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1 Introduction

Deep Learning-Driven Forward and Inverse Design

of Nanophotonic Nanohole Arrays: Streamlining De-
sign for Tailored Optical Functionalities and Enhancing
Accessibility’

Tasnia Jahan?, Tomoshree Dash?, Shifat E. Arman?, Reefat Inum ¢, Sharnali Islam?, Lafifa
Jamal?, Ahmet Ali Yanik¢ and Ahsan Habib* ¢4

In nanophotonics, nanohole arrays (NHAs) are periodic arrangements of nanoscale apertures in thin
films, offering versatile optical functionalities essential for various applications. Fully exploring NHASs'
optical properties and optimizing performance demands understanding both materials and geometric
parameters, posing a computational challenge due to numerous potential combinations. Efficient
computational modeling is crucial for overcoming this challenge and optimizing NHA-based device
performance. Traditional approaches rely on time-consuming numerical simulation processes for
device design and optimization. However, employing a deep learning approach offers an efficient so-
lution for NHAs design. In this work, a deep neural network within the forward modeling framework
accurately predicts the optical properties of NHAs, utilizing device structure data such as periodicity
and hole radius as model inputs. Additionally, we compare three deep learning-based inverse mod-
eling approaches—fully connected neural network, convolutional neural network, and tandem neural
network—to provide approximate solutions for NHA structures based on their optical responses.
Once trained, the DNN precisely predicts the desired result in milliseconds, enabling repeated use
without wasting computational resources. Leveraging a comprehensive dataset generated through
finite-difference time-domain (FDTD) simulations, the models are trained with over 6000 samples.
The forward model accurately predicts transmission spectra, while the inverse model reliably infers
material attributes, lattice geometries, and structural parameters from the spectra. Notably, the for-
ward model achieves remarkable accuracy, with an average Mean Squared Error (MSE) of 2.44 x 10~#
in predicting transmission spectra. Furthermore, the inverse design demonstrates high accuracy with
deviations of less than 1.5 nm for critical geometrical parameters. For experimental verification,
gold nanohole arrays are fabricated using deep UV lithography. Validation against experimental data
underscores the models’ robustness and precision. These findings indicate that the trained DNN
models offer accurate predictions, reflecting the optical behavior of nanohole arrays.

3 (NHAs) in two groundbreaking papers.[im These arrays consist of

1 In 1998, Thomas Ebbesen and colleagues unveiled the extraordi- ,  thin metal films perforated with holes ten times smaller than the

> nary phenomenon of light transmission through nanohole arrays

s wavelength of light. These seminal works sparked a revolution in
s the field of nanophotonics, opening up new possibilities for tai-
7 lored optical functionalities.®3"8l In recent years, the emergence
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of dielectric NHAs has divided the landscape into two distinct
categories: metallic? and dielectric.’? Metallic arrays, with plas-
monic resonances resulting from free electrons in metals. 112/ O
the other hand, dielectric arrays offer alternative optical function-
alities such as enhanced scattering, diffraction, and waveguiding
effects, without supporting strong plasmonic effects. Dielectric
metasurfaces have been introduced to address the high losses of
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Fig. 1 Spectral data prediction by the deep neural network based on nanohole array parameters: (i) Thickness (T), (ii) Hole Radius (R), (iii) Film
Material, (iv) Periodicity, and (v) Lattice. The inverse design can predict these structural parameters from transmission spectra.

metallic arrays, supporting resonances with higher quality fac- 4
tors (Q-factors) for improved performance and reduced losses. 13

Combining the strengths of both types opens new possibilities for 4z
enhanced light-matter interactions and tailored optical function- 4
alities. However, designing NHAs using conventional electromag- 4o
netic tools can be a time-consuming and challenging process for so
several reasons. Firstly, the intricate geometries and subwave- s
length features of NHAs often require computationally expensive
simulations, such as finite-difference time-domain (FDTD), which s3
demand substantial computational resources and time. Secondly, s«
generating a design that matches a target spectrum typically in-
volves a trial-and-error approach, requiring multiple iterations of ss
simulations and adjustments of design parameters. This itera- s
tive process becomes particularly cumbersome when aiming for ss
specific resonance frequencies or intricate optical functionalities. s
In addition, conventional methods still require costly simulations eo
even if the wavelength or resonance frequency is known, prevent- 6
ing efficient and streamlined design. 62

o

2

o

5

Deep learning, a subset of machine learning, comprises input, s
output, and hidden layers, enabling neural networks to learn non- s
linear relationships between input and output parameters from es
extensive datasets. 14 In the field of nanophotonics, deep learning e
has shown immense promise for forward modeling, where it pre- ss
dicts the optical response of a photonic system based on geomet- 6
ric parameters. 1% For instance, Li et al. employed a deep learning 7
algorithm to predict the circular dichroism spectrum of gold NHAs
with chiral structures.2® In another study, Li et al. accurately 7
predicted the magnetic field distribution of nanostructure-based 7
scatterers using deep learning. Conversely, inverse modeling 74
does the opposite, predicting geometrical parameters from op- s
tical data.’® These data-driven approaches offer faster and more 7

2| Journal Name, [year], [vol.], 1

cost-effective methods to obtain desired outputs.

