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Design, System, Application Statement 

Nanoscale building blocks with selective polymer surface patterning represent a class of 

materials with unprecedented degree of programmability in spatial and orientational orderings. 

There “patchy” nanoparticles blend the toughness and optical properties of inorganic particles with 

the flexibility and reconfigurability of polymeric patches, providing a route for fabricating chiral 

and/or low-coordination multifunctional materials with immediate applications in cargo 

encapsulation, membrane filtration, sensing, and or optical computing devices. However, due to 

the similarity in length scales between polymeric patches and the nanoparticle cores, grand 

challenges in their a priori design lie in a lack of fundamental understanding of how the interplay 

between flexible patchy interactions and entropic forces associated with particle geometries 

ultimately influence their hierarchical, mesoscale morphologies. In this work, we combine theory 

and simulation to explicitly quantify the interplay between enthalpic and entropic forces governing 

interactions between nanoparticles with flexible patches. We show that these nanoscale-level 

interactions readily propagate to the mesoscale and present a predictive theoretical framework that 

can rigorously quantify such effects. Our theory shows that precision engineering of polymeric 

patchy interactions can produce a diverse suite of symmetry-breaking interactions between 

nanoparticles, opening newer avenues for designing hybrid organic-inorganic metamaterials. 
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Abstract

Selective nanoparticle surface patterning presents incredible promise for broadening 

programmable materials design into a space beyond “close-packed” morphologies. These “patchy” 

particles impose directional attractions between neighbors that favor the formation of low-

coordination, open structures previously inaccessible via their isotropically interacting 

nanoparticle counterparts. However, unlike patchy colloids, patches on nanoparticles are highly 

deformable, presenting challenges for their predictive design. Here, we present a multi-faceted 

approach combining theory and simulation to investigate the underlying forces governing 

interactions between nanoparticles with flexible patches. We first develop a thermodynamic 

perturbation theory to fundamentally capture the interplay between patch-patch merging and 

directional entropic forces in controlling particle organization. We then employ theoretical insights 

to explicitly consider how monomer geometry synergizes with monomer connectivity in sculpting 

the equilibrium morphologies for polymeric chains composed of anisotropic monomeric subunits. 

Theory predictions are then validated using simulations, with excellent agreement across both local 

and global length scales. Combined, our findings indicate that a large suite of orientational and 

structural diversity can be attained via precision engineering of how patch-patch and entropic 

forces between the anisotropic nanoparticles counterbalance each other. These findings on 

nanoscale patchy interactions offer newer avenues for directing the assembly process of novel 

polymeric and metamaterials.

Keywords: self-assembly, nanoparticle, polymer, theory, molecular simulation
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Introduction

Recent advances in nanoscale synthