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Directed assembly of small binary clusters of magnetizable ellipsoids†

David H. Harris,a and Isaac Torres-Díaza∗

We report the effect of shape anisotropy and material properties on the directed assembly of binary suspensions
composed of magnetizable ellipsoids. In a Monte Carlo simulation, we implement the ellipsoid-dipole model
to calculate the pairwise dipolar interaction energy as a function of position and orientation. The analysis
explores dilute suspensions of paramagnetic and diamagnetic ellipsoids with different aspect ratios in a
superparamagnetic medium. We analyze the local order of binary structuresas a function of particle aspect
ratio, medium permeability, and dipolar interaction strength. Our results show that local order and symmetry
are tunable under the influence of a uniform magnetic field when one component of the structure is dilute with
respect to the other. The simulation results match previously reported experiments on the directed assembly
of binary suspension of spheres. Additionally, we report the conditions on particle aspect ratios and medium
properties for various structures with rotational symmetries, as well as open and enclosed structures under the
influence of a uniform magnetic field.

1 Introduction

Colloidal particles with surface and shape anisotropy are the focus of intensive research because of their
positional and orientational interactions under different field conditions.1–5 Anisotropic colloids are attractive
for different applications, such as microrobots,6,7 smart materials,8–10 drug delivery,11–13 photonics,14–17 su-
perhydrophobic surfaces,18–20 and building blocks for colloidal crystals,21–23 among others. Directed assembly
tunes the particle-field and particle-particle interactions to facilitate the formation of different structures.24–26

Furthermore, directed assembly promotes order and symmetry between particles, resulting in various two and
three-dimensional structures.27–29 Monodisperse colloids with small aspect ratios assemble into close-packed
structures,30–32 intricate chains,33,34 loops,35,36 and flower-like structures.37 Monodisperse magnetizable
spheres form head-to-tail chains, bundles of chains, and fibrous structures under the influence of a uniform
magnetic field.38–43 Moreover, monodisperse magnetizable spheres form body-centered tetragonal (BCT)
and hexagonally close-packed (HCP) three-dimensional crystals.31,42,43 Additionally, while monodisperse
magnetizable spheres form hexagonal crystals, binary magnetizable spheres with different sizes form triangular
and square lattice crystals in two-dimensional confinement under a uniform magnetic field.44–46 Conversely,
uniaxial ellipsoids with high-aspect ratios assemble with face-to-tail arrangement and close-packed structures
under a uniform field.16,17,47–50 The variety of structures makes it essential to have a quantitative model to
predict the behavior of magnetizable ellipsoidal particles with different aspect ratios and material properties.

Previous studies show that material properties, relative dimensions, and aspect ratios of colloidal particles
directly affect the order of assembled magnetizable particles.38–40,51–53 Contrary to the aforementioned results
in monodisperse suspensions, the directed assembly of binary suspensions composed of paramagnetic and
diamagnetic spheres in a ferrofluid medium form structures with rotational symmetry around the particle poles
or equator.27,28 The symmetry of the structures depends on the particle size and their relative polarizations,
while their order depends on the relative concentration of their spherical components.27,28,54 Theoretical
studies focus on suspensions composed of spheres with different sizes and material properties. Still, the effect
of the shape anisotropy and the dipolar interaction on the order and symmetry of structures has not been fully
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explored.

Previous quantitative studies model the dipolar interaction between uniform particles using the point-dipole
approximation,27,28,38–40 the two-point charges approximation,52,53,55,56 numerical calculations,57–62 and
the ellipsoid-dipole model.48 The dipolar interaction energy using the point-dipole model is quantified from
the disturbance field of polarizable spherical particles in a uniform field.40,63,64 However, shape anisotropy
modifies the disturbance field, and particles with a non-quadratic surface induce non-uniform fields that are
not accounted for in the point-dipole model.65,66 The two-point charges model approximates the disturbance
field of uniaxial particles with high aspect ratios,52,53,55,56 but not for particles with other aspect ratios, such as
spheres, oblate spheroids, and scalene ellipsoids. The dipolar interaction for more complex shapes is numer-
ically calculated using computationally expensive methods,57–62 which are time-consuming when modeling
systems of many particles. Alternatively, the recently developed ellipsoid-dipole model takes into account
the effect of shape anisotropy on the particle polarization. The ellipsoid-dipole model is used to quantify the
pairwise dipolar interaction energy as a function of position and orientation between monodisperse polarizable
ellipsoids and between monodisperse permanently magnetized ellipsoids.26,48 However, we have not found
a model to quantify the dipolar interaction between anisotropic particles with different shapes and material
properties as a function of their relative position and orientation.

In this manuscript, we analyze the effect of shape anisotropy and material properties on the local order
of assembled binary colloidal structures. For this purpose, we consider a binary suspension composed of
particles with different material properties, where the concentration of one component is much smaller than
the other. We use a superparamagnetic medium (ferrofluid) to tune the polarization of micron-sized particles
in a two-dimensional confinement under the influence of a uniform magnetic field. Additionally, we consider
a dilute suspension to isolate the effect of the dipolar interaction between particles to the confinement effects
generated at suspensions with higher concentrations. The two-dimensional confinement is our first approach
to describe the main features of the assembled structures and their dependence on particle aspect ratio and
medium properties, which can be used for later studies in more complex systems, such as three-dimensional
assembly and tunable crystal structures. Therefore, to model the directed assembly of small binary clusters, we
extend the ellipsoid-dipole model to quantify the pairwise dipolar interaction between ellipsoidal particles as
a function of their relative position and orientation. The dipolar interaction energy using the ellipsoid-dipole
model is implemented in a Monte Carlo algorithm to analyze binary suspensions of magnetizable ellipsoids in a
paramagnetic medium. We analyze the directed assembly of a binary suspension composed of diamagnetic and
paramagnetic ellipsoids under the influence of a uniform magnetic field. Furthermore, we analyze conditions
such that one of the components is dilute with respect to the other component. The study includes the effects
of particle size, particle aspect ratio, medium properties, and dipolar interaction strength on the local order
and symmetry of the assembled structures in a two-dimensional confinement.

2 Model

2.1 Monte Carlo simulation

We perform Metropolis Monte Carlo (MC) simulations to quantify the canonical ensemble energy in a two-
dimensional confinement with periodic boundary conditions.67–69 We quantify the pairwise interaction energy
of interacting magnetizable ellipsoidal particles with different aspect ratios and material properties as a func-
tion of their relative position and orientation. The analysis considers dilute suspensions of hard ellipsoids to
avoid confinement effects observed at higher concentrations.70–72 We consider a binary suspension composed
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of magnetizable ellipsoids (paramagnetic and diamagnetic) with different aspect ratios in a ferrofluid medium.
The system is composed of about 100 uniform particles of the first component and one particle of the second
component with a different aspect ratio and material properties. The number of particles is set based on the
particle concentration in a square simulation box with periodic boundary conditions. The total particle concen-
tration (area fraction) is fixed at 0.1. The number of particles and the box size for every simulation is in the
Supplementary Information (Tables 2-5). We calculate the energy of the system as

U =
N

∑
I

U I
d f +

N

∑
I=1

N

∑
J 6=I

U IJ
dd , (1)

where U I
d f is the induced dipole-field interaction energy of particle I, and U IJ

dd is the pairwise induced dipole-
dipole interaction energy between magnetizable particles I and J. We consider hard interaction between par-
ticles, i.e., infinite energy when the particles overlap and zero when they don’t overlap. The MC algorithm
samples different particle positions x = (x,y,z) and orientations, parameterized with unit quaternions q0, q1, q2,
and q3. Quaternions q1, and q2 are equal to zero to limit the particle rotation on the simulation plane. We use
the unit quaternions to avoid Gimbal lock by using Euler angles and to generate a singularity-free algorithm to
quantify the dipolar interaction at arbitrary orientations between particles.73 The MC algorithm runs until the
energy is equilibrated, which requires at least 107 steps and varies for different simulation conditions.

2.2 Induced dipole – field interaction energy

Fig. 1 Schematic representation of a magnetizable ellipsoidal particle I with an arbitrary position and orientation with respect
to the laboratory coordinates

(
xL,yL,zL

)
, represented in black. The particle coordinate system

(
xI ,yI ,zI

)
, in red, is attached to

the principal semi-axes of the particle. HL
0 is the uniform applied field directed along the zL-axis of the laboratory coordinates.

The components
(
MI

x,M
I
y,M

I
z
)
of the induced particle magnetization MI are represented in green along the main axes of the

particle.

Consider a uniformly magnetizable tri-axial ellipsoidal particle suspended in a uniform isotropic medium, as
schematically represented in Figure 1. The particle coordinate system

(
xI,yI,zI

)
is colored in red and aligned

along the main particle semi-axes rx, ry, and rz. The particle is arbitrarily oriented with respect to laboratory
coordinates

(
xL,yL,zL

)
and colored in black. The superscript represents the coordinate system where the variable

is evaluated. HL
0 represents the applied uniform magnetic field described in laboratory coordinate, and MI is
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the magnetization of the particle I described in particle coordinates. The energy of a magnetizable particle in a
uniform magnetic field results in63

u =−1
2

∫
vp

(µp−µm)HI
− ·HI

0 dv, (2)

where vp is the particle volume, µm is the magnetic permeability of the medium, µp is the magnetic permeability
of the particle, HI

0 is the applied magnetic field described in particle coordinates, and HI
− is the magnetic field

inside the particle.

The applied magnetic field described in laboratory coordinates HL
0 is correlated to the applied magnetic field

described in particle I coordinates HI
0 by

HI
0 = AIL ·HL

0 , (3)

where AIL is the rotation transformation matrix73,74

AIL =

−q2
3 +q2

1−q2
2 +q2

0 2(q3q0−q2q1) 2(q1q3 +q2q0)

−2(q2q1 +q3q0) −q2
3−q2

1 +q2
2 +q2

0 2(q1q0−q2q3)

2(q1q3−q2q0) −2(q2q3 +q1q0) q2
3−q2

1−q2
2 +q2

0

 , (4)

which is defined using unit quaternions q0, q1, q2, and q3 to parameterize the relative orientation of particle I co-
ordinates with respect to laboratory L coordinates. Unit quaternion parameters and Euler angles are correlated
by73

q0 = cos(φ/2)cos((ψ +θ)/2),
q1 = sin(φ/2)cos((ψ−θ)/2),
q2 = sin(φ/2)sin((ψ−θ)/2),
q3 = cos(φ/2)sin((ψ +θ)/2),

(5)

where φ is the polar angle, θ is the azimuthal angle, ψ is the rotational angle around the z-axis of the particle,
and q2

0 +q2
1 +q2

2 +q2
3 = 1. For the two-dimensional analysis, q1 and q2 are equal to zero by setting φ = ψ = 0. In

Eq. (2), the magnetic field HI
− inside the ellipsoidal particle I results in63

HI
− =−

µmHI
0,xeI

x

µm +(µp−µm)
rxryrz

2 Lrx(∞)
−

µmHI
0,yeI

y

µm +(µp−µm)
rxryrz

2 Lry(∞)
−

µmHI
0,zeI

z

µm +(µp−µm)
rxryrz

2 Lrz(∞)
, (6)

where eI
x, eI

y, and eI
z is a right-handed set of unit vectors along the principal semi-axes of the particle I, HI

0, j is
the magnetic field component along the j-axis of the particle I coordinates, and Lr j(ξ ) is defined as48

Lr j(ξ )≡
∫ ξ

0 Fr j(λ )dλ , (7)

Fr j(λ ) =
1

(λ+r2
j)
√

(λ+r2
x )(λ+r2

y)(λ+r2
z )
, (8)

where λ is a dummy variable, and ξ is the ellipsoidal coordinate at the position (x,y,z) with respect to the
particle I coordinates, calculated from the real root of

x2

r2
x +ξ

+
y2

r2
y +ξ

+
z2

r2
z +ξ

= 1. (9)

The particle magnetization is expressed as MI =
µp−µm

µ0
HI
−, where µ0 is the vacuum permeability. Eq. (2) reduces
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to the induced dipole–field interaction energy of a magnetizable ellipsoidal particle I,

U I
d f =−

3vpµm

2
(
fI ·HI

0
)
·HI

0, (10)

where vp = 4πrxryrz/3 is the particle volume, and fI is the Clausius-Mossotti tensor with a component along the
j-axis of the particle I defined as40,75

fIj j =
1
3

(µp−µm)

µm +(µp−µm)
rxryrz

2 Lr j(∞)
. (11)

2.3 Ellipsoid-dipole model for magnetizable ellipsoids

The magnetic scalar potential at the position (x,y,z) outside a magnetizable ellipsoid and relative to the particle
coordinates, due to a uniform magnetic field, is quantified by63

φ
+ =−

[(
µm +(µp−µm)

rxryrz
2 Lrx(ξ )

µm +(µp−µm)
rxryrz

2 Lrx(∞)

)
x H0,x+

(
µm +(µp−µm)

rxryrz
2 Lry(ξ )

µm +(µp−µm)
rxryrz

2 Lry(∞)

)
y H0,y +

(
µm +(µp−µm)

rxryrz
2 Lrz(ξ )

µm +(µp−µm)
rxryrz

2 Lrz(∞)

)
z H0,z

]
. (12)

The magnetic field outside the particle (ξ > 0) results from the negative gradient of the magnetic potential φ+.
After some algebraic manipulation (See Supplementary Information), the disturbance on the uniform magnetic
field outside the ellipsoidal particle (ξ > 0) results in

HI =
3rxryrz

2
G I(ξ ) · fI ·HI

0, (13)

where G is a tensor with components48

Gi j =

[
δi j
(
Lr j(ξ )−Lr j(∞)

)
+ x j

∂Lr j(ξ )

∂xi

]
, (14)

where δi j is the identity tensor, Lr j(ξ ) is defined in Eq. (7), and
∂Lr j (ξ )

∂xi
=

∂Lr j (ξ )

∂ξ

∂ξ

∂xi
, with

∂Lr j (ξ )

∂ξ
= Fr j(ξ ), (15)

∂ξ

∂xi
= 2xi

(r2
i +ξ)

/

(
x2

(r2
x+ξ )

2 +
y2

(r2
y+ξ)

2 +
z2

(r2
z+ξ)

2

)
. (16)

Eq. (13) is denoted as the ellipsoid-dipole model for magnetizable particles and quantifies the disturbance field
generated by a magnetizable ellipsoidal particle under the influence of a uniform magnetic field. It is noted that
Eq. (13) differs by a factor of three from its equivalent expression for permanently magnetized ellipsoids,48

which appears due to the definition of the Clausius-Mossotti factor in Eq. (11).40,75
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Fig. 2 Schematic representations of two interacting magnetizable ellipsoidal particles under the influence of a uniform magnetic
field HL

0 . Both particles are arbitrarily positioned and oriented with respect to the laboratory coordinates. The red coordinate
system (xI ,yI ,zI) is attached to the principal semi-axes of particle I, while the blue coordinate system (xJ ,yJ ,zJ) is attached to
the principal semi-axes of particle J. The components of the induced particle magnetization are represented in green along the
main axes of each particle.

2.4 Induced dipole – dipole interaction energy

Consider two magnetizable ellipsoidal particles with arbitrary sizes and aspect ratios under the influence of
a uniform magnetic field, as schematically represented in Figure 2. Superscripts I, J, and L stand for the
coordinate system where the variable is evaluated. rI

x, rI
y, and rI

z represent the semi-axes of particle I, while
rJ

x , rJ
y , and rJ

z represent the semi-axes of particle J. The red coordinate system is attached to the principal
semi-axes of particle I. The blue coordinate system is attached to the principal semi-axes of particle J. Both
particles have an induced magnetization vector represented by green arrows in their coordinate systems. The
particles are arbitrarily positioned and orientated with respect to the laboratory coordinates, where qI and
qJ are the quaternion parameters of particles I and J with respect to the laboratory coordinates,73,74 respectively.

From Eq. (2), the dipolar interaction energy due to the induced dipole field of particle I on the induced dipole
of particle J results in

U IJ
dd =−

3vJ
pµm

2
(
fJ ·HJ

0
)
·HI, (17)

where HI is the field generated by the induced dipole of particle I at the position of particle J (Eq. (13)), HJ
0

is the applied magnetic field described in particle J coordinates; fJ and vJ
p are the Clausius-Mossotti tensor and

the volume of particle J, respectively. Since HI and
(
fJ ·HJ

0

)
are in different coordinate systems, we use the

relative transformation matrix AJI to transform the field in particle I coordinates into particle J coordinates.
The relative quaternions qIJ between particle I and particle J are calculated by73


qIJ

0
qIJ

1
qIJ

2
qIJ

3

=


qJ

0 qJ
1 qJ

2 qJ
3

−qJ
1 qJ

0 −qJ
3 qJ

2
−qJ

2 qJ
3 qJ

0 −qJ
1

−qJ
3 −qJ

2 qJ
1 qJ

0

 ·


qI
0

qI
1

qI
2

qI
3

 . (18)

The relative quaternions are incorporated in Eq. (4) to calculate the relative transformation matrix AJI =
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(AIJ)−1. Therefore, replacing Eqs. (3) and (13) into Eq. (17), the dipolar interaction energy due to the induced
dipole field of particle I on the induced dipole of particle J results in

U IJ
dd =−

(
27µm

16π
vJ

pvI
p

)(
fJ ·HJ

0
)
·
(
AJI ·G I · fI ·HI

0
)
, (19)

where fI is defined in Eq. (11). G I is defined in Eq. (14) and evaluated at the relative coordinate ξ of particle
J with respect to particle I. Similarly, the dipolar interaction energy due to the induced dipole field of particle
J on the induced dipole of particle I results in

UJI
dd =−

(
27µm

16π
vJ

pvI
p

)(
fI ·HI

0
)
·
(
AIJ ·G J · fJ ·HJ

0
)
, (20)

where G J is evaluated at the relative coordinate ξ of particle I with respect to particle J. Therefore, using Eqs.
(19) and (20), the pairwise dipolar interaction energy between particles I and J results in

Udd =U IJ
dd +UJI

dd . (21)

2.5 Dimensionless parameters

The induced dipole–field interaction energy is characterized by

α ≡ 3
2

µmvpf0H2
0

kBT
, (22)

which represents the dimensionless ratio between the magnetic energy and thermal energy, where f0 is the
maximum absolute component of the Clausius-Mossotti tensor, H0 is the applied magnetic field strength, vp rep-
resents the particle volume, kB is the Boltzmann constant, and T is the absolute temperature. The dimensionless
induced dipole–field interaction energy Ũ I

d f of a magnetizable ellipsoidal particle becomes

Ũ I
d f =−α

(
f̃I · H̃I

0
)
· H̃I

0, (23)

where f̃I = fI/ f0 is the normalized Clausius-Mossotti tensor of particle I, and H̃I
0 = HI

0/H0 is the unit vector
along the direction of the applied magnetic field described in particle I coordinates. Similarly, using the same
characteristic variables, we define the dimensionless induced dipole-dipole interaction parameter,

β ≡ 9
4

vI
pvJ

p

vm

µm f 2
0 H2

0
kBT

, (24)

which represents the ratio between dipolar interaction energy and thermal energy, where vm = 4
3 πr3

m represents
the volume of a reference spherical particle with a radius rm equal to the minimum semi-axis of both particles.
Therefore, the dimensionless pairwise dipolar interaction energy results in

Ũdd = Ũ IJ
dd +ŨJI

dd =−β
(
f̃J · H̃J

0
)
·
(
AJI · G̃ I · f̃I · H̃I

0
)
−β

(
f̃I · H̃I

0
)
·
(
AIJ · G̃ J · f̃J · H̃J

0
)
, (25)

where f̃I = fI/f0 and f̃J = fJ/f0 are the normalized Clausius-Mossotti factors of particle I and J, respectively.
H̃I

0 = HI
0/H0 and H̃J

0 = HJ
0/H0 are the unit vectors along the direction of the applied magnetic field, described in

particle I and J coordinates, respectively. The tensor G̃ I is evaluated at the relative position of particle J with
respect to particle I, while G̃ J is evaluated at the relative position of particle I with respect to particle J.
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Fig. 3 (a) Variation of medium permeability between the diamagnetic and paramagnetic permeabilities. (b) Relative perme-
abilities of the diamagnetic and paramagnetic particles with respect to the medium permeability.

The dimensionless parameters α and β change for different particle aspect ratios and sizes, as in the case of
binary or polydisperse suspensions. In the present analysis, we use the minimum semi-axes of both particles
(rm) as a characteristic length. Therefore, the dimensionless parameters α and β can be written as

α = αs (r̃xr̃yr̃z) , (26)

β =
3
2
f0αs

(
r̃I

xr̃I
yr̃I

z
)(

r̃J
x r̃J

y r̃J
z
)
, (27)

where αs ≡
2πµmr3

mf0H2
0

kBT represents the induced dipole-field interaction parameter of the equivalent sphere with
a radius rm equal to the minimum semi-axis of the particles, and r̃x = rx/rm, r̃y = ry/rm, and r̃z = rz/rm are the
normalized semi-axes of the particle.

2.6 Overlap condition and excluded volume between particles
The overlap condition between hard ellipsoids is based on three levels of approximation extended from the al-
gorithm explained in previous work.48,76 First, a separation between particles greater than the sum of the radii
of the circumscribed spheres around each particle guarantees no particle overlap. Second, we use the distance
between a particle surface and the three principal planes of a circumscribed rectangular prism on a neighboring
particle.76,77 The third approximation uses a refined particle mesh to ensure no particle overlap.76,77 Addition-
ally, we use the recently published methodology to quantify the excluded volume between two ellipsoids.48

2.7 Radial distribution function
We calculate the radial distribution function g(r̃) between the central particle and the surrounding satellite
particles by

g(r̃) =
1

(N−1)ρ

〈
N

∑
J=1,J 6=I

δ (r̃− r̃IJ)

〉
, (28)

where ρ is the particle density.68 We calculate the radial distribution function using 2× 104 steps uniformly
distributed over two million steps after the system is equilibrated.
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2.8 Simulation conditions

We simulate the directed assembly of binary suspensions composed of paramagnetic (P) and diamagnetic (D)
uniaxial ellipsoids with different sizes and aspect ratios suspended in a ferrofluid medium. The aspect ratio of
the uniaxial ellipsoid is r̃x/r̃y, where r̃x ≥ r̃y = r̃z. For the case of spheres (r̃x = r̃y = r̃z), we report the normalized
particle radius r̃ = r/rm, with rm = 1 µm. We change the aspect ratio r̃x/r̃y of uniaxial ellipsoids while keeping
their minimum axis constant. Additionally, one of the components in the binary suspension is dilute with
respect to the second component. The number ratio between diamagnetic and paramagnetic particles (ND/NP)

is in the order of 100 to guarantee a predicted equilibrium structure around the paramagnetic particle, as
shown in Figure S1. The total particle concentration (area fraction) is fixed at 0.1. The number of particles and
the box size for every simulation is in the Supplementary Information (Tables 2-4).

In the model validation, we use the same conditions reported in the experiments, with rm = 1.35 µm.28

The dimensionless radii for the paramagnetic and diamagnetic particles are r̃P = 1 and r̃D = 3.67, respec-
tively. Moreover, the magnetic susceptibility of the paramagnetic and diamagnetic particles are χP = 3 and
χD =−0.75×10−5, respectively. The relative permeability of the medium is calculated by78

χm =
π

18
φ f µ0

M2
d d3

kBT
, (29)

where d is the diameter of the magnetic nanoparticle (10 nm), Md is the domain magnetization (4.46×105A/m),
and φ f is the volume fraction of the ferrofluid. Using the reported values of φ f = 0.002− 0.02,28 the relative
permeability of the medium is in the range between 1.02 to 1.22. Furthermore, replacing in Eq. (22) the
reported value of the magnetic field of µ0H0 = 60 gauss,28 the dipole-field interaction parameters (αs) result
55× 103 and 58× 103 for medium permeabilities 1.02 and 1.22, respectively. Additionally, we analyze the
assembly at different fields of 6 and 12 gauss.

