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Abstract

The rapid growth of resistant microorganisms has caused serious public health issue and poses 

great pressure on the current healthcare system. In this environment, the necessity of new 

antibiotic materials is even more prominent. Antimicrobial polymers are a type of polymers 

that has the ability to eradicate or impede the proliferation of microbes on their surfaces or 

within their surrounding environment. The mechanism of action of antibacterial polymers also 

makes them a perfect fit for medical devices. Despite great growing needs, the design of new 

antibacterial polymer with desired antimicrobial properties is still challenging. In this work, we 

present the first open-source database for antimicrobial polymers which consists of 489 entries, 

with 177 unique polymers possessing diverse structures and properties. Multiple predictive 

models were also designed and trained to classify the antimicrobial property of these polymers. 

The best-performing random forest model showed an averaged accuracy of 86.7% in a 10-fold 

cross-validation test. We also developed multiple guiding pipelines for the design of novel 

antimicrobial polymers.

1 Introduction

Infections and diseases caused by different harmful microorganisms including bacterial, fungi 

and virus have increased significantly over the past 20 years, especially in the fields of medical 

devices, hospital surfaces, medicine, food packaging and dental equipment1–5. The emergence 

of drug-resistant microorganisms caused by the overuse of antibiotics complicates the situation 

and increases the pressure on the public health system6. Currently existing antibiotics are 
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unable to effectively kill drug-resistant microorganisms, which makes the treatment of many 

diseases difficult. Meanwhile, traditional disinfectants are also not effective in eliminating the 

proliferation of resistant microorganisms spread in the environment7. As a result, new effective 

disinfectants are urgently needed.

In this context, antimicrobial polymers (AMPs) have gained attention from both academia and 

industry8–15. AMPs are a class of polymers that have the ability to kill or inhibit the growth of 

microbes on their surface or within their surrounding environment16. AMPs have antibacterial 

properties themselves or can be used as a matrix filled with biocides. According to different 

mechanisms of action, AMPs can be divided into three categories: a) polymers with 

antibacterial properties themselves, b) polymers with antibacterial properties obtained through 

chemical modification, and c) polymers that do not have antibacterial properties themselves 

but can carry biocidal polymers17. Due to their antimicrobial properties, AMPs are considered 

one of the primary candidates for new antibiotics. Unlike traditional low-molecular antibacterial 

agents, AMPs has no toxicity to the surrounding environment and has a longer service life18. 

More importantly, AMPs destroy the membrane of microorganisms on the surface through 

electrostatic interactions, the hydrophobic effect and the chelate effect, thus are less likely to 

cause resistance of microorganisms19. 

Although there is a tremendous need for AMPs from industry and the medical system, the 

design of new AMPs with desired properties is challenging. This is mainly because the design of 

new polymers is often guided by intuitive and experimental experience. Such trail-and-error 

method is time and labour intensive, while unable to stably produce products with certain 

target properties20–22. Moreover, polymers exhibit a higher degree of unpredictability in their 

structure-property relationships compared to small molecule compounds, primarily attributable 

to their larger molecular mass and intricate structures23. 

One possible solution is the employment of Machine learning (ML) algorithms. In the last ten 

years, a rapidly increasing number of ML studies have been reported in material science such as 

antimicrobial peptides24,25, ceramic materials26–28, and nanomaterials29–31. These applications 

have proved the ability of ML to provide precise prediction of material property and generate 

structures with desired properties, thus can accelerate the material innovation. ML has also had 

Page 2 of 32Polymer Chemistry



RUNNING HEAD TITLE 
(SHORTENED)

3

successful achievements in the field of polymer design. Significant achievements have been 

made for diverse polymer structures and properties such as polymer electrolytes32, polymers 

with high thermal conductivity33 or  charge transfer properties34, polymer–protein hybrids35, 

copolymers36 and polymer-blend materials37. Polymers with desired band gap, glass transition 

temperature, dielectric constant and other physicochemical properties have also been 

identified & synthesised with the aid of ML models38–43. However, the number of ML 

applications in the field of AMP is very limited despite the market demand and innovation 

capabilities44. 

ML is a data-driven method, and the lack of data is the main cause of the slow development of 

AMP using ML. Existing open-source polymer databases focus on the physical & chemical 

properties of polymers and no such AMP database has been built for this purpose. To address 

this problem, we have collected experimental AMP data from multiple resources which can be 

a critical foundation for the acceleration of AMP design with ML.

In this article, we will introduce this new AMP database and present our ML study focusing on 

the quantitative structure – activity relationship of AMPs. 

2 Database

To ensure the quality of the database, we only collected experimental AMP data reported in 

peer-reviewed papers. A total of 489 data entries were collected, including 177 unique polymer 

structures. The properties of these polymers were summarized in a table format to include the 

following information: polymer structure, molecular weight (Mw), bacteria inhibitory function 

measurement, and type of bacteria. The data are presented in the Supplementary Information 

and some polymer structures in the compiled database are demonstrated in Figure 1. 
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Figure 1. The chemical structure of eight polymer representatives of the database.

Molecular weight (Mw) refers to the average mass of the polymer molecules in a sample. It is a 

crucial parameter in polymer science and engineering because it directly affects the properties 

and behavior of polymers. In our database, the Mw value ranges from 0.19 to 4461.90 kg/mol, 

with the majority of the values being smaller than 50kg/mol as illustrated in Figure 2 which 

shows the distribution of our data in terms of polymer Mw. In a few cases, the molecules have 

Figure 2. The molecular weight count of polymers in the compiled database.
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very small number of repeating units, resulting in low Mw. These small molecules

 are part of a series where the number of the repeating units gradually increases to a large 

value. 

It is noted that there are many different ways of reporting the antimicrobial performance.  In 

general, the experiments evaluate the antimicrobial performance of the materials by comparing 

the differences in colonies before and after the application of the antimicrobial agent. Table 1 

summarizes the different types of measurement reported in the database. 

Table 1. Explanation of four different measurements and their proportion in the database.

Measurement Explanation Proportion

MIC(μg/mL) Minimum inhibitory concentration (MIC) is defined as the 

lowest concentration of the antibiotic agent to inhibit the 

growth of 100% of the targeted microorganism.

76.2%

% of bacterial 

killed

The percentage of targeting microorganism that is killed. 14.5%

MIC90(μg/mL) Minimum inhibitory concentration (MIC) is defined as the 

lowest concentration of the antibiotic agent to inhibit the 

growth of 90% of the targeted microorganism.

5.3%

Log reduction 𝐿𝑜𝑔 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = log10(
𝑐𝑖
𝑐𝑗

)

where 𝑐𝑖/𝑐𝑗 is the initial/final concentration. Log reduction 

of 1 equal to 90%, 2 equals to 99%, 3 equals to 99.9% and 

so on.

4%

The bacterial target of antimicrobial polymers is crucial. AMPs have different antimicrobial 

capabilities against different microorganisms. Based on different purposes, AMP can be 

designed to resist most microorganisms or have a high killing rate for certain types of 

microorganisms. In our database, the most commonly tested microorganisms are included, 
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such as E. coli, S. aureus and B. subtilis. The total number of data entries in the database against 

different targeting microorganisms are shown in Figure 3.

3 Method

Figure 3. The total number of data entries against different targets in the compiled database.
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Our three-phase workflow for developing predictive ML models is summarized in Figure 4. 

Preprocessing of the dataset. Polymers with MIC value of 200 μg/mL or less are categorized as 

active. Based on this threshold, the dataset was divided into a subset of 365 active polymers 

and a subset of 124 non-active polymers. 

Polymer structure representation. As the molecular weight of AMPs is high and their structures 

contain many repeating units, it is unnecessary to calculate the descriptors for the whole 

molecule. It is a common approach to represent the whole polymer molecule using its 

repeating unit (monomer), and the end groups. In this study, the structure of each polymer is 

represented by its monomer and the two end groups and saved in the .mol file, one file format 

that stores information about the atoms, bonds and other information of a molecule. The 

corresponding files can be accessed through the supporting documents. 

