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Deep Learning-Driven Forward and Inverse Design
of Nanophotonic Nanohole Arrays: Streamlining De-
sign for Tailored Optical Functionalities and Enhancing
Accessibility†

Tasnia Jahana, Tomoshree Dasha, Shifat E. Armanb, Reefat Inum c, Sharnali Islama, Lafifa
Jamala, Ahmet Ali Yanikc and Ahsan Habib∗ a,d

In nanophotonics, nanohole arrays (NHAs) are periodic arrangements of nanoscale apertures in thin
films, offering versatile optical functionalities essential for various applications. Fully exploring NHAs’
optical properties and optimizing performance demands understanding both materials and geometric
parameters, posing a computational challenge due to numerous potential combinations. Efficient
computational modeling is crucial for overcoming this challenge and optimizing NHA-based device
performance. Traditional approaches rely on time-consuming numerical simulation processes for
device design and optimization. However, employing a deep learning approach offers an efficient so-
lution for NHAs design. In this work, a deep neural network within the forward modeling framework
accurately predicts the optical properties of NHAs, utilizing device structure data such as periodicity
and hole radius as model inputs. Additionally, we compare three deep learning-based inverse mod-
eling approaches—fully connected neural network, convolutional neural network, and tandem neural
network—to provide approximate solutions for NHA structures based on their optical responses.
Once trained, the DNN precisely predicts the desired result in milliseconds, enabling repeated use
without wasting computational resources. Leveraging a comprehensive dataset generated through
finite-difference time-domain (FDTD) simulations, the models are trained with over 6000 samples.
The forward model accurately predicts transmission spectra, while the inverse model reliably infers
material attributes, lattice geometries, and structural parameters from the spectra. Notably, the for-
ward model achieves remarkable accuracy, with an average Mean Squared Error (MSE) of 2.44×10−4

in predicting transmission spectra. Furthermore, the inverse design demonstrates high accuracy with
deviations of less than 1.5 nm for critical geometrical parameters. For experimental verification,
gold nanohole arrays are fabricated using deep UV lithography. Validation against experimental data
underscores the models’ robustness and precision. These findings indicate that the trained DNN
models offer accurate predictions, reflecting the optical behavior of nanohole arrays.

1 Introduction
In 1998, Thomas Ebbesen and colleagues unveiled the extraordi-1

nary phenomenon of light transmission through nanohole arrays2
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(NHAs) in two groundbreaking papers.1,2 These arrays consist of3

thin metal films perforated with holes ten times smaller than the4

wavelength of light. These seminal works sparked a revolution in5

the field of nanophotonics, opening up new possibilities for tai-6

lored optical functionalities.3,3–8 In recent years, the emergence7

of dielectric NHAs has divided the landscape into two distinct8

categories: metallic9 and dielectric.10 Metallic arrays, with plas-9

monic resonances resulting from free electrons in metals.11,12 On10

the other hand, dielectric arrays offer alternative optical function-11

alities such as enhanced scattering, diffraction, and waveguiding12

effects, without supporting strong plasmonic effects. Dielectric13

metasurfaces have been introduced to address the high losses of14
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Fig. 1 Spectral data prediction by the deep neural network based on nanohole array parameters: (i) Thickness (T), (ii) Hole Radius (R), (iii) Film
Material, (iv) Periodicity, and (v) Lattice. The inverse design can predict these structural parameters from transmission spectra.

metallic arrays, supporting resonances with higher quality fac-15

tors (Q-factors) for improved performance and reduced losses.13
16

Combining the strengths of both types opens new possibilities for17

enhanced light-matter interactions and tailored optical function-18

alities. However, designing NHAs using conventional electromag-19

netic tools can be a time-consuming and challenging process for20

several reasons. Firstly, the intricate geometries and subwave-21

length features of NHAs often require computationally expensive22

simulations, such as finite-difference time-domain (FDTD), which23

demand substantial computational resources and time. Secondly,24

generating a design that matches a target spectrum typically in-25

volves a trial-and-error approach, requiring multiple iterations of26

simulations and adjustments of design parameters. This itera-27

tive process becomes particularly cumbersome when aiming for28

specific resonance frequencies or intricate optical functionalities.29

In addition, conventional methods still require costly simulations30

even if the wavelength or resonance frequency is known, prevent-31

ing efficient and streamlined design.32

Deep learning, a subset of machine learning, comprises input,33

output, and hidden layers, enabling neural networks to learn non-34

linear relationships between input and output parameters from35

extensive datasets.14 In the field of nanophotonics, deep learning36

has shown immense promise for forward modeling, where it pre-37

dicts the optical response of a photonic system based on geomet-38

ric parameters.15 For instance, Li et al. employed a deep learning39

algorithm to predict the circular dichroism spectrum of gold NHAs40

with chiral structures.16 In another study, Li et al. accurately41

predicted the magnetic field distribution of nanostructure-based42

scatterers using deep learning.17 Conversely, inverse modeling43

does the opposite, predicting geometrical parameters from op-44

tical data.18 These data-driven approaches offer faster and more45

cost-effective methods to obtain desired outputs.19
46

A broad spectrum of neural network and machine learning ar-47

chitectures has been rigorously explored to address diverse in-48

verse design challenges in the field of nanophotonics. These49

challenges encompass a variety of applications, ranging from50

the inverse design of topological photonics20, plasmonic waveg-51

uides21, graphene-based metamaterials22, plasmonic nanostruc-52

tures23, to multilayer spherical nanoparticles24. At the heart53

of these inverse models is the objective of deducing struc-54

tural configurations from target spectra, which are character-55

ized by distinctive peaks and valleys. Convolutional Neural Net-56

works (CNNs) have demonstrated significant promise in extract-57

ing salient features from these spectral signatures, facilitating58

the inverse design of chiral metamaterials25, plasmonic meta-59

surfaces26,27, and broadband metasurface absorbers28. One of60

the principal challenges in nanophotonic inverse design is the is-61

sue of non-uniqueness, where multiple structural configurations62

can result in identical optical responses. This problem has been63

effectively addressed through the deployment of tandem neural64

networks, which has been applied to the inverse design of multi-65

layer thin films29, silicon structural colors30, core-shell nanopar-66

ticles31, and nanophotonic waveguides32. Recently, Liu et al.67

used a bidirectional tandem network to input color and spectrum68

data directly to predict the structural parameters of Ag NHAs33.69

However, exploring a wider range of materials and lattice struc-70

tures could make the deep learning method more applicable to71

designing various NHAs. Additionally, including experimental72

validation of the designed nanohole arrays would help bridge73

the gap between theoretical predictions and practical implemen-74

tation, further proving the robustness of the deep learning ap-75

proach.76
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In this work, we utilize deep neural networks to predict the77

optical properties and structural parameters of NHAs. We start78

by generating transmission spectra through finite difference time-79

domain (FDTD) simulations, creating the foundational dataset80

for training our neural networks. Central to our approach is the81

development of a forward-modeling neural network designed to82

accurately predict transmittance based on NHA parameters: (i)83

thickness (T), (ii) hole radius (R), (iii) film material, (iv) peri-84

odicity, and (v) lattice (Figure 1). Furthermore, we explore the85

efficacy of three neural network architectures—fully connected,86

convolutional, and tandem networks—in predicting the parame-87

ters of nanohole arrays from spectral data. Strategic optimization88

of hyperparameters significantly enhances model performance,89

enabling precise and rapid characterization and optimization of90

NHAs. Our methodology exhibits versatility, extending to five dis-91

tinct types of NHAs and offering broad applicability in predicting92

their structure and transmission spectra. Our models demonstrate93

accuracy through key performance metrics: the forward model94

has an average mean squared error (MSE) of about 2.44× 10−4
95

when predicting transmission spectra. On the other hand, the in-96

verse model shows high precision, with deviations less than 1.597

nm for critical geometric parameters. To validate the practical ap-98

plicability of our neural network predictions, we fabricate gold on99

glass nanoholes. The fabricated nanoholes exhibit excellent con-100

cordance with the neural network’s forecasts, thereby underscor-101

ing the reliability and effectiveness of our deep learning-assisted102

inverse design methodology.103

2 Methodologies104

2.1 Structure and Dataset Generation105

We explored circular nanohole arrays (NHAs) arranged in square106

and hexagonal patterns. These arrays contained commonly used107

metals such as gold (Au) and silver (Ag), as well as a dielec-108

tric material called hydrogenated amorphous silicon dioxide (a-109

SiOx:H). These materials demonstrated extensive applicability110

in a wide range of fields, including bio/chemical sensing, spec-111

troscopy, imaging, and beyond.34–36 Our study included five com-112

binations of materials and array structures, namely: Au NHA in113

hexagonal arrangement, Ag NHA in hexagonal arrangement, a-114

SiOx:H NHA in hexagonal arrangement, Au NHA in square ar-115

rangement, and Ag NHA in square arrangement.116

Table 1 Materials and Lattice Arrangements

Materials Lattice Arrangements
Material Index Lattice Arrangement Index

Au 0 Hexagonal 0
Ag 1 Square 1

a-SiOx:H 2

For the forward neural network training, we selected key in-117

put parameters, comprising film thickness (T), hole radius (R),118

periodicity (P), film material, and nanohole array lattice arrange-119

ment. Systematically varying these parameters within defined120

ranges, we explored film thickness from 100 nm to 150 nm, hole121

radius from 50 to 100 nm for hexagonal lattice and 100 to 150122

for square lattice, and periodicity from 475 nm to 525 nm, with a123

step size of 5 nm. Total number of combinations was calculated124

by multiplying the steps in each parameter: 11 for film thick-125

ness, 11 for hexagonal lattice hole radius, 11 for square lattice126

hole radius, and 5 for the different array types, resulting in a to-127

tal of 6655 unique combinations. In our training instances, full-128

wave numerical simulation utilizing the FDTD method was used129

to calculate the transmittance spectra for various combinations of130

these three parameters (T, R, and P) across five different types131

of NHAs. To accurately model the infinite array effect, we imple-132

mented periodic boundary conditions in the x and y directions,133

while perfectly matched layers effectively suppressed reflections134

at the top and bottom boundaries of the computational domain.135

The refractive index of a-SiOx:H was 2.4 with an extinction coef-136

ficient of 5×10−4.10 For Au, we used data published by "Johnson137

and Christy,"37 and for Ag, we used data published by "Palik"38.138

We benchmarked our FDTD simulations by computing the trans-139

mittance spectrum of a square lattice NHA and comparing it with140

our experimental data (Supplementary Text 1 and Supplemen-141

tary Figure S1a). Similarly, for a hexagonal lattice NHA, we com-142

pared it with the experimental data available in published work143

(Supplementary Figure S1b)10. The experimental spectra were144

in excellent agreement with our simulations.145

Employing a directed plane wave source with an incident elec-146

tric field magnitude of 1 Vm−1 and polarization along the x-axis,147

our simulations produced comprehensive transmittance spectra,148

spanning wavelengths from 550 nm to 1100 nm and compris-149

ing 200 data points. To assess the diversity of the transmis-150

sion spectra, we segmented them into five intervals for each type151

of nanohole array. These intervals were as follows: 0-0.0001,152

0.0001-0.001, 0.001-0.01, 0.01-0.1, and 0.1-10. Supplementary153

Table S1 showed a notable presence of transmission spectra val-154

ues within each range, indicating a diverse dataset. The final155

dataset comprised 205 columns and 6655 rows. The first col-156

umn denoted the NHA structure (hexagonal and square), while157

the second column indicated the film material. Addressing the158

inverse problems of predicting material and array arrangement,159

we assigned numerical values of 0, 1, and 2 to these parame-160

ters, as detailed in Table 1. Thus, the first and second columns161

of the dataset contained the assigned numbers 0, 1, and 0, 1, or162

2, respectively. The third, fourth, and fifth columns provided the163

precise values of thickness, radius, and periodicity. The remain-164

ing 200 columns represented transmittance data points specific to165

distinct wavelength values. Each row corresponded to a unique166

combination of input parameters and their corresponding trans-167

mittance data points, forming a comprehensive training dataset168

for the forward neural network. Supplementary Text 2 shows the169

data quality and diversity of our dataset. For inverse prediction,170

we used the same dataset, using spectral data as input parameters171

and lattice arrangements, material attributes, film thickness, hole172

radius, and hole periodicity as output parameters.173

2.2 Architecture and Training of Neural Networks174

In our deep learning approach, the model underwent essential175

training, validation, and testing processes to optimize its perfor-176
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mance, assess generalization, and evaluate predictive capabilities.177

To ensure balanced representation, we randomly split the dataset,178

allocating 80% as the training set, 10% for validation, and the179

remaining 10% for testing. Additionally, to promote consistent180

and stabilized gradient descent steps, we normalized the struc-181

tural parameter values before utilizing them as input parameters.182

Both the forward and inverse models were constructed using the183

well-established open-source deep learning framework, Keras.39
184

In the forward problem, which was predominantly a regression185

task, we utilized the Mean Squared Error (MSE) as the loss func-186

tion, defined as:187

MSE =
1
n ∑(treal

i − t pred
i )2 (1)

where n was the size of the batch data, treal
i denoted the spec-188

tral points, and t pred
i represented the predicted value for the ith189

sample. We used the Adam optimizer to minimize the loss func-190

tion with the help of gradient descent, as it allowed for faster191

convergence on nonlinear datasets. The training dataset was fed192

into the network with a batch size of 128. The output layer used193

the linear activation function, and the rectified linear activation194

function (ReLU) was employed for the dense layers.195

In the inverse problem, we solved both classification and re-196

gression tasks. We used Sparse Categorical Cross-Entropy as the197

loss function for classification problems. For the regression prob-198

lem, which predicted continuous and numeric outputs, we used199

the Mean Squared Error (MSE) loss function,27,30,40–42 defined200

as:201

MSE =
1
m ∑(ȳi − yi)

2 (2)