The relative permeabilities of the diamagnetic and paramagnetic particles are constants, µD/µ0 = 1 and
µP/µ0 = 1.3, respectively. The magnetic susceptibility of the paramagnetic spheres varies between 0.19 and
0.75.79–83 We use a representative magnetic susceptibility value of 0.3 for a paramagnetic sphere (rm =

1 µm). Furthermore, we use the magnetic susceptibility value of diamagnetic polystyrene beads equal to
−0.75×10−5.27,28 We modify the medium permeability between the diamagnetic and paramagnetic values, as
shown in Figure 3(a). Therefore, the relative permeability of diamagnetic and paramagnetic particles relative
to the ferrofluid medium changes, as depicted in Figure 3(b). Hereafter, we report the results as a function of
the relative permeability of the ferrofluid medium. The direction of the applied magnetic field is perpendicular
to the assembly plane. We include all N2 pairs with no cutoff radius to calculate the dipolar interaction between
particles. Furthermore, we set the length of the square simulation box larger than the length of the interaction.
The box size for every simulation is in the Supplementary Information. Additionally, the induced dipole-field
interaction parameter is set at αs = 100, 250, 500, 103,and 104, while the dipolar interaction parameter β is
directly proportional to αs, as described in Eq. (27).27,28

3 Results and Discussion

3.1 Pairwise dipolar interaction of two magnetizable ellipsoids

Figure 4 shows the pairwise dipolar interaction energy between two magnetizable particles with different
aspect ratios as a function of the medium permeability µm/µ0. The uniform magnetic field is perpendicular
to the plane of analysis. The top panel in Figure 4 represents the relative permeabilities of the particles
with respect to the medium permeability, and the markers correspond to the conditions reported in every
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Fig. 4 The induced dipole-dipole interaction energy with a fixed parallel orientation between (a) two paramagnetic spheres
r̃P = 1, (b) two diamagnetic ellipsoids r̃D

x /r̃D
y = 5, and (c) a paramagnetic sphere r̃P = 1 and a diamagnetic ellipsoid r̃D

x /r̃D
y = 5

as a function of the separation distance between particles and the medium permeability µm/µ0. The pairwise dipolar interaction
energy Udd is in kBT units. The magnetic field is directed perpendicular to the plane. The white region corresponds to the
excluded volume between particles for the considered particle orientations.

column. Figure 4(a) shows the dipolar interaction energy between two paramagnetic spheres r̃P = 1 is
repulsive and isotropic on the interaction plane. The magnitude of the dipolar interaction energy decreases
with the separation distance and as the medium permeability µm/µ0 increases. Furthermore, since the particle
magnetization is parallel to the applied magnetic field in magnetizable spheres, the dipolar interaction energy
is not dependent on the relative particle orientation between particles.

Figure 4(b) shows the pairwise dipolar interaction energy between two diamagnetic ellipsoids with aspect
ratio r̃D

x /r̃D
y = 5 as a function of the medium permeability. The results show that the maximum dipolar

interaction energy is along the minimum axis of the ellipsoid, i.e., along the sides of the ellipsoid. Like Figure
4(a), the dipolar interaction energy vanishes as the separation distance between particles increases. Moreover,
the magnitude of the dipolar interaction energy between ellipsoids is one order of magnitude greater than the
one between paramagnetic spheres. The difference is due to the proportionality of the interaction energy with
particle volume, as described in Eq. (24). Additionally, the dipolar interaction energy increases as the medium
permeability increases, reaching a maximum when µm/µ0 = 1.26.

Figure 4(c) shows the pairwise interaction energy between a paramagnetic sphere r̃P = 1 and a diamagnetic
ellipsoid with aspect ratio r̃D

x /r̃D
y = 5. The results show that the dipolar interaction energy well is located

along the sides of the ellipsoid, i.e., the sphere is more probable to be positioned along the side of the
ellipsoid. Similar to the previous cases, the interaction energy decreases as the separation distance between
particles increases. The dipolar interaction energy trend between a paramagnetic sphere and a diamagnetic
ellipsoid differs from the corresponding interaction between the individual components. In this case, the
dipolar interaction increases when relative particle permeabilities are in the same order of magnitude, i.e.,
µm/µ0 = 1.11− 1.19, and it decreases when the particle permeability approaches the value of the medium
permeability, i.e., µm/µ0 = 1.04 and 1.26. The dipolar interaction energy between an ellipsoid and a larger
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Fig. 5 Average number Ns of paramagnetic spheres in the binary structure as a function of medium permeability. The dashed
line and the black dots correspond to the reported experimental results from Ref.28. The colored dots represent the results
from Monte Carlo (MC) simulations at different magnetic fields. Renderings are shown at the top with the diamagnetic particle
(cyan) and the surrounding paramagnetic particles (red) for different medium permeabilities.

paramagnetic sphere follows the same trend as Figure 4(c) but with a larger magnitude (not shown) due to its
proportionality with particle volume (Eq. (24)).

3.2 Model Validation
The equilibrium binary structures composed of paramagnetic spheres (r̃P = 1) around a central diamagnetic
sphere (r̃D = 3.67) for different ferrofluid concentrations were recently reported, showing a tunable orien-
tational symmetry of paramagnetic spheres around the diamagnetic particle.27,28 We compare the results of
MC simulations with previously reported experiments of binary structures (Fig. 2 of Ref.28). The simulation
conditions for the validation are in Table 1 in the supplementary information. Figure 5 shows the simulation
and previous experimental results for the average number of satellite particles (Ns) of binary structures at
different medium permeabilities. The simulation results at different applied magnetic fields show a similar
trend as a function of the medium permeability compared to the reported experiments in Ref.28. Furthermore,
Figure S2 shows the radial distribution function g(r̃) between the diamagnetic particle (cyan) and surrounding
paramagnetic particles (red) for different medium permeabilities.

Even though the trend of Ns as a function of the medium permeability is similar to the experiments, there
is a mismatch between the simulations and experiments, which is attributed to two factors. First, the MC
simulations do not consider the electrostatic and van der Waals interactions between particles, which screen
the dipolar interaction and reduce the energy well near the central particle. Second, there is no magnetic
susceptibility measurement for the ferrofluid dilutions used in the experiments, which might generate a shift in
the relative permeability.28 The dipolar interaction between particles dominates the short-range behavior of g(r̃)
at different applied magnetic fields (Figure S2), which results in a similar pattern of Ns to variations of medium
permeability. Furthermore, the dipole-field interaction parameter αs in the experiments results in the order of
5× 104 for the applied field of µ0H0 = 60 gauss, promoting a long-range interaction between particles. The
distance from the central particle where the distribution of paramagnetic spheres becomes isotropic increases
as the applied magnetic field increases. To reduce the interaction length between particles in our simulations,
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Fig. 6 Snapshots of the Monte Carlo simulations of the directed assembly of binary systems composed of a central diamagnetic
ellipsoid with different aspect ratios (r̃D

x /r̃D
y ) surrounded by paramagnetic spheres (r̃P = 1) at αs = 104. The representative

assembled structures are presented as a function of the relative medium permeability.

we use smaller αs values, which also produce a similar pattern of the assembled structures, as shown in Figure
5.

3.3 Central Diamagnetic Ellipsoid
First, we will describe the main features of the assembled structures at high αs values. Then, we will
analyze the impact of dipolar interactions on the structures in section 3.6. Figure 6 show snapshots of MC
simulations of the directed assembly of a diamagnetic ellipsoid with different aspect ratios (1≤ r̃D

x /r̃D
y ≤ 9) and

paramagnetic spheres (r̃P = 1) as a function of the relative medium permeability µm/µ0. Figure S3 depicts
the radial distribution function g(r̃) for different conditions analyzed in Figure 6. The paramagnetic particles,
diamagnetic particles, and ferrofluid medium are colored red, cyan, and black, respectively. Hereafter, we will
use the same color scheme to represent the particles and medium in the subsequent figures. The top panel in
Figure 6 represents the relative permeabilities of the particles with respect to the medium, where the markers
correspond to the conditions reported in the snapshots. Simulation results reflect two main patterns of the
equilibrium structures. First, increasing the aspect ratio of the diamagnetic ellipsoid breaks the rotational
symmetry (fold symmetry) of the paramagnetic spheres around the diamagnetic particle. Second, the number
of the assembled paramagnetic spheres around the diamagnetic ellipsoid increases as the medium permeability
increases.

In the first pattern, the directed assembly of diamagnetic and paramagnetic spheres (r̃D = r̃P = 1) generates
structures with n-fold rotational symmetry around the diamagnetic sphere (Figure 6 - bottom row), tuning the
structures from 2-fold to 6-fold symmetry as medium permeability increases. It has the same phenomenological
behavior reported in Figure 5. Additionally, Figure 6 shows that as the aspect ratio r̃D

x /r̃D
y of the ellipsoid

increases, the rotational symmetry switches to a two-fold symmetry around the major axis of the diamagnetic
ellipsoid. Moreover, increasing the aspect ratio of the diamagnetic ellipsoid increases the number of assembled
paramagnetic (satellite) particles.
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Fig. 7 Snapshots of the Monte Carlo simulations of the directed assembly of binary systems composed of a paramagnetic sphere
(red) with radius r̃P = 5 and diamagnetic ellipsoids (cyan) with different aspect ratios r̃D

x /r̃D
y at αs = 104.

In the second pattern, changing the medium permeability tunes the dipolar interaction (Eq. (25)) and the
number of particles in the structure, as shown in every row for different aspect ratios in Figure 6. The relative
permeabilities of the paramagnetic and diamagnetic particles decrease as the medium permeability increases.
However, the maximum absolute value of the Clausius-Mossotti factor (Eq. (11)) of the paramagnetic particle
decreases, while the one of diamagnetic particles increases. Low medium permeabilities promote strong repul-
sive interactions between paramagnetic particles (Figure 4(a1)), limiting the number of paramagnetic spheres
around the diamagnetic particle. However, high medium permeabilities reduce the dipolar interaction between
paramagnetic particles (Figure 4(a4)), promoting close-packed configurations of paramagnetic spheres around
the diamagnetic particle. Thus, reducing the difference between the paramagnetic particle and medium perme-
abilities reduces the dipolar interaction between the particles and promotes close-packed structures around the
diamagnetic (central) particle.

3.4 Central Paramagnetic Sphere
Figure 7 shows screenshots of MC simulations of the directed assembly of binary suspensions composed of a
paramagnetic sphere (r̃P = 5) and diamagnetic (satellite) ellipsoids with aspect ratio 1 ≤ r̃D

x /γD
y ≤ 5. Further-

more, Figure S4 depicts the radial distribution function g(r̃) for different conditions analyzed in Figure 7. The
phenomenological behavior of the assembled structures is opposite to what Figure 6 shows. Simulation results
in Figure 7 show that the orientational symmetry of the diamagnetic ellipsoids around the paramagnetic sphere
increases as the medium permeability increases. Additionally, the rotational symmetry breaks down as the
aspect ratio of the diamagnetic particles increases and the medium permeability decreases. Both patterns are
correlated to the dipolar interaction (Figure 4) and packing arrangement between particles, as explained below.
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Fig. 8 Snapshots of the Monte Carlo simulations of the directed assembly of binary suspensions composed of a paramagnetic
sphere (red) with radius r̃P and diamagnetic ellipsoids (cyan) with different aspect ratios r̃D

x /r̃D
y at αs = 104 and µm/µ0 = 1.04.

The far-right column in Figure 7 shows that diamagnetic ellipsoids with different aspect ratios display
rotational symmetry around a paramagnetic sphere at high medium permeabilities. In particular, the as-
sembly of diamagnetic spheres around a paramagnetic sphere shows a rotational symmetry at high medium
permeabilities, which agrees with previously reported experiments.27 Furthermore, diamagnetic ellipsoids
(2 ≤ r̃D

x /r̃D
y ≤ 4) assemble into structures with rotational symmetry, where the minimum axis of the ellipsoids

is normal to the paramagnetic sphere. However, when r̃D
x /r̃D

y = 5, entropic interactions overcome dipolar
interactions, and the rotational symmetry breaks down due to the geometry frustration of the ellipsoids around
the sphere’s perimeter.