Descriptor generation. For simplicity, we used simplified molecular-input line-entry system 

(SMILES) to represent the repeating units and end groups45. It is worth noting that the 

structures are C-capped to allow for the calculation of descriptors. 

Figure 4. The three-phase machine learning workflow utilized in the study.
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In total, over 5666 polymer descriptors including constitutional, topological, geometrical and 

other descriptors have been computed based on the SMILES strings of the AMPs using the 

AlvaDesc software46. For polymers with multiple repeating units, the descriptors for each 

repeating unit were calculated independently and summed up based on their weight in the 

polymer. Additionally, for both end groups, 50 constitutional descriptors were calculated 

separately and within tandem with the descriptors for the repeating units. The molecular 

weight Mw (Kg/mol) reported in the original papers was also added as one descriptor. As a 

result, a total of 5767 (5666 + 50*2 +1) descriptors were calculated for each polymer.

Feature selection. To reduce the dimensionality of the dataset, firstly, descriptors with over 

90% of the entries as zeroes were removed. These features were regarded as carrying 

unsignificant information. Then descriptors with very high correlations were then excluded. The 

correlation analysis was done by calculating the correlation matrix of features and, for each 

features pairs with a correlation of 0.95 or higher, the second feature is removed. Highly 

correlated features tend to present similar information and provide non-additional insights. To 

further reduce the number of features, we innovatively applied 7 feature selection algorithms 

that cover the main methods used in past studies, including variance selection, correlation with 

target, information gain, L1-regularized logistic regression, least absolute shrinkage and 

selection operator (LASSO), Random forest and recursive feature elimination (RFE). These 

algorithms covers the three main categories of feature selection methods: filter, embedded and 

wrapper method. Each algorithm was set to select features to a specific number. Features 

selected by most of the algorithms were finally selected. 

Model Implementation. Several classification ML models were implemented using the scikit-

learn47 libraries and Python 3.10.6: Logistic Regression, Decision Tree, Random Forest, Support 

Vector Machine, K-nearest Neighbor, Naïve Bayes and Gradient Boosting47. 

• Logistic Regression48 is a statistical model that estimates the probability of a binary 

outcome based on one or more predictor variables, utilizing a logistic function to make 

predictions.
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• Decision Tree49 is a hierarchical structure where nodes represent features, branches 

represent decisions, and leaves represent outcomes, serving as a versatile tool for both 

classification and regression tasks.

• Random Forest50 is an ensemble learning method that constructs multiple decision trees 

during training and aggregates their predictions, reducing overfitting and improving 

accuracy by combining the results of multiple models.

• Support Vector Machine51 (SVM) is a supervised learning algorithm that finds the 

optimal hyperplane to separate data into different classes, relying on a subset of 

training data points called support vectors to define the decision boundary.

• k-nearest Neighbor (KNN)52 is a non-parametric algorithm that classifies new data points 

based on the majority class of their K closest neighbors, making predictions by 

identifying the most similar instances in the feature space.

• Naïve Bayes53 is a probabilistic classifier that applies Bayes' theorem with the 

assumption of feature independence, making it computationally efficient and 

particularly well-suited for text classification tasks.

• Gradient Boosting54 is an ensemble technique where weak learners, typically decision 

trees, are added sequentially to correct errors made by the previous models, resulting in 

a powerful predictive model with high accuracy.

• eXtreme Gradient Boosting55 (XGBoost) is a powerful, scalable machine learning library 

for gradient boosting, optimized for speed and performance. It supports various 

objective functions, efficient handling of missing data, and parallel processing. XGBoost 

is widely used for classification and regression tasks, especially for small datasets.

• Artificial neural network (ANN) consists of interconnected layers of neurons whose 

weights are adjusted during training to learn patterns from data. Through multiple 

training runs and evaluations, ANNs can achieve high accuracy and adaptability across 

diverse applications53.  

Models obtained using these methods were then optimized through a Grid Search 

algorithm, together with a 10-fold cross-validation (GSCV) algorithm for evaluation. 
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4 Results and discussion

4.1 Identification of significant features

From the large of descriptors, zero-like and highly correlated features were excluded, resulting 

in a set of 494 features remaining. The number of descriptors selected by each of the seven 

feature selection algorithms, as shown in Table 2, was set to 100 ± 10. The main reason for this 

approach is to avoid the bias of each algorithm. 

Table 2. Seven algorithms applied for feature selection. 

Algorithm Number of features selected Category

Variance selection 100 Filter method

Correlation with target 100 Filter method

Information gain 95 Filter method

L1-regularized logistic regression 103 Embedded method

LASSO 100 Filter method

Radom Forest 94 Filter method

RFE 100 Wrapper method

Subsequently, features selected by the seven algorithms were divided into 7 groups based on 

the numbers of algorithm identifying them as relevant descriptors, as shown in Figure 5. Three 

descriptors chosen by all seven algorithms were 'P_VSA_m_2', 'P_VSA_ppp_L' and 
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'P_VSA_charge_7'. Seven descriptors chosen by six different algorithms were 'P_VSA_LogP_2', 

'P_VSA_LogP_6', 'P_VSA_MR_6', 'P_VSA_s_4', 'P_VSA_charge_9', 'CATS 2D_05_LL' and 'AMR'.

In this study, 32 descriptors selected by five or more algorithms were used to form the final set 

of input descriptors for the ML models. Most of descriptors are highly independent to each 

Figure 5. Count of descriptors selected by different features selection algorithms.

Figure 6. Heatmap of correlation coefficient between descriptors selected. Red 

color indicates the high correlation coefficient values, blue otherwise. 
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other and their relationship are visualized in a heat map showing the correlation coefficients 

(see Figure 6). 

Herein, we provide a detailed explanation of the 32 selected descriptors:

Mw (kg/mol) 

Polymers are materials with large molecular weights and not surprisingly, this molecular weight 

descriptor was found to play an important role in affecting the antimicrobial property of such 

materials.

P_VSA-like 

P_VSA-like descriptors are based on the sum of atomic contributions to van der Waals surface 

area, based on the atoms having a property in a defined range of values56:

𝑉𝑆𝐴𝑖 = 4 ∙ 𝜋 ∙ 𝑅2
𝑖 ― 𝜋 ∙ 𝑅𝑖 ∙

𝑛𝐴𝑇

𝑗=1
𝑎𝑖𝑗 ∙ (

𝑅2
𝑖 ― (𝑅𝑖 ― 𝑔𝑖𝑗)2

𝑔𝑖𝑗
) (1)

𝑔𝑖𝑗 = 𝑚𝑖𝑛 𝑚𝑎𝑥 |𝑅𝑖 ― 𝑅𝑗|,𝑏𝑖𝑗 , (𝑅𝑖 + 𝑅𝑗) (2)

𝑏𝑖𝑗 = 𝑟𝑖𝑗 ― 𝑐𝑖𝑗 (3)

𝑃𝑉𝑆𝐴_𝑤_𝑘 =
𝑛𝐴𝑇

𝑖=1
𝑉𝑆𝐴𝑖 ∙ 𝛿(𝑤𝑖𝜖[𝑎𝑘―1,𝑎𝑘)) 𝑘 = 1,2,…𝑛 (4)

In equation (1), 𝑉𝑆𝐴𝑖 is the van der Waals surface area of the i-th atom, 𝑅𝑖 is the atomic van der 

Waals radius of the atom 𝑖, 𝑛𝐴𝑇 is the number of atoms, and 𝑎𝑖𝑗 are the elements of the 

adjacency matrix.

gij is the max value in the max value of |𝑅𝑖 ― 𝑅𝑗| 𝑎𝑛𝑑 𝑏𝑖𝑗 and (𝑅𝑖 + 𝑅𝑗).