A broad spectrum of neural network and machine learning ar-
chitectures has been rigorously explored to address diverse in-
verse design challenges in the field of nanophotonics. These
challenges encompass a variety of applications, ranging from
the inverse design of topological photonics2?, plasmonic waveg-
uides?L graphene-based metamaterials?2, plasmonic nanostruc-
tures?3 to multilayer spherical nanoparticles?®, At the heart
of these inverse models is the objective of deducing struc-
tural configurations from target spectra, which are character-
ized by distinctive peaks and valleys. Convolutional Neural Net-
works (CNNs) have demonstrated significant promise in extract-
ing salient features from these spectral signatures, facilitating
the inverse design of chiral metamaterials?®, plasmonic meta-
surfaces, and broadband metasurface absorbers28. One of
the principal challenges in nanophotonic inverse design is the is-
sue of non-uniqueness, where multiple structural configurations
can result in identical optical responses. This problem has been
effectively addressed through the deployment of tandem neural
networks, which has been applied to the inverse design of multi-
layer thin films2, silicon structural colors3%, core-shell nanopar-
ticles®L, and nanophotonic waveguides. Recently, Liu et al.
used a bidirectional tandem network to input color and spectrum
data directly to predict the structural parameters of Ag NHAs®3.
However, exploring a wider range of materials and lattice struc-
tures could make the deep learning method more applicable to
designing various NHAs. Additionally, including experimental
validation of the designed nanohole arrays would help bridge
the gap between theoretical predictions and practical implemen-
tation, further proving the robustness of the deep learning ap-
proach.
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In this work, we utilize deep neural networks to predict theis
optical properties and structural parameters of NHAs. We startiz
by generating transmission spectra through finite difference time-12s
domain (FDTD) simulations, creating the foundational datasetizs
for training our neural networks. Central to our approach is their
development of a forward-modeling neural network designed toi2s
accurately predict transmittance based on NHA parameters: (i)
thickness (T), (i) hole radius (R), (iii) film material, (iv) peri-1s0
odicity, and (v) lattice (Figure . Furthermore, we explore theis:
efficacy of three neural network architectures—fully connected, s
convolutional, and tandem networks—in predicting the parame-i33
ters of nanohole arrays from spectral data. Strategic optimizationisa
of hyperparameters significantly enhances model performance,iss
enabling precise and rapid characterization and optimization ofiss
NHAs. Our methodology exhibits versatility, extending to five dis-1ss
tinct types of NHAs and offering broad applicability in predictingiss
their structure and transmission spectra. Our models demonstrateiso
accuracy through key performance metrics: the forward modeli«o
has an average mean squared error (MSE) of about 2.44 x 107*1m
when predicting transmission spectra. On the other hand, the in-is
verse model shows high precision, with deviations less than 1.51s3
nm for critical geometric parameters. To validate the practical ap-1
plicability of our neural network predictions, we fabricate gold onuss
glass nanoholes. The fabricated nanoholes exhibit excellent con- .
cordance with the neural network’s forecasts, thereby underscor- ,,
ing the reliability and effectiveness of our deep learning-assisted ,,

inverse design methodology. o

2 Methodologies 150

2.1 Structure and Dataset Generation 152

We explored circular nanohole arrays (NHAs) arranged in square?ss
and hexagonal patterns. These arrays contained commonly used?s
metals such as gold (Au) and silver (Ag), as well as a dielec-155
tric material called hydrogenated amorphous silicon dioxide (a-156
SiOx:H). These materials demonstrated extensive applicability1s7
in a wide range of fields, including bio/chemical sensing, spec-158
troscopy, imaging, and beyond.243¢ Qur study included five com-15
binations of materials and array structures, namely: Au NHA in1e
hexagonal arrangement, Ag NHA in hexagonal arrangement, a-16!
SiOx:H NHA in hexagonal arrangement, Au NHA in square ar-162

rangement, and Ag NHA in square arrangement. 163
164
Table 1 Materials and Lattice Arrangements 165
166
Materials Lattice Arrangements 167
Material Index | Lattice Arrangement Index 165
Au 0 Hexagonal 0 160

Ag 1 Square 1
a-SiOx:H 2 e

171

172
For the forward neural network training, we selected key in-,,,

put parameters, comprising film thickness (T), hole radius (R),
periodicity (P), film material, and nanohole array lattice arrange-
ment. Systematically varying these parameters within defined'’
ranges, we explored film thickness from 100 nm to 150 nm, holeirs
radius from 50 to 100 nm for hexagonal lattice and 100 to 15017