Besides, Figure 7 shows that the rotational symmetry breaks down as the medium permeability decreases,
promoting multilayer structures around the paramagnetic sphere, which results in an opposite trend as the
previous results shown in Figure 6. Low medium permeabilities promote weak dipolar interaction between
diamagnetic particles (Figure 4(b)), allowing them to form packing arrangements around the paramagnetic
sphere. In particular, due to geometric frustration, the minimum axis of the ellipsoids (r̃D

x /r̃D
y > 1) is tilted

with respect to the normal vector to the paramagnetic sphere, forming left or right-handed vortex structures,
and symmetric structures centered at the paramagnetic sphere. The symmetry breaking of the structures
becomes more apparent as the aspect ratio of the diamagnetic ellipsoids increases, where the diamagnetic ellip-
soids form multilayer structures with no predefined alignment of the ellipsoids around the paramagnetic sphere.

3.5 Binary enclosed structures

In this section, we analyze the conditions in which diamagnetic (satellite) particles form enclosed structures
around a paramagnetic sphere at αs = 104. We will analyze the impact of dipolar interactions on the structures
in the next section. Figures 8 - 9 show the snapshots of MC simulations of the directed assembly of a
paramagnetic sphere with different radii r̃P and diamagnetic ellipsoids with different aspect ratios r̃D

x /r̃D
y . The
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Fig. 9 Snapshots of the Monte Carlo simulations of the directed assembly of binary suspensions composed of a paramagnetic
sphere (red) with radius r̃P and diamagnetic ellipsoids (cyan) with different aspect ratios r̃D

x /r̃D
y at αs = 104 and µm/µ0 = 1.26.

relative medium permeability is µm/µ0 = 1.04 in Figure 8 and µm/µ0 = 1.26 in Figure 9. Furthermore, Figures
S4-S5 show the radial distribution function g(r̃) for different conditions analyzed in this section.

Figure 8 (µm/µ0 = 1.04) shows diamagnetic ellipsoids form a single particle enclosure under the following
conditions. The first one is when the radius of the paramagnetic particle is smaller or equal to the minimum
axis of the diamagnetic ellipsoids (r̃P = 1 with r̃D

x /r̃D
y = 2− 3). The second condition is when the diamagnetic

ellipsoids do not reach their maximum packing around the paramagnetic sphere, as shown in r̃P = 2 with
r̃D

x /r̃D
y = 4− 5. Results suggest the enclosed structures are correlated with the effective length of the dipolar

interaction that reaches only a few particle radii (Figure 4). However, the length of the dipolar interaction
increases as the radius r̃P of the paramagnetic sphere increases, which generates multilayer structures of
diamagnetic ellipsoids around the sphere, as explained in the previous section. However, the condition
of a particle enclosure fails for higher aspect ratios, where only two diamagnetic ellipsoids attach to the
paramagnetic sphere.

Figure 9 shows structures with a defined rotational symmetry at different combinations of a paramagnetic
sphere and diamagnetic ellipsoids at a high medium permeability (µm/µ0 = 1.26). As previously explained, the
repulsive dipolar interaction between the diamagnetic particles increases at high medium permeabilities, which
limits the arrangement of particles to a monolayer with different rotational symmetries. Simulation results
in Figure 9 show that varying the sphere radius and ellipsoid aspect ratio tunes the entropic and the dipolar
interactions, promoting open and close-packed structures. The diamagnetic ellipsoids form open-packed
structures if the assembled structure does not reach the maximum packing around the sphere. However, the
diamagnetic ellipsoids form close-packed structures once the maximum packing is reached. In both structures,
the assembly of diamagnetic ellipsoids forms structures with rotational symmetry around the paramagnetic
sphere. The ellipsoids lose their rotational symmetry around the paramagnetic sphere if the assembly of
diamagnetic ellipsoids is greater than the perimeter of the paramagnetic sphere. Figure 9 shows a limit in the
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paramagnetic radius (r̃P) to promote enclosed structures of diamagnetic ellipsoids with rotational symmetry
around the paramagnetic sphere. In a future contribution, we will explore different equilibrium phases, the
threshold between open and enclosed structures, and their correlation with competing entropic and dipolar
interactions.

3.6 Effect of the dipolar interactions

In this section, we analyze the effect of the dipolar interactions on the assembly of small structures. The
dipole-dipole interaction parameter β is modified by changing the dipole-field interaction parameter αs, as
described in Eq. (27). Figure 10 shows the radial distribution function g(r̃) at different values of αs for
representative cases depicted in Figures 6 – 9. We focus the analysis on the relevant region to analyze selected

Fig. 10 Radial distribution function g(r̃) between the central diamagnetic particle and surrounding paramagnetic particles for dif-
ferent dipole-field interaction parameters αs. (a) A central diamagnetic ellipsoid

(
r̃D

x /r̃D
y = 6

)
and satellite paramagnetic spheres(

r̃P = 1
)
at µm/µ0 = 1.11, (b) – (d) a central paramagnetic sphere

(
r̃P = 5

)
and satellite diamagnetic ellipsoids

(
r̃D

x /r̃D
y = 4

)
at

(b) µm/µ0 = 1.04, (c) µm/µ0 = 1.11, and (d) µm/µ0 = 1.26.
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cases. However, Figures S3 – S6 (Supplementary information) show the full radial distribution function at
different αs values for every case analyzed in Figures 6 – 9. In general, the dipolar interaction affects the
assembly of small structures in two main features: First, by promoting multilayers when dipolar interaction
between satellite particles is small, and second, by forming single enclosures at high dipolar interactions.