where m was the number of training examples, yi represented the202

ground truth values, and ȳi denoted the predicted values. The203

ReLU activation function was used in the dense layers. In the204

output layers, the softmax and linear activation functions were205

used for the classification and regression problems, respectively.206

Training parameter details are shown in Supplementary Table S2.207

We evaluated the performance of a fully connected network, con-208

volutional neural network, and tandem neural network architec-209

ture tailored for the effective analysis and interpretation of one-210

dimensional (1-D) spectral data. The architecture of the fully con-211

nected network for solving the inverse problem comprised dense212

layers and was the same as for the forward problem. As the in-213

verse problem was based on 1-D spectral data, our convolutional214

neural network comprised Conv 1D layers, max-pooling layers,215

and batch normalization layers.216

The tandem neural network was composed of two networks:217

a trainable inverse network and a pre-trained forward net-218

work.32,43 Together, they worked iteratively to minimize the219

disparity between targeted and generated transmission spectra,220

thereby addressing the issue of non-unique solutions. The in-221

verse network, which was subject to training, was designed to222

predict design parameters starting from a desired transmission223

spectrum. The forward network, fixed in its parameters (weights224

and biases), predicted the transmission spectrum given a set of225

design parameters. Training began with the inverse network226

receiving a target transmission spectrum as input. It then pre-227

dicted a set of design parameters that could reproduce this spec-228

trum. These predicted parameters were fed into the pre-trained229

forward network, generating a reconstructed transmission spec-230

trum. The error between this reconstructed spectrum and the231

original target spectrum was included as training loss, with the232

objective of minimizing this error through iterative adjustments233

to the inverse network’s parameters. To mitigate the issue of234

non-uniqueness—where multiple sets of design parameters could235

yield similar transmission spectra—the tandem architecture har-236

nessed the forward network’s fixed parameters as a guide. By237

adjusting only the inverse network’s parameters, the system con-238

verged towards a singular, optimal set of design parameters that239

aligned with the forward model’s predictions.240

2.3 Hyperparameter Optimization241

Maximizing the performance of neural networks necessitates tun-242

ing hyperparameters—diverse parameters affecting the learning243

process, such as the learning rate, batch size, and the number of244

hidden layers44. This process involves minimizing a loss function245

by selecting the most appropriate hyperparameters tailored to the246

specific predictive task at hand. In this study, we used Optuna,45
247

an open-source framework for optimizing hyperparameters. We248

selected three crucial parameters as hyperparameters: the num-249

ber of hidden layers, the number of nodes, and the learning rate.250

We also optimized the number of convolutional layers and filters251

for a 1D CNN. The number of dense layers and nodes in the 1D252

CNN were optimized as well. We compared the performance be-253

tween two cost functions: MSE and MAE. To optimize the process,254

we used the Tree-structured Parzen Estimator (TPE) as a sampler.255

Using TPE, we started with assumptions about the best hyperpa-256

rameters. We refined these assumptions based on how different257

hyperparameters affected model performance. The optimization258

method began by defining an objective function. This function259

took hyperparameters as input and returned a score or loss value.260

For our forward and inverse models, we used Mean Squared Error261

(MSE) loss values as the objective function. We defined a search262

space for the TPESampler to explore. This search space included263

a range of configurations: the number of dense layers (from 1 to264

10), the number of nodes (from 100 to 2000), and the learning265

rate (from 0.0001 to 0.001). For the 1D CNN, we varied the con-266

volutional layers from 1 to 6 and the number of filters among 16,267

32, 64, 128, and 256.268

2.4 Fabrication of Gold Nanohole Arrays269

Gold nanohole arrays in a square lattice arrangement were fab-270

ricated using DeepUV photolithography at λ = 248 nm. The271

process involved patterning the substrates of 500 µm thick, 100272

mm diameter fused silica wafers (UniversityWafer, Inc.; U01-273

120920-5), which were cleaned with piranha solution (3 : 1274

H2SO4:H2O2) and solvent cleaned in acetone/isopropanol ultra-275

sonic baths. Electron-beam deposition of 5 nm titanium (Ti) and276

120 nm gold (Au) layers (Sharon Vacuum Co.) followed. NHAs277

were patterned using Deep-UV photoresist (Microchem Corp. UV278

210GS-0.3) spun to approximately 250 nm thickness, with a bot-279

tom anti-reflection layer (Brewer Science Inc. DUV42P-6). The280
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pattern was exposed with an ASML PAS 5500/300 Deep-UV step-281

per for 270 nm hole diameter and 475 nm to 525 nm periodicity282

and developed in AZ 300 MIF Developer (Integrated Micro Mate-283

rials).284

To prevent redeposition of sputtered material onto the photore-285

sist sidewalls during ionbeam etch, the photoresist was etched to286

produce a slanted sidewall with an Oxygen RIE etch at 10 mT,287

200W RF in a Plasmatherm SLR 770. Ion beam etching (Ox-288

ford Instruments, Ionfab 300 Plus) was then used to transfer the289

NHA pattern into the metallic layers using a normal-incidence Ar-290

gon ion-beam of 150 mA beam current and 500 V beam voltage.291

Subsequently, the photoresist was removed via dry etching in an292

oxygen plasma asher (Technics PE II-A). This fabrication method293

enabled the production of subwavelength nanoholes over the en-294

tire wafer in a monolithic process. To protect the sensor surface295

from debris, the 4-inch wafer was coated with a layer of photore-296

sist (Microchem Corp., UV6-0.8) and diced into 1:5 cm× 1:5 cm297

chips. The photoresist layer was removed using 5 minutes ultra-298

sonication in an acetone solvent, followed by an isopropyl alcohol299

(IPA) wash and N2 dry steps.300

3 Result and Discussion301

3.1 Deep Learning Model Construction for Nanohole Array302

Design303

In constructing an efficient deep learning model for nanohole304

array design, we focused on selecting and optimizing key hy-305

perparameters, including the number of layers, the number of306

nodes per layer, and the learning rate. We use the Tree-structured307

Parzen Estimator (TPE) method for this optimization. Our op-308

timal forward model includes five dense layers, each with 1080309

nodes (Supplementary Figures S2a and S2b. The optimal learn-310

ing rate is 0.00011. Dropout is employed as a regularization tech-311

nique in our neural network models, where a fraction of nodes,312

specifically 20%, are randomly deactivated during the training313
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Fig. 2 (a) The architecture of Tandem Neural Network, comprising an
inverse network connected to a pre-trained forward network; (b) The
architecture of Convolutional Neural Network for inverse design.

process. This method enhances the robustness of the model by314

mitigating the risk of overfitting. By preventing the network from315

becoming overly reliant on particular nodes, dropout improves316

the model’s generalization capabilities, ensuring better perfor-317

mance on unseen data.46 The input layer has five nodes repre-318

senting critical parameters like structural features, material types,319

and array geometries, while the output layer has 200 nodes to320

model various transmittance points (Supplementary Figure S3-321

inset). Supplementary Figure S3 shows the efficacy of our model.322

The learning curves indicate a rapid initial decrease in MSE for323

both the training and validation datasets. The training MSE stabi-324

lizes at a lower value, demonstrating effective learning, while the325

slightly higher validation MSE indicates good generalization and326

robust model performance (Supplementary Figure S3 and Sup-327

plementary Text 3).328

Our optimal fully connected inverse network includes six lay-329

ers, each with 1180 nodes (Supplementary Figures S2c and S2d).330

The optimal learning rate is 0.000325. The inverse model per-331

forms both classification tasks, such as identifying the array’s ge-332

ometry (square or hexagonal) and the materials involved (Au,333

Ag, or a-SiOx:H), and regression tasks, including predicting hole334

thickness, radius, and periodicity. For the tandem architecture,335

this fully connected neural network is placed before the pre-336

trained forward network, which consists of five dense layers, each337

containing 1080 nodes (Figure 2a). The optimized hyperparame-338

ters of the 1D CNN are presented in Supplementary Table 3. The339

CNN is composed of five Conv 1D layers with filter numbers of 16,340

32, 64, 32, and 256, and dense layers (four layers, each with 510341

nodes) (Figure 2b). The optimized learning rate for the 1D CNN342

is 0.00017. Target spectra with an array size of 1×200 are given343

input to the first Conv 1D layer. Each Conv 1D layer is followed by344

a max-pooling layer, and a batch normalization layer. We applied345

ReLU as the activation function. In Figure S4 and Supplementary346

Text 3, we present the training losses and validation losses for347

three inverse models. These losses provide insight into how well348

our models are learning from the training data over successive349

epochs.350

Following the optimization of our deep learning models, we351

conduct a detailed evaluation to understand the impact of dataset352

size on model performance. Supplementary Table S4 presents353

the performance metrics, including mean absolute error (MAE)354

and R-squared values, for dataset sizes of 4990 and 6655. The355

MAE is expressed as MAE = 1
n ∑ |x̄i − xi|, where n is the size of356

the test dataset, xi represents the ground truth values, and x̄i de-357

notes the predicted values of structural parameters. A lower MAE358

value indicates higher accuracy. The results show that increasing359

the dataset size significantly enhances the model’s accuracy and360

generalization capabilities. For instance, the inverse model (tan-361

dem neural network) trained on the larger dataset exhibits the362

lowest MAE and the highest R-squared values, underscoring the363

importance of ample training data for achieving optimal perfor-364

mance. Additionally, for forward prediction, the mean squared365

error (MSE) decreases when the model is trained with a larger366

dataset, further confirming the benefits of using extensive data.367

Additionally, we examine the impact of different cost functions on368

model performance. Supplementary Table S5 presents the MAE369
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Fig. 3 Mean squared error distribution and forward prediction of NHA transmission spectrum. (a) Distribution of mean squared error (MSE) for 666
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Comparison of the transmission spectrum calculated from DNN prediction (red dashed line) with numerical simulations (black solid line) for a square
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and R-squared values for inverse models, and the MSE for for-370

ward models, trained with both MAE and MSE as cost functions.371

The results highlight the superior performance of using MSE as372

the cost function for training both inverse and forward models.373

3.2 Evaluation of Deep Learning Models for Nanohole Array374

Design375

For evaluating the performance of our forward modeling network,376

we use data from a test set that the neural network has never377

trained on. In Figure 3a, we show the distribution of MSE across378

the test samples. The average MSE, calculated between the pre-379

dicted and actual transmission spectra of the test dataset, is ap-380

proximately 2.44×10−4 (Figure 3a-red line). To further assess the381

model, we used a set of dimensional parameters as input for the382

neural network, generating corresponding transmission spectra.383

In Figures 3b-3d and Supplementary Figure S5, the dashed red384

curves represent the transmission spectra predicted by the neu-385

ral network, while the black curves depict the true transmission386

spectra simulated by FDTD. Notably, the NN-predicted and FDTD-387

simulated spectra are highly comparable, essentially overlapping.388

This alignment in resonant properties underscores the potential389

applicability of the forward network in plasmonic sensor contexts.390

In the inverse prediction, after training the neural networks, we391

feed the spectra from the test dataset into the networks. The net-392

works then predict the parameters: thickness (T), radius (R), and393

periodicity (P), and we compare their performances in Figure 4.394

In Figure 4a, we exhibit the comparison of MAE between the true395

parameter values and predicted parameter values given by the396

three networks. The MAE for the tandem network is the lowest,397

implying it has the highest accuracy. For thickness and radius,398

the MAE values are below 1.3 nm, while periodicity prediction399

exhibits an MAE value below 0.6 nm. In Figure 4b, we calculate400

and compare the R2 scores for thickness, radius, and periodicity401

of the three networks. A high R2 score signifies strong agreement402
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Fig. 4 Performance comparison of different neural network architectures
for inverse design of nanohole arrays. (a) Mean Absolute Error (MAE)
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Tandem Network shows the lowest MAE for thickness (0.93 nm), and
radius (1.21 nm). (b) R-squared (R2) values for the same three neural
network architectures. Higher R2 values indicate better predictive accu-
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(0.986) and periodicity (0.996), whereas for radius (0.996) the value is
identical to 1D CNN. The comparison demonstrates that the Tandem
Network generally provides superior performance in terms of both MAE
and R2 values across the different parameters.

between the predicted and actual values. In predicting thickness403

and periodicity, the tandem network exhibits slightly higher R2
404

scores compared to the other two networks, while for radius, its405

score is similar to that of the 1D-CNN.406

We further conduct accuracy analysis to assess the reliability407

and precision of our classification approach. For the classification408

problems concerning material identification and lattice arrange-409

ment, our model’s accuracy converges to an impressive value410

close to 1, as depicted in Figure 5a. This signifies the model’s411

adeptness in perfectly classifying among the three distinct mate-412

rials and two lattice structures. This high accuracy underscores413

the robustness of our approach and its potential applicability in414

various material and structure recognition tasks.415

Continuing from the robust accuracy of the retrieved geomet-416

rical values, we perform an additional validation step by utilizing417

the predicted parameters by the tandem network in FDTD sim-418

ulations. These predicted structural parameters serve as inputs419

to generate transmission spectra, shown as the red curve in Fig-420

ure 5b, and then compared with the desired transmission spectra421

(black curve) to confirm the effectiveness of our inverse network.422

This approach is extended to generate Figure 5c-5d and Figure423

S6 for different NHA structures. We observe a clear alignment424

between the target spectra and those obtained from the recon-425

structed dimensional parameters.426

To verify the generalization ability, we test the tandem network427

with nanohole array spectra and geometries that are completely428

different from those in the training and test datasets (Supple-429

mentary Text 4). The comparison between original values and430

predicted values of thickness, radius, and periodicity is shown in431

Supplementary Figures S7 and S8. It is clear that the retrieved432

geometrical values from the tandem network are very close to433

the original values. Results from these studies indicate that the434

trained tandem network for inverse design is sufficiently reliable435

even outside the dataset.436

3.3 Assessing the Effectiveness of Deep Neural Network for437

Nanohole Array Rapid Prototyping438

Now that we have a fully developed deep-learning model avail-439

able, we investigate its practical utility as a tool for rapidly proto-440

typing the optical response of nanohole arrays. Using an experi-441

mental validation method, we aim to determine the efficacy of our442

deep neural network. For this purpose, we select a gold nanohole443

array on a glass substrate as our test case. The fabrication process444

involves deep-UV lithography, resulting in the creation of a gold445

nanohole array, as depicted in the scanning electron microscopy446

image shown in Figure 6b. The optical setup designed for col-447

lecting the transmission spectrum of the gold nanohole array is448

illustrated in Figure 6a. Employing a Nikon TE 2000-U inverted449

microscope coupled with an Ocean Optics HR4000 spectrometer,450

we obtain all spectral data. The system utilizes a normally inci-451

dent dia-illumination unpolarized broadband light source, span-452

ning from 400 to 1100 nm, to capture the transmission spectrum453

of the plasmonic nanohole array. This array’s transmission sig-454

nals are captured using a Nikon microscope objective (10×, NA455

=0.30), and the spectrometer records the data with a 100-ms in-456

tegration time.457

To test the neural network’s performance against real-world458

data, we input geometric parameters to the forward model and459

transmission spectrum to the inverse model (tandem network).460

Importantly, these experimental datasets were not part of the461

training data. In the forward network, the model is fed the462

structural parameters (thickness, radius, and periodicity) as well463

as lattice and material information. The comparison between464

the predicted transmission spectrum and the experimental one465

is shown in Figure 6c, where the DNN-predicted spectrum (solid466

black curve) aligns closely with the experimentally measured one467

(dashed red curve). Additionally, we apply the inverse network to468

the measured spectra obtained from the fabricated nanohole ar-469

ray devices. Running these spectra through the inverse network470

and performing FDTD simulations with the predicted geometries471
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Fig. 5 Inverse design (tandem network) results for target spectra randomly selected from the test dataset. (a) Training and validation accuracy as a
function of epoch for structure classification and material classification tasks. The plot shows the training accuracy and validation accuracy for both
tasks, with accuracy values stabilizing around 1 after approximately 50 epochs. (b) Comparison of target response and inverse designed response for a
square lattice with Au film. The target parameters are T: 125 nm, R: 150 nm, P: 515 nm, L: Square, and M: Au, where thickness, radius, periodicity,
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yield results illustrated in Figure 6d. The observed agreement be-472

tween the spectrum generated from DL-predicted geometry (solid473

black curve) and the experimentally acquired spectrum (dashed474

red curve) further supports the model’s accuracy in predicting the475

geometrical parameters and optical response of nanohole arrays.476

To explore the effect of about dataset size, we extend our477

dataset to 7260 samples (by extending the periodicity to 530478

nm) and retrain our model. The performance improvements are479

marginal. Supplementary Table S6 compares the two dataset480

sizes, showing closely matched performance metrics with slight481

discrepancies. These discrepancies suggest that as the dataset482

size increases, hyperparameters such as the number of nodes, lay-483

ers, and learning rate need to be optimized. We further evaluate484

the tandem neural network trained with 7260 samples using the485

same experimental data used for the evaluation of the network486

trained with 6655 samples. As shown in Supplementary Figure487

S10, predictions from the two datasets closely match each other.488

For the same target parameters, the predicted parameters are T’:489

121 nm, R’: 142 nm, P’: 520 nm, L’: Square, M’: Au. To gain more490

confidence in our model, we perform an additional validation us-491

ing experimental data. Supplementary Figure S10b shows that492

our neural network predictions align well with the experimental493

spectrum. The target parameters are T: 120 nm, R: 140 nm, P:494

530 nm, L: Square, M: Au. For the dataset size of 7260, the pre-495

dicted parameters are T’: 121 nm, R’: 141 nm, P’: 530 nm, L’:496

Square, M’: Au. These results demonstrate the reliability of our497

datasets and the model used for prediction.498
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4 Conclusion499

In this work, we’ve developed deep learning models to expedite500

the design of nanohole arrays, integrating multiple materials and501

array patterns. Our dataset for training the model was gener-502

ated using Lumerical FDTD, with Optuna used to optimize the503

model hyperparameters. The remarkable precision of our forward504

model in predicting transmission spectra across diverse structural505

features highlights its potential as a potent alternative to time-506

consuming and computationally expensive electromagnetic simu-507

lation.508

After comparing three different deep learning models for in-509

verse design, we chose the tandem network for its lowest MAE510

and highest R2scores. This model accurately forecasts material at-511

tributes, lattice geometries, and structural parameters from trans-512

mission spectra substantially different from the training and test513

set. Furthermore, our deep learning results align well with both514

FDTD simulations and experimental data, demonstrating the reli-515

ability of our model.516

Our current model precisely predicts nanohole array character-517

istics for Au, Ag, and a-SiOx:H arrays in hexagonal and square518

array configurations. However, it also holds potential for broader519

applications across a range of materials and types. By incorporat-520

ing data from various materials and types into the model’s train-521

ing, it can serve as a versatile prediction tool for diverse nanohole522

arrays.523

To design devices with superior performance beyond the lim-524

itations of the training set, several strategies can be employed.525
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First, incorporating a more diverse dataset with additional ma-526

terials and configurations can enhance the model’s predictive ca-527

pabilities. Data augmentation techniques, such as adding noise528

or transformations, introduce diversity and improve generaliza-529

tion47,48. Active learning frameworks enable the model to se-530

lect the most useful samples for labeling, continuously enhanc-531

ing performance49. Additionally, generative models like GANs50
532

and VAEs51 can be used to explore new design spaces. For in-533

stance, Jiang and Fan showed that conditional GANs can effi-534

ciently learn the key features of meta-gratings and generalizes535

them for broader design exploration52. They incorporated ad-536

joint variable calculations directly into the GAN framework. This537

allows them to rapidly generate new, high-performing designs538

that can even operate outside the parameters used for training.539

As a future scope generative networks can be used to inverse de-540

sign NHA devices that will exhibit better performance from the541

training set.542

Overall, this study paves the way for further exploration, partic-543

ularly by expanding the model’s repertoire to include data from a544

wider range of materials. This expanded scope would enable the545

model to predict the structure and optical properties of a wide546

range of nanohole arrays, providing a powerful tool for tailored547

design on demand. Our model’s capability to integrate diverse548

lattice geometries and materials makes it suitable for various ap-549

plications, including chemical and biosensors, surface-enhanced550

Raman spectroscopy, and solar cell applications.551
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The dataset generated and analyzed during the current study, including structural parameters and 
transmission spectra, is available at Github at https://github.com/ahsan-ucsc/NHA-Inverse-
Design.git . Additionally, the code used for training the deep learning models and performing the 
simulations is also available at the same repository.
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