Nanoscale

for square lattice, and periodicity from 475 nm to 525 nm, with a
step size of 5 nm. Total number of combinations was calculated
by multiplying the steps in each parameter: 11 for film thick-
ness, 11 for hexagonal lattice hole radius, 11 for square lattice
hole radius, and 5 for the different array types, resulting in a to-
tal of 6655 unique combinations. In our training instances, full-
wave numerical simulation utilizing the FDTD method was used
to calculate the transmittance spectra for various combinations of
these three parameters (T, R, and P) across five different types
of NHAs. To accurately model the infinite array effect, we imple-
mented periodic boundary conditions in the x and y directions,
while perfectly matched layers effectively suppressed reflections
at the top and bottom boundaries of the computational domain.
The refractive index of a-SiOx:H was 2.4 with an extinction coef-
ficient of 5 x 10~*.1% For Au, we used data published by "Johnson
and Christy,"2Z and for Ag, we used data published by "Palik"28,
We benchmarked our FDTD simulations by computing the trans-
mittance spectrum of a square lattice NHA and comparing it with
our experimental data (Supplementary Text 1 and Supplemen-
tary Figure S1a). Similarly, for a hexagonal lattice NHA, we com-
pared it with the experimental data available in published work
(Supplementary Figure S1b)1Y. The experimental spectra were
in excellent agreement with our simulations.

Employing a directed plane wave source with an incident elec-
tric field magnitude of 1 Vm~! and polarization along the x-axis,
our simulations produced comprehensive transmittance spectra,
spanning wavelengths from 550 nm to 1100 nm and compris-
ing 200 data points. To assess the diversity of the transmis-
sion spectra, we segmented them into five intervals for each type
of nanohole array. These intervals were as follows: 0-0.0001,
0.0001-0.001, 0.001-0.01, 0.01-0.1, and 0.1-10. Supplementary
Table S1 showed a notable presence of transmission spectra val-
ues within each range, indicating a diverse dataset. The final
dataset comprised 205 columns and 6655 rows. The first col-
umn denoted the NHA structure (hexagonal and square), while
the second column indicated the film material. Addressing the
inverse problems of predicting material and array arrangement,
we assigned numerical values of 0, 1, and 2 to these parame-
ters, as detailed in Table Thus, the first and second columns
of the dataset contained the assigned numbers 0, 1, and 0, 1, or
2, respectively. The third, fourth, and fifth columns provided the
precise values of thickness, radius, and periodicity. The remain-
ing 200 columns represented transmittance data points specific to
distinct wavelength values. Each row corresponded to a unique
combination of input parameters and their corresponding trans-
mittance data points, forming a comprehensive training dataset
for the forward neural network. Supplementary Text 2 shows the
data quality and diversity of our dataset. For inverse prediction,
we used the same dataset, using spectral data as input parameters
and lattice arrangements, material attributes, film thickness, hole
radius, and hole periodicity as output parameters.

2.2 Architecture and Training of Neural Networks

In our deep learning approach, the model underwent essential
training, validation, and testing processes to optimize its perfor-
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mance, assess generalization, and evaluate predictive capabilities. 225
To ensure balanced representation, we randomly split the dataset, 220
allocating 80% as the training set, 10% for validation, and thez23
remaining 10% for testing. Additionally, to promote consistentzs
and stabilized gradient descent steps, we normalized the struc-23»
tural parameter values before utilizing them as input parameters.2ss
Both the forward and inverse models were constructed using thezss
well-established open-source deep learning framework, Keras.®?2s
In the forward problem, which was predominantly a regressionass
task, we utilized the Mean Squared Error (MSE) as the loss func-2s7
tion, defined as: 238

239

! (Do

MSE = Y (! —if"*!)?
where n was the size of the batch data, #/*! denoted the spec-
tral points, and 1"’ represented the predicted value for the i
sample. We used the Adam optimizer to minimize the loss func-***
tion with the help of gradient descent, as it allowed for faster®®
convergence on nonlinear datasets. The training dataset was fed*"
into the network with a batch size of 128. The output layer used**
the linear activation function, and the rectified linear activation®*

function (ReLU) was employed for the dense layers. 7
248
In the inverse problem, we solved both classification and re-

gression tasks. We used Sparse Categorical Cross-Entropy as the250
loss function for classification problems. For the regression prob—251
lem, which predicted continuous and numeric outputs, we used .
the Mean Squared Error (MSE) loss function, 27204042 deﬁned253
as:

