude that the domain pattern evolves to maintain an uniaxial state of deformation
along the adhered interface. Further, A ~ r'/3 and A ~ r'/¢ at the edge, and thus the LCE
is almost in a monodomain state. In other words, the polydomain-monodomain transition
suppresses the stress singularity at the edge in an LCE cylinder.

4

Page 4 of 11



LCE OA

A cylinde 4_4 *

©
a 4
X &S e
\U')’ 400 :}\ // .........
0 DGy ot
< A OO\A
S Q:b /'/ - —‘(\
L2200 &0
© o (r = 6)
= & \CE
€
o 0
2 0 0.5
Strain

D state variable A

(]

o

4

LQ

on

.

S

(©

a

4

N

—

'L:

S

©

(a

4

o

((o]

—

«

o

Figure 1: (A) Schematic of an isotropic-genesis polydomain nematic LCE cylinder adhered
to a rigid surface. (B) The uniaxial nominal stress-strain curves for linear elastic material,
neo-Hookean hyperelastic (r = 1) material, and LCE (r = 6). (C) Distribution of interfacial
normal stress o, along the adhered interface of the cylinder in logarithmic scale for materials
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Figure 2: (A) Maximum interfacial stress o72%* vs. its corresponding radial position along
the adhered interface of the cylinder at different applied loads o4. The red square data
correspond to the nematic LCE cylinder with » = 6 and the blue circle data correspond to
the isotropic cylinder (r = 1). (B) Distribution of interfacial normal stress o,, along the

adhered interface of the cylinder at transition applied load ¢ = 94kPa for LCE with r = 6.

Figure shows the maximum interfacial normal stress ¢.** and the corresponding ra-
dial position where it is attained for different applied loads 4. The maximum interfacial
stress for the neo-Hookean material remains at the edge of the cylinder (aj-e1), as exempli-
fied in Fig. [TIC. However, LCE exhibits a significantly different trend. At low applied load,
the maximum interfacial stress is located at the edge (ag-cg), but the location of maximum
stress shifts from the edge to the center of the cylinder (dg-eg) above a transition applied
load o; see Fig. . As shown in Fig. , the interfacial stress at the transition applied
load ¢, is almost uniform along the adhered interface.

Adhesion. The failure adhesion in a cylinder of sufficiently large diameter occurs by a
process of nucleation of a crack either at a pre-existing flaw or stress singularity followed
by growth. Tanné et al.*® (also*”), based on an extensive study of experimental and com-
putational observations, proposed a unified criterion for stress nucleation at a point where
the opening stress is locally of the form o ~ Kd" (so n = 0 for a non-singular stress field,
n = —0.406 at the edge of an adhered cylinder, and n = —0.5 for a pre-existing crack). A
crack nucleates when

K = Kc — Kl—c2n0_1+2n (1)

[

where K. is the fracture toughness and o, is the maximum tensile strength. Note that
K = K. in the presence of a pre-existing crack and ¢ = o, in the absence of a singularity
in agreement with classical fracture mechanics.

We now apply this criterion to the current problem of cylinder adhesion. In a linear
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Figure 3: (A) Distribution of interfacial normal stress o, along the adhered interface of the
cylinder in logarithmic scale at different anisotropy r. The inset presents the correspond-
ing uniaxial nominal stress-strain curves. (B) Transition applied load ¢!, as a function of
anisotropy parameter 7.

elastic cylinder, the stress is singular at the corner with n = —0.406, and therefore, failure
initiates at the corner. Therefore, the stress intensity factor K determines the adhesion
strength of the cylinder™; the lower stress intensity at the edge of the cylinder leads to a
higher adhesion strength. In a neo-Hookean cylinder, the stress is initially singular at the
edge, but then becomes regular. At that point, though the highest stress occurs at the edge
(Fig. , the stress is quite uniform (Fig. . It is also known that in shorter cylinders,
the interior stress can also increase®”. For these reasons, failure may occur at the edge or in
the interior depending on the specific dimensions and properties®!. However, the failure will
occur at significantly higher values of the applied load compared to a linear elastic material
of similar properties.

In an LCE cylinder, the stress is singular at the edge for small applied loads, but the
stress intensity is insufficient to cause failure. The singularity decreases and eventually goes
away. Further, the levels of stress are significantly lower in an LCE cylinder compared to
that of the neo-Hookean cylinder (Figs. (1| and . In other words, there are two mechanisms
for the suppression of failure — lack of a stress singularity at the edge, and significantly re-
duced levels of stress. This leads to a significant increase in the adhesive strength of an LCE
cylinder compared to that of a neo-Hookean one. This is consistent with the experimental
observation by Farre-Kaga et al.'¥ where they tested the adhesion of the polydomain nematic
LCE via the probe-tack experiment (rigid cylinder and LCE substrate). Further, since the
location of the highest stress is in the interior, we expect the failure to initiate in the interior
even for long cylinders.

Effect of temperature. Temperature T significantly affect anisotropy parameter r. At
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T, < T, the LCE is in the isotropic state with r = 1, and at T" < T,,;, the LCE is ne-
matic with » > 1. Fig. compares the interfacial stress distribution at different anisotropy
parameters r (equivalently, different temperatures) with the corresponding uniaxial stress-
strain curves in Fig. [3{(inset). At low load (04 = 3.5kPa), all cases follow the linear elastic
theory with the same stress distribution along the interface including a singularity at the
edge with the exponent n = —0.406. The singularity vanishes for all the studied cases at the
higher applied load (04 = 38kPa). However, the value of the stress at the edge decreases
with increasing r (decreasing temperature). These lead us to conclude that lower tempera-
ture would lead to stronger adhesion, and this is consistent with experimental observations
of Ohzono et al.*!. Fig. shows the transition applied load ¢, at which the point of max-
imum stress shifts from the edge to the center. We observe that this transition occurs at a
smaller load for larger r (lower temperature). Therefore, we anticipate an interior failure at
lower temperatures.

Conclusion

We use numerical simulation to study how the remarkable softness of liquid crystal elas-
tomers affects the adhesive behavior of this material on rigid surfaces. We show that the soft
behavior of nematic elastomers dramatically affects the interfacial stress distribution at the
interface of a nematic elastomer cylinder adhered to a rigid substrate. Specifically, the stress
near the edge of the nematic cylinder under tensile load deviates from the singular behavior
predicted for linear elastic materials, and the maximum normal stress reduces dramatically.
Together, these imply that one would have to apply a much larger macroscopic load to initi-
ate adhesive failure (i.e., nucleate a crack). This would manifest itself as a significantly higher
adhesive strength. This is consistent with the experimental observations in probe-tack™
and peeling® tests. Our analysis also shows that the nature of the stress distribution depends
on temperature (through the anisotropy parameter), and therefore the apparent adhesion
would be temperature-dependent. The fact that the adhesion can be controlled, and the
maximum adhesion can be very high, implies that LCEs offer a highly attractive medium
for robotic and bio-medical grippers and climbers. In other words, LCEs offer an alterna-
tive to the other approaches that exploit shape and composite materials. Future research
may explore the adhesion and interfacial stress distribution of nematic LCEs with square
or rectangular cross-sectional contact shapes under combined tensile and shear loads. This
could pave the way for designing adhesives that offer both strong adhesion and easy removal.

Data availability: All algorithms and data necessary for the analysis are included in the
paper and Supplemental Materials.
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