Figure 10(a) shows the radial distribution function at different values of αs for the assembly of a central
diamagnetic ellipsoid with aspect ratio r̃D

x /r̃D
y = 6 and satellite paramagnetic spheres (r̃P = 1) at a relative

permeability of µm/µ0 = 1.11 (See Figure 6). As the dipolar interaction increases, multiple peaks appear in
g(r̃) at radii smaller than the major semi-axis of the ellipsoid (r̃ < 6), indicating the assembly of paramagnetic
spheres along the sides of the diamagnetic ellipsoid. Figure S3 shows a similar g(r̃) pattern in the other
conditions analyzed in Figure 6 as αs increases. Furthermore, Figure S3 shows peaks on g(r̃) at long distances
from the central diamagnetic ellipsoid, which is correlated with the increasing dipolar interaction between
surrounding paramagnetic spheres as the medium permeability decreases, see top panel of Figure 6.

Figures 10(b) – (d) show g(r̃) at different αs values for the assembly of a central paramagnetic sphere with
r̃P = 5 and satellite diamagnetic ellipsoids with aspect ratio r̃D

x /r̃D
y = 4 at a relative permeability µm/µ0 of (b) 1.04,

(c) 1.11, and (d) 1.26 (See Figures 7 – 9). The second peak on g(r̃) at low αs values spaces out the first peaks as
the medium permeability increases due to the increasing dipolar interaction between the diamagnetic ellipsoids.
Furthermore, results show multiple peaks within the range of interaction of the central paramagnetic sphere,
as shown in Figures 10(b) – (c). The peaks are correlated with the formation of multilayers of diamagnetic
ellipsoids around the sphere, as shown in Figures 7 – 8. Contrary, Figure 10(d) shows the first peak on g(r̃)
becomes sharper as αs increases, which is reflected in the formation of a monolayer of ellipsoids around the
paramagnetic sphere, as shown in Figures 7 and 9.

4 Discussion

The induced dipole-dipole interaction energy quantified using the ellipsoid-dipole model in Eq. (25) shows
a dependence in position by the tensor G and orientation by the rotation transformation matrix AJI. The
ellipsoid-dipole model includes the effect of shape anisotropy on the tensor G , which is missing in the
point-dipole model. Moreover, the induced dipole-dipole interaction between magnetizable particles has a
similar dependence as the dipolar interaction between permanently magnetized particles.48 Therefore, Eq.
(25) applies to interacting magnetizable ellipsoids with different aspect ratios and material properties, as
shown in Figures 6 - 9.

The presence of the magnetic nanoparticles in the ferrofluid medium might generate a slight deviation in
the excluded volume, which is negligible due to the nanoparticle size being at least three orders of magnitude
smaller than the micron-size ellipsoids used in the analysis. However, the rotational symmetry on the
simulation results for binary suspensions composed of paramagnetic spheres around the central diamagnetic
sphere (Figure 5) shows a similar phenomenological behavior as a function of the medium permeability of
previously reported experiments.27,28 The results show that the pairwise interaction energy between ellipsoids
is a good approximation without considering the excluded volume effect of the magnetic nanoparticles in
the system. Previously reported experiments show the assembly of colloidal superstructures of paramagnetic
and diamagnetic micron-sized spheres form structures with a rotational symmetry around the central particle
as shown in Figure 1 of Ref.28. However, we did not find other experimental results reporting the assembly
of binary suspensions composed of magnetizable particles to validate the theoretical predictions using the
ellipsoid-dipole model. Numerical results show a large variety of assembled structures composed of binary
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ellipsoids by varying the particle aspect ratio and medium permeability, which alters the Clausius-Mossotti
factor and the dipolar interaction between particles. The results in this study justify further experiments to
complement previous analyses that show the equilibrium configurations of monodisperse magnetizable and
polarizable particles,26,53,55 as well as binary suspensions composed of particles with different aspect ratios
and material properties.13

Many numerical results focus on the entropic interactions between hard anisotropic particles,71,72,84–94 but
equilibrium structures of magnetic anisotropic particles depend on both dipolar and entropic interactions.34,48

We qualitatively describe the rotational symmetry of assembled structures to analyze competing entropic and
dipolar interactions and their dependence on particle aspect ratio, size, and medium permeabilities. Our
simulation results show enclosed structures with rotational symmetry at high medium permeabilities and
structures with broken symmetry at low medium permeabilities due to the competition between interactions.
However, the large variability of these structures requires further analysis to quantify the order parameters and
transition conditions between open and enclosed structures, as well as the transition between structures with
different rotational symmetries.

The dipolar interaction energy (Eq. (21)) evaluated using the ellipsoid-dipole model (Eq. (13)) is valid for
magnetizable ellipsoids with different aspect ratios and material properties. The ellipsoid-dipole model results
from the analytical solution of the ellipsoid under the influence of a uniform magnetic field,63 and it’s not
valid for other particle shapes with no quadratic surface representation.65 New models or extensions for the
Clausius-Mossotti factor (Eq. (11)) and the G tensor (Eq. (14)) are necessary to quantify the assembly of
structures composed of other particle shapes, such as superballs and superellipsoids.77,95–97

5 Conclusions

We report a closed-form analytical expression, the ellipsoid-dipole model, to quantify the dipolar interaction be-
tween magnetizable ellipsoids with different aspect ratios and material properties as a function of position and
orientation. We analyze the directed assembly of binary suspensions composed of paramagnetic and diamag-
netic ellipsoids in a ferrofluid medium with different permeabilities. The simulation results show that particle
aspect ratio, size, and particle/medium permeabilities tune the rotational symmetry and packing order of the
assembled binary structures. The aspect ratio of the diamagnetic (central) particle breaks the orientational
symmetry of the structures compared with the suspensions of binary spheres. Moreover, the rotational sym-
metry decreases as the aspect ratio of the diamagnetic (central) particles increases. Conversely, the simulation
results show that when the difference between diamagnetic particle permeability and medium permeability is
small, the weak repulsive interaction between diamagnetic (satellite) particles promotes aggregation without
orientational symmetry. Furthermore, the dipolar interaction promotes enclosed particle structures with rota-
tional symmetry when there is a significant difference between diamagnetic particle permeability and medium
permeability, i.e., for a strong dipolar interaction between satellite particles. However, the relative size between
particles tunes the competing entropic and dipolar interactions, promoting assembled enclosure formation with
broken rotational symmetry.
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