 𝑏𝑖𝑗 denotes the ideal length of the bon formed by atom 𝑖 and 𝑗.

 𝑟𝑖𝑗 is the reference bond length and 𝑐𝑖𝑗 is a correlation term related to the bond multiplicity: 0 

for single bond, 0.1 for aromatic, 0.2 for double, and 0.3 for triple bonds. 𝑅𝑖 and 𝑐𝑖𝑗 are pre-

defined value, which can be accessed online at 

https://www.talete.mi.it/help/dproperties_help/index.html?p_vsa_like_descriptors.htm.

Page 12 of 32Polymer Chemistry



RUNNING HEAD TITLE 
(SHORTENED)

13

Based on equations 1, 2, and 3, P_VSA-like descriptors can be computed using equation (4) in 

which 𝛿 is a Kronecker delta function which equals to one for atoms with property value in the 

specified range, and zero otherwise. 𝑤𝑖 denotes one of the weighting schemes including: 'logP' 

for log P (octanol/water), 'MR' for molar refractivity, 'm' for atomic mass, 'e' for Sanderson 

electronegativity, 'ppp' for potential pharmacophore points and 'charge' for partial charge. 𝑘 is 

the bin number, indicating a pre-defined range.

O%

This descriptor calculates the relative occurrence frequency of O atom. 

ALOGP

ALOGP is the Ghose-Crippen-Viswanadhan octanol-water partition coefficient, defined as:

𝐿𝑂𝐺𝑃 =
𝑖
𝑛𝑖 ∙ ℎ𝑖

where 𝑛𝑖 is the atom of type i and ℎ𝑖 is the corresponding hydrophobicity contribution57.

CATS 2D

CATS represents Chemically Advanced Template Search descriptors. CATS 2D descriptors are a 

particular case of autocorrelation descriptors. They are defined as:

𝐶𝐴𝑇𝑆2𝐷𝑘(𝑢,𝑣) =
1
2 ∙

|𝑉|

𝑖=1

|𝑉|

𝑗=1
𝛿(𝑖;𝑢) ∙ 𝛿(𝑗;𝑣) ∙ 𝛿(𝑑𝑖𝑗;𝑘)

where 𝑢,𝑣 represent two atom types, 𝛿(𝑖;𝑢), 𝛿(𝑗;𝑣) and 𝛿(𝑑𝑖𝑗;𝑘) are three Kronecker delta 

functions equal to one if atom 𝑖 is of type 𝑢, atom 𝑗 is of type 𝑣, and the topological distance 𝑑𝑖𝑗 

is equal to 𝑘, respectively, zero otherwise. In CATS 2D descriptors, the atom-type definition is 

related to the concept of potential pharmacophore points (PPP). PPP is a generalized atom type 

defined considering some physicochemical aspects. CATS 2D descriptors are calculated based 

on a topological distance varying from 0 to 9 and any atom of the molecule can be assigned to 

none, one, or two atom types (DD, DA, DP, DN, DL, AA, AP, AN, AL, PP, PN, PL, NN, NL, LL) 

resulting in a vector of 150 frequencies.
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DELS

The molecular electro topological variation (DELS) is calculated as:

𝐷𝐸𝐿𝑆 =
𝑛𝑆𝐾

𝑖
|∆𝑖|

where nSK is the number of non-H atoms. DELS index could be considered as a measure of the 

total charge transfer in the molecule58.

J_B(i)

This descriptor is a Balaban-like index from the Burden matrix weighted by ionization potential. 

It is also highly correlated with multiple 2D matrix-based descriptors extracted from matrixes 

such as adjacency, topological distance, Laplace and Chi.

nCsp3_endgroup1

nCsp3 stands for the number of sp3 hybridized carbons. This descriptor indicates the count of 

sp3 hybridized carbons in one of the end groups (end group 1). This descriptor is highly 

correlated with the followings: Se (sum of atomic Sanderson electronegativities, scaled on 

Carbon atom), Si (sum of first ionization potentials, scaled on Carbon atom), nAT  (total number 

of atoms), RBN (number of rotatable bonds) and nH (number of Hydrogen atoms).

4.2 Modelling results 

To ensure the acquisition of generalized ML models, ten separate runs were performed for 

each ML algorithm and the average of accuracies was used to evaluate the performance of the 

obtained ML models. The variance of ten accuracies was also calculated as a metric to quantify 

the spread or dispersion of the accuracy values. Six out of seven models achieved an average 

accuracy of around 85% and only the Naïve Bayes model had a low accuracy of 67.2%, as shown 

in Table 3. The receiver – operating characteristic (ROC) curves for all algorithms are provided 
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in Figure S2 of the Supplementary Information. For the dataset in this work, Random Forest 

method is among those that achieved the highest average accuracy while also has the lowest 

variance, indicating its excellent predictive capability and a steady performance across different 

data sets.

Table 3. Statistical results of different ML models for antimicrobial polymers.

ML model Average accuracy Variance  

Logistic Regression 0.850 0.0015 

Decision Tree 0.858 0.0012 

Random Forest 0.877 0.0005 

Support Vector Machine 0.875 0.0010 

k-nearest Neighbor 0.836 0.0026 

Naïve Bayes 0.666 0.0047 

Gradient Boosting  0.863 0.0009 

XGBoost 0.867 0.0008 

ANN 0.854 0.0015 

4.3 Antimicrobial design principles

Since the trained models can provide accurate predictions as well as reveal the relationships 

between descriptors and polymer properties, we analysed the modelling results and determine 

guidelines for the design of new AMPs.

4.3.1 Logistic Regression

Logistic regression is a statistical model used for binary classification tasks, predicting the 

probability of an event occurring based on input features. The weights in logistic regression 

represent the strength and direction of the relationship between each feature and the log-odds 
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of the event happening, allowing us to interpret the impact of each feature on the antimicrobial 

property. 

As shown in Figure 7, a number of descriptors such as 'P_VSA_charge_2','P_VSA_charge_7', and 

'P_VSA_ppp_hal' showed a negative impact on the antimicrobial property. When the value of 

these descriptors decreases, the antimicrobial property tends to be stronger. On the other side, 

Figure 7.  Impact of each descriptor to antimicrobial property.
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the increase of the descriptors with positive impact such as 'J_B(i)', ' Mw (kg/mol)', 'AMR', and 

'P_VSA_i_2' would contribute to higher antimicrobial activity.

4.3.2 Decision Tree

Decision tree model is a popular machine learning algorithm that mimics human decision-

making by partitioning the data into subsets based on feature values. It iteratively selects the 

best features to split the data and creates a tree-like structure of decisions, making it 

interpretable and easy to understand. The decision tree obtained from this study is shown in 

Figure S1. Based on the decision boundary and classification accuracy, we can summarize the 

conditions that the descriptors need to meet to result in higher probability of active 

antimicrobial activities. It is worth noting that the guidelines consider multiple descriptors and 

will only work when the conditions for all of these descriptors are met. 

Figures 8 to 10 illustrate different parts of the decision tree (subtrees 1 to 3) separately for 

clarification, and the classification is highlighted. 

Figure 2. Decision boundary from decision tree (subtree 1). 
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Figure 3. Decision boundary from decision tree (subtree 2).

Figure 4. Decision boundary from decision tree (subtree 3).
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In the decision tree, each node corresponds to a set of polymers. When the majority of 

polymers in each node (more than 50%) are active, the node has a blue color, otherwise yellow. 

The number at the bottom of the node shows the exact number of active/non-active polymers 

in the node. For example, in the first node of subtree 1 (Figure 8), there are 329 active polymers 

out of a total number of 441 polymers. The number at the top of the node shows the condition 

for the descriptor values. Polymers satisfying the condition will be transferred to the lower left 

node of the subtree and otherwise to lower right one. When most of the polymer in a node are  

classified correctly, there will be no subsequent conditions. Following the different branches of 

conditions, we can find different sets of conditions for active and non-active polymers.