9

254

2

MSE = LY (5~ )
where m was the number of training examples, y; represented the?*®
ground truth values, and y; denoted the predicted values. The?’
ReLU activation function was used in the dense layers. In the2?®
output layers, the softmax and linear activation functions were?*
used for the classification and regression problems, respectively.®
Training parameter details are shown in Supplementary Table S2.2!
We evaluated the performance of a fully connected network, con-2?2
volutional neural network, and tandem neural network architec-2%3
ture tailored for the effective analysis and interpretation of one-2%
dimensional (1-D) spectral data. The architecture of the fully con-2%
nected network for solving the inverse problem comprised dense?%
layers and was the same as for the forward problem. As the in-27
verse problem was based on 1-D spectral data, our convolutional?%®
neural network comprised Conv 1D layers, max-pooling layers,

and batch normalization layers. 260

The tandem neural network was composed of two networks:27o
a trainable inverse network and a pre-trained forward net-2n
work. 2243 Together, they worked iteratively to minimize thezr
disparity between targeted and generated transmission spectra,2z3
thereby addressing the issue of non-unique solutions. The in-27a
verse network, which was subject to training, was designed tozrs
predict design parameters starting from a desired transmissionazs
spectrum. The forward network, fixed in its parameters (weightszr
and biases), predicted the transmission spectrum given a set ofzs
design parameters. Training began with the inverse networkarn
receiving a target transmission spectrum as input. It then pre-2so

4 Journal Name, [year], [vol.], 1

dicted a set of design parameters that could reproduce this spec-
trum. These predicted parameters were fed into the pre-trained
forward network, generating a reconstructed transmission spec-
trum. The error between this reconstructed spectrum and the
original target spectrum was included as training loss, with the
objective of minimizing this error through iterative adjustments
to the inverse network’s parameters. To mitigate the issue of
non-uniqueness—where multiple sets of design parameters could
yield similar transmission spectra—the tandem architecture har-
nessed the forward network’s fixed parameters as a guide. By
adjusting only the inverse network’s parameters, the system con-
verged towards a singular, optimal set of design parameters that
aligned with the forward model’s predictions.

2.3 Hyperparameter Optimization

Maximizing the performance of neural networks necessitates tun-
ing hyperparameters—diverse parameters affecting the learning
process, such as the learning rate, batch size, and the number of
hidden layers#4. This process involves minimizing a loss function
by selecting the most appropriate hyperparameters tailored to the
specific predictive task at hand. In this study, we used Optuna,“>
an open-source framework for optimizing hyperparameters. We
selected three crucial parameters as hyperparameters: the num-
ber of hidden layers, the number of nodes, and the learning rate.
We also optimized the number of convolutional layers and filters
for a 1D CNN. The number of dense layers and nodes in the 1D
CNN were optimized as well. We compared the performance be-
tween two cost functions: MSE and MAE. To optimize the process,
we used the Tree-structured Parzen Estimator (TPE) as a sampler.
Using TPE, we started with assumptions about the best hyperpa-
rameters. We refined these assumptions based on how different
hyperparameters affected model performance. The optimization
method began by defining an objective function. This function
took hyperparameters as input and returned a score or loss value.
For our forward and inverse models, we used Mean Squared Error
(MSE) loss values as the objective function. We defined a search
space for the TPESampler to explore. This search space included
a range of configurations: the number of dense layers (from 1 to
10), the number of nodes (from 100 to 2000), and the learning
rate (from 0.0001 to 0.001). For the 1D CNN, we varied the con-
volutional layers from 1 to 6 and the number of filters among 16,
32, 64, 128, and 256.

2.4 Fabrication of Gold Nanohole Arrays

Gold nanohole arrays in a square lattice arrangement were fab-
ricated using DeepUV photolithography at A = 248 nm. The
process involved patterning the substrates of 500 um thick, 100
mm diameter fused silica wafers (UniversityWafer, Inc.; UO1-
120920-5), which were cleaned with piranha solution (3 : 1
H,S04:H,0,) and solvent cleaned in acetone/isopropanol ultra-
sonic baths. Electron-beam deposition of 5 nm titanium (Ti) and
120 nm gold (Au) layers (Sharon Vacuum Co.) followed. NHAs
were patterned using Deep-UV photoresist (Microchem Corp. UV
210GS-0.3) spun to approximately 250 nm thickness, with a bot-
tom anti-reflection layer (Brewer Science Inc. DUV42P-6). The
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pattern was exposed with an ASML PAS 5500/300 Deep-UV step-su
per for 270 nm hole diameter and 475 nm to 525 nm periodicityss
and developed in AZ 300 MIF Developer (Integrated Micro Mate-sis
rials). 317
To prevent redeposition of sputtered material onto the photore-sis
sist sidewalls during ionbeam etch, the photoresist was etched tosio
produce a slanted sidewall with an Oxygen RIE etch at 10 mT,sx
200W RF in a Plasmatherm SLR 770. Ion beam etching (Ox-3x
ford Instruments, Ionfab 300 Plus) was then used to transfer thesz
NHA pattern into the metallic layers using a normal-incidence Ar-z:s
gon ion-beam of 150 mA beam current and 500 V beam voltage.s2
Subsequently, the photoresist was removed via dry etching in anszs
oxygen plasma asher (Technics PE II-A). This fabrication methodszs
enabled the production of subwavelength nanoholes over the en-s»r
tire wafer in a monolithic process. To protect the sensor surfacesss
from debris, the 4-inch wafer was coated with a layer of photore-sz
sist (Microchem Corp., UV6-0.8) and diced into 1:5 cmx 1:5 cmss
chips. The photoresist layer was removed using 5 minutes ultra-ss
sonication in an acetone solvent, followed by an isopropyl alcoholss.
(IPA) wash and N, dry steps. 333
3 Result and Discussion zz
3.1 Deep Learning Model Construction for Nanohole Arraysss
Design 337

In constructing an efficient deep learning model for nanoholesss
array design, we focused on selecting and optimizing key hy-330
perparameters, including the number of layers, the number of3+
nodes per layer, and the learning rate. We use the Tree-structureds+
Parzen Estimator (TPE) method for this optimization. Our op-3+
timal forward model includes five dense layers, each with 10803
nodes (Supplementary Figures S2a and S2b. The optimal learn-3+
ing rate is 0.00011. Dropout is employed as a regularization tech-3
nique in our neural network models, where a fraction of nodes,3

specifically 20%, are randomly deactivated during the trainings
348
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Fig. 2 (a) The architecture of Tandem Neural Network, comprising an367
inverse network connected to a pre-trained forward network; (b) Thesss

architecture of Convolutional Neural Network for inverse design. 360
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process. This method enhances the robustness of the model by
mitigating the risk of overfitting. By preventing the network from
becoming overly reliant on particular nodes, dropout improves
the model’s generalization capabilities, ensuring better perfor-
mance on unseen data.® The input layer has five nodes repre-
senting critical parameters like structural features, material types,
and array geometries, while the output layer has 200 nodes to
model various transmittance points (Supplementary Figure S3-
inset). Supplementary Figure S3 shows the efficacy of our model.
The learning curves indicate a rapid initial decrease in MSE for
both the training and validation datasets. The training MSE stabi-
lizes at a lower value, demonstrating effective learning, while the
slightly higher validation MSE indicates good generalization and
robust model performance (Supplementary Figure S3 and Sup-
plementary Text 3).

Our optimal fully connected inverse network includes six lay-
ers, each with 1180 nodes (Supplementary Figures S2c and S2d).
The optimal learning rate is 0.000325. The inverse model per-
forms both classification tasks, such as identifying the array’s ge-
ometry (square or hexagonal) and the materials involved (Au,
Ag, or a-SiOx:H), and regression tasks, including predicting hole
thickness, radius, and periodicity. For the tandem architecture,
this fully connected neural network is placed before the pre-
trained forward network, which consists of five dense layers, each
containing 1080 nodes (Figure[2h). The optimized hyperparame-
ters of the 1D CNN are presented in Supplementary Table 3. The
CNN is composed of five Conv 1D layers with filter numbers of 16,
32, 64, 32, and 256, and dense layers (four layers, each with 510
nodes) (Figure ). The optimized learning rate for the 1D CNN
is 0.00017. Target spectra with an array size of 1x200 are given
input to the first Conv 1D layer. Each Conv 1D layer is followed by
a max-pooling layer, and a batch normalization layer. We applied
ReLU as the activation function. In Figure S4 and Supplementary
Text 3, we present the training losses and validation losses for
three inverse models. These losses provide insight into how well
our models are learning from the training data over successive
epochs.

Following the optimization of our deep learning models, we
conduct a detailed evaluation to understand the impact of dataset
size on model performance. Supplementary Table S4 presents
the performance metrics, including mean absolute error (MAE)
and R-squared values, for dataset sizes of 4990 and 6655. The
MAE is expressed as MAE = %):|f,-fx,»|, where n is the size of
the test dataset, x; represents the ground truth values, and x; de-
notes the predicted values of structural parameters. A lower MAE
value indicates higher accuracy. The results show that increasing
the dataset size significantly enhances the model’s accuracy and
generalization capabilities. For instance, the inverse model (tan-
dem neural network) trained on the larger dataset exhibits the
lowest MAE and the highest R-squared values, underscoring the
importance of ample training data for achieving optimal perfor-
mance. Additionally, for forward prediction, the mean squared
error (MSE) decreases when the model is trained with a larger
dataset, further confirming the benefits of using extensive data.
Additionally, we examine the impact of different cost functions on
model performance. Supplementary Table S5 presents the MAE
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Fig. 3 Mean squared error distribution and forward prediction of NHA transmission spectrum. (a) Distribution of mean squared error (MSE) for 666
samples from the test dataset. The black dots represent the MSE for individual samples, while the red line indicates the average MSE of 0.000244. (b)
Comparison of the transmission spectrum calculated from DNN prediction (red dashed line) with numerical simulations (black solid line) for a square
lattice with Au film. Design parameters are T: 125 nm, R: 130 nm, P: 525 nm, where thickness, radius, and periodicity are denoted by T, R, and P
respectively. (c) Similar comparison for a square lattice with Ag film. Design parameters are T: 135 nm, R: 105 nm, P: 490 nm. (d) Similar comparison
for a hexagonal lattice with a-SiOx:H film. Design parameters are T: 125 nm, R: 90 nm, P: 505 nm. In all spectral plots, the DNN-predicted spectra
closely match the FDTD-simulated spectra, demonstrating the accuracy of the forward model.

and R-squared values for inverse models, and the MSE for for-sss
ward models, trained with both MAE and MSE as cost functions. ss7
The results highlight the superior performance of using MSE assss
the cost function for training both inverse and forward models. 38

390

3.2 Evaluation of Deep Learning Models for Nanohole Array_

Design -

For evaluating the performance of our forward modeling network, sos
we use data from a test set that the neural network has neverso
trained on. In Figure [3p, we show the distribution of MSE acrossass
the test samples. The average MSE, calculated between the pre-sos
dicted and actual transmission spectra of the test dataset, is ap-so
proximately 2.44 x 10~* (Figure —red line). To further assess thesos
model, we used a set of dimensional parameters as input for theso
neural network, generating corresponding transmission spectra.soo
In Figures and Supplementary Figure S5, the dashed redsn
curves represent the transmission spectra predicted by the neu-«02

6 | Journal Name, [year], [vol.], 1

ral network, while the black curves depict the true transmission
spectra simulated by FDTD. Notably, the NN-predicted and FDTD-
simulated spectra are highly comparable, essentially overlapping.
This alignment in resonant properties underscores the potential
applicability of the forward network in plasmonic sensor contexts.

In the inverse prediction, after training the neural networks, we
feed the spectra from the test dataset into the networks. The net-
works then predict the parameters: thickness (T), radius (R), and
periodicity (P), and we compare their performances in Figure
In Figure[dh, we exhibit the comparison of MAE between the true
parameter values and predicted parameter values given by the
three networks. The MAE for the tandem network is the lowest,
implying it has the highest accuracy. For thickness and radius,
the MAE values are below 1.3 nm, while periodicity prediction
exhibits an MAE value below 0.6 nm. In Figure [dp, we calculate
and compare the R? scores for thickness, radius, and periodicity
of the three networks. A high R? score signifies strong agreement
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Fig. 4 Performance comparison of different neural network architectures,,,
for inverse design of nanohole arrays. (a) Mean Absolute Error (MAE)
between true values and predicted values for three different neural net-
work architectures: Fully Connected Network (red), 1D Convolutional*®
Neural Network (yellow), and Tandem Network (blue). The MAE is47
presented for the prediction of thickness, radius, and periodicity. Theass
Tandem Network shows the lowest MAE for thickness (0.93 nm), and,,,
radius (1.21 nm). (b) R-squared (R?) values for the same three neural
network architectures. Higher R? values indicate better predictive accu-"°
racy. The Tandem Network achieves the highest R? scores for thickness**
(0.986) and periodicity (0.996), whereas for radius (0.996) the value is452
identical to 1D CNN. The comparison demonstrates that the Tandem s
Network generally provides superior performance in terms of both MAE

445

4
and R? values across the different parameters.
455

456

between the predicted and actual values. In predicting thickness*”
and periodicity, the tandem network exhibits slightly higher R%4ss
scores compared to the other two networks, while for radius, its+se
score is similar to that of the 1D-CNN. 460

We further conduct accuracy analysis to assess the reliability+e:
and precision of our classification approach. For the classificationse2
problems concerning material identification and lattice arrange-4es
ment, our model’s accuracy converges to an impressive valuess
close to 1, as depicted in Figure [Sh. This signifies the model’sss
adeptness in perfectly classifying among the three distinct mate-4e6
rials and two lattice structures. This high accuracy underscores4s?
the robustness of our approach and its potential applicability in4ss
various material and structure recognition tasks. 469

Continuing from the robust accuracy of the retrieved geomet-470
rical values, we perform an additional validation step by utilizing+n

Nanoscale

the predicted parameters by the tandem network in FDTD sim-
ulations. These predicted structural parameters serve as inputs
to generate transmission spectra, shown as the red curve in Fig-
ure[5p, and then compared with the desired transmission spectra
(black curve) to confirm the effectiveness of our inverse network.
This approach is extended to generate Figure and Figure
S6 for different NHA structures. We observe a clear alignment
between the target spectra and those obtained from the recon-
structed dimensional parameters.

To verify the generalization ability, we test the tandem network
with nanohole array spectra and geometries that are completely
different from those in the training and test datasets (Supple-
mentary Text 4). The comparison between original values and
predicted values of thickness, radius, and periodicity is shown in
Supplementary Figures S7 and S8. It is clear that the retrieved
geometrical values from the tandem network are very close to
the original values. Results from these studies indicate that the
trained tandem network for inverse design is sufficiently reliable
even outside the dataset.

3.3 Assessing the Effectiveness of Deep Neural Network for
Nanohole Array Rapid Prototyping

Now that we have a fully developed deep-learning model avail-
able, we investigate its practical utility as a tool for rapidly proto-
typing the optical response of nanohole arrays. Using an experi-
mental validation method, we aim to determine the efficacy of our
deep neural network. For this purpose, we select a gold nanohole
array on a glass substrate as our test case. The fabrication process
involves deep-UV lithography, resulting in the creation of a gold
nanohole array, as depicted in the scanning electron microscopy
image shown in Figure [Bp. The optical setup designed for col-
lecting the transmission spectrum of the gold nanohole array is
illustrated in Figure [6h. Employing a Nikon TE 2000-U inverted
microscope coupled with an Ocean Optics HR4000 spectrometer,
we obtain all spectral data. The system utilizes a normally inci-
dent dia-illumination unpolarized broadband light source, span-
ning from 400 to 1100 nm, to capture the transmission spectrum
of the plasmonic nanohole array. This array’s transmission sig-
nals are captured using a Nikon microscope objective (10x, NA
=0.30), and the spectrometer records the data with a 100-ms in-
tegration time.

To test the neural network’s performance against real-world
data, we input geometric parameters to the forward model and
transmission spectrum to the inverse model (tandem network).
Importantly, these experimental datasets were not part of the
training data. In the forward network, the model is fed the
structural parameters (thickness, radius, and periodicity) as well
as lattice and material information. The comparison between
the predicted transmission spectrum and the experimental one
is shown in Figure [6k, where the DNN-predicted spectrum (solid
black curve) aligns closely with the experimentally measured one
(dashed red curve). Additionally, we apply the inverse network to
the measured spectra obtained from the fabricated nanohole ar-
ray devices. Running these spectra through the inverse network
and performing FDTD simulations with the predicted geometries
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Fig. 5 Inverse design (tandem network) results for target spectra randomly selected from the test dataset. (a) Training and validation accuracy as a
function of epoch for structure classification and material classification tasks. The plot shows the training accuracy and validation accuracy for both
tasks, with accuracy values stabilizing around 1 after approximately 50 epochs. (b) Comparison of target response and inverse designed response for a
square lattice with Au film. The target parameters are T: 125 nm, R: 150 nm, P: 515 nm, L: Square, and M: Au, where thickness, radius, periodicity,
lattice, and film material are denoted by T, R, P, L, and M respectively. The predicted parameters are T': 125 nm, R’: 151 nm, P": 515 nm, L: Square,
and M: Au. (c) Comparison of target response and inverse designed response for a square lattice with Ag film. The target parameters are T: 105
nm, R: 115 nm, P: 510 nm, L: Square, and M: Ag. The predicted parameters are T': 105 nm, R': 114 nm, P’: 514 nm, L': Square, and M": Ag.
(d) Comparison of target response and inverse designed response for a hexagonal lattice with a-SiOx:H film. The target parameters are T: 120 nm,
R: 80 nm, P: 525 nm, L: Hexagonal, and M: a-SiOx:H. The predicted parameters are T': 119 nm, R": 80 nm, P’: 524 nm, L': Hexagonal, and M':
a-SiOx:H. In all spectral plots (b), (c), and (d), the black solid curves represent the target transmittance spectra, while the red dashed lines represent
the transmittance spectra predicted by conducting FDTD calculations using the predicted structural parameters.

yield results illustrated in Figure[6{d. The observed agreement be-ss7
tween the spectrum generated from DL-predicted geometry (solidsss
black curve) and the experimentally acquired spectrum (dashedsss
red curve) further supports the model’s accuracy in predicting theao
geometrical parameters and optical response of nanohole arrays. 401

492
To explore the effect of about dataset size, we extend our, .

dataset to 7260 samples (by extending the periodicity to 530,
nm) and retrain our model. The performance improvements are,_
marginal. Supplementary Table S6 compares the two dataset496
sizes, showing closely matched performance metrics with slight497
discrepancies. These discrepancies suggest that as the dataset498
size increases, hyperparameters such as the number of nodes, lay-
ers, and learning rate need to be optimized. We further evaluate
the tandem neural network trained with 7260 samples using the
same experimental data used for the evaluation of the network

8 | Journal Name, [year], [vol.], 1

trained with 6655 samples. As shown in Supplementary Figure
S10, predictions from the two datasets closely match each other.
For the same target parameters, the predicted parameters are T’:
121 nm, R’: 142 nm, P’: 520 nm, L": Square, M’: Au. To gain more
confidence in our model, we perform an additional validation us-
ing experimental data. Supplementary Figure S10b shows that
our neural network predictions align well with the experimental
spectrum. The target parameters are T: 120 nm, R: 140 nm, P:
530 nm, L: Square, M: Au. For the dataset size of 7260, the pre-
dicted parameters are T’: 121 nm, R’: 141 nm, P: 530 nm, L
Square, M: Au. These results demonstrate the reliability of our
datasets and the model used for prediction.
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Fig. 6 Evaluation of forward and inverse model through comparing square Au NHA experimental data to DNN-predicted data. (a) Experimental
setup for measuring transmission spectra. (b) SEM image of the fabricated Square Au NHA. (c) Experimentally measured transmission spectra (black
solid lines) compared with DNN-predicted spectra (red dashed lines) for the forward model. The nanohole array parameters are specified as a square
lattice with thickness (T) of 120 nm, radius (R) of 140 nm, and periodicity (P) of 520 nm. (d) Design parameters of NHA geometry derived based on
the experimental transmission spectra by the inverse network (tandem). The predicted geometry is then fed into the Lumerical FDTD to produce a
transmission spectrum. The experimental transmission spectrum is shown by the black solid line and the spectrum based on inverse predicted geometry
is shown by the red dashed line. The target parameters are T: 120 nm, R: 140 nm, P: 520 nm, L: Square, M: Au, while the predicted parameters are

T': 121 nm, R’: 140 nm, P': 522 nm, L": Square, M": Au.

4 Conclusion 512
513
In this work, we’'ve developed deep learning models to expedite,,,

the design of nanohole arrays, integrating multiple materials and,
array patterns. Our dataset for training the model was gener-,
ated using Lumerical FDTD, with Optuna used to optimize the,,,
model hyperparameters. The remarkable precision of our forward,
model in predicting transmission spectra across diverse structural
features highlights its potential as a potent alternative to time-_,
consuming and computationally expensive electromagnetic simu-_,,

lation. 522

After comparing three different deep learning models for in-s»s
verse design, we chose the tandem network for its lowest MAEs2
and highest R2scores. This model accurately forecasts material at-sss

tributes, lattice geometries, and structural parameters from trans-
mission spectra substantially different from the training and test
set. Furthermore, our deep learning results align well with both
FDTD simulations and experimental data, demonstrating the reli-
ability of our model.

Our current model precisely predicts nanohole array character-
istics for Au, Ag, and a-SiOx:H arrays in hexagonal and square
array configurations. However, it also holds potential for broader
applications across a range of materials and types. By incorporat-
ing data from various materials and types into the model’s train-
ing, it can serve as a versatile prediction tool for diverse nanohole
arrays.

To design devices with superior performance beyond the lim-
itations of the training set, several strategies can be employed.
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First, incorporating a more diverse dataset with additional ma-s7s
terials and configurations can enhance the model’s predictive ca-s
pabilities. Data augmentation techniques, such as adding noisesso
or transformations, introduce diversity and improve generaliza-se:
tion4Z48,  Active learning frameworks enable the model to se-se
lect the most useful samples for labeling, continuously enhanc-
ing performance®?, Additionally, generative models like GANs">Uss3
and VAEs”! can be used to explore new design spaces. For in-
stance, Jiang and Fan showed that conditional GANs can effi-"*
ciently learn the key features of meta-gratings and generalizes585
them for broader design exploration®2. They incorporated ad-**
joint variable calculations directly into the GAN framework. This*”
allows them to rapidly generate new, high-performing designs®®®
that can even operate outside the parameters used for training.*®
As a future scope generative networks can be used to inverse de-5%
sign NHA devices that will exhibit better performance from the>"
training set. 592
Overall, this study paves the way for further exploration, partic-5
ularly by expanding the model’s repertoire to include data from aso
wider range of materials. This expanded scope would enable thesos
model to predict the structure and optical properties of a widesos
range of nanohole arrays, providing a powerful tool for tailoredsor
design on demand. Our model’s capability to integrate diversesos
lattice geometries and materials makes it suitable for various ap-se
plications, including chemical and biosensors, surface-enhancedsoo
Raman spectroscopy, and solar cell applications. 601
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The dataset generated and analyzed during the current study, including structural parameters and
transmission spectra, is available at Github at https://github.com/ahsan-ucsc/NHA-Inverse-
Design.git . Additionally, the code used for training the deep learning models and performing the
simulations is also available at the same repository.
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