As shown in subtree 1 (Figure 8), there are 111 active polymers which have P_VSA_charge_14 

of no more than 5.495 and P_VSA_charge_7 of no more than 24.214. In contrast, polymers with 

P_VSA_charge_7 of greater than 24.214 and P_VSA_ppp_L of greater than 162.2 are suggested 

to be non-active and should be avoided in the design process. The subtree 1 also shows that 

polymers with P_VSA_charge_14 of no more than 5.495, but P_VSA_charge_7 and P_VSA_pp_L 

of greater than 24.214 and 162.2 respectively are more likely to be non-active. 

Going down the subtree, it can also be seen that most of polymers (54/61 or 88.5%) with 

P_VSA_pp_L of no greater than 162.2 are classified as active. And all of the remaining 10 

polymers with Mw (kg/mol) smaller than 3.4 are also active. For polymers with larger Mw, they 

could still be active if they have CATS2D_04_LL of smaller than 5.0 and Wap of smaller than 

188.

Following the same pattern, we can also find conditions for designing active polymers using 

subtrees 2 and 3. We summerise all the conditions for active polymers or non-active polymers 

in Table 4.

Table 4. Conditions for designing antimicrobial active and non-active polymers using decision 

tree algorithm.

Condition 1: P_VSA_charge_14 <= 5.495 & P_VSA_charge_7 <= 24.214
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Condition 2: P_VSA_charge_14 <= 5.495 & P_VSA_charge_7 > 24.214 & 

P_VSA_pp_L <= 162.2 & Mw (kg/mol) <= 3.4

Condition 3: P_VSA_charge_14 <= 5.495 & P_VSA_charge_7 > 24.214 & 

P_VSA_pp_L <= 162.2 & Mw (kg/mol) > 3.4 & CATS2D_04_LL <= 5.0 & Wap <= 

188

Condition 4: P_VSA_charge_14 > 5.495 & CATS2D_05_LL <= 3.5 & 

P_VSA_i_2 > 160.468 & P_VSA_charge_7 <= 112.738 & Wap <= 1816

Condition 5: P_VSA_charge_14 > 5.495 & CATS2D_05_LL <= 3.5 & P_VSA_e_2 

<= 183.036 & P_VSA_charge_7 <= 86.956

Conditions 

for active 

polymers

Condition 6: P_VSA_charge_14 > 5.495 & CATS2D_05_LL <= 3.5 & 

P_VSA_e_2 > 183.036 & O% <= 9.997 & DELS <= 30.107 & Mw (kg/mol) <= 

50.7

Condition 1: P_VSA_charge_14 <= 5.495 & P_VSA_charge_7 > 24.214 & 

P_VSA_pp_L > 162.2 

Condition 2: P_VSA_charge_14 > 5.495 & CATS2D_05_LL <= 3.5 & P_VSA_i_2 

<= 160.468 & P_VSA_LogP_2 <= 19.47

Condition 3: P_VSA_charge_14 > 5.495 & CATS2D_05_LL <= 3.5 & P_VSA_i_2 

<= 160.468 & P_VSA_LogP_2 > 19.47 & P_VSA_e_2 > 96.552 & DELS > 47.128

Condition 4: P_VSA_charge_14 > 5.495 & CATS2D_05_LL <= 3.5 & 

P_VSA_i_2 > 160.468 & P_VSA_charge_7 > 112.738 

Condition 5: P_VSA_charge_14 > 5.495 & CATS2D_05_LL <= 3.5 & P_VSA_e_2 

<= 183.036 & P_VSA_charge_7 > 86.956 

Conditions 

for non-

active 

polymers

Condition 6: P_VSA_charge_14 > 5.495 & CATS2D_05_LL <= 3.5 & 

P_VSA_e_2 > 183.036 & O% > 9.997 & P_VSA_charge_14 <= 10.787

4.3.3. Random Forest

Random Forest is an ensemble learning method that constructs a multitude of decision trees 

during training and outputs the mode of the classes for classification or the average prediction 

for regression59. Different from a single decision tree, Random Forest mitigates overfitting and 
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enhances accuracy by combining predictions from multiple decision trees trained on 

bootstrapped samples and using random subsets of features for each tree. Based on the best-

performing Random Forest model, the influence of each descriptor on the polymers’ 

antimicrobial property can be quantified and ranked. These top-ranking descriptors could be 

critical factors to the antimicrobial properties and can assist with future design of AMPs. In 

Table 5, we presented seven most relevant descriptors that could be used as a guideline for 

AMP design. The full list can be found in Table S1 of the Supplementary Information.

Table 5. Top ranking descriptors by Random Forest algorithm and their feature importance 

values.

Descriptor Importance Description Type

Mw (kg/mol) 0.121 Molecular weight Constitutional 

indices

P_VSA_LogP_2 0.060 P_VSA-like on logP, bin 2 P_VSA-like 

descriptors

O% 0.043 percentage of O atoms Constitutional 

indices

ALOGP 0.036 Ghose-Crippen octanol-water 

partition coefficient (logP)

 Molecular 

properties

CATS 2D_05_LL 0.034 CATS 2D Lipophilic-Lipophilic at lag 

05

Pharmacophore 

descriptors

DELS 0.033 Molecular electro topological 

variation

Topological 

indices

J_B(i) 0.013 Balaban-like index from Burden 

matrix weighted by ionization 

potential

2D matrix-

based 

descriptors

4.4. Evaluation of the Design Principles
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As presented above, the relationship between the polymer structure and the antimicrobial 

activity is complex and multidimensional. Inverse engineering requires careful consideration of 

various factors. In this section, we will illustrate how the design principles obtained using 

different ML techniques can be reflected in the compiled database using four polymers, two of 

which have very low MIC (high activity) (polymers 1 and 2, Figure 11) and 2 with very high MIC 

(low activity) (polymers 3 and 4, Figure 13). 

As shown in Figure 12, polymer 1 satisfies condition 3 of the decision tree guidelines while  

polymer 2 satisfies condition 4. These are classified by the model to be antimicrobial-active. 

It should also be noted that although the structure of polymer 2 is similar to polymer 1, 

polymer 2 has higher Mw and O% but lower CATS2D_05_LL, SHED_LL, P_VSA_LogP_2 and 

ALOGP. Logistic regression and random forest algorithms ranking suggest that polymer 2 has a 

higher MIC value than polymer 1.

Similarly, as shown in Fig. 14, polymer 3 satisfies the non-active condition 1, while polymer 4 
satisfies the non-active condition 2. They are classified by the decision tree model to be non-
active polymers.
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Figure 5. Chemical structures and descriptor values of two most active polymers in the database 

(polymer 1 (top) and polymer 2 (bottom)).
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Figure 6. Decision tree active conditions that are met by polymers 1 (top) and 2 (bottom).
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Figure 7.  Chemical structures and descriptor values of two least active polymers in the database 

(polymer 3 (top) and polymer 4 (bottom)).
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Figure 8. Decision tree non-active conditions that are met by polymers 3 (top) and 4 (bottom).

Conclusion

We have compiled and presented the first AMP database with experimental data from multiple 

peer-reviewed articles. This database is expected to contribute to the rapid, data-driven 

development of AMP for both research advancement and industry applications. We applied 
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innovative algorithms and identified 32 significant descriptors based on 7 different feature 

selection approaches. We also proposed multiple ML models with high predictive accuracy 

(around 85%) for antimicrobial properties. Furthermore, we determined the impact and 

importance of descriptors affecting the antimicrobial property of polymers. A guideline was 

proposed for the design of highly active AMPs. We hope this database and the discovery of 

influential descriptors can provide a solid and informative foundation for researchers in the 

field to explore new AMPs in the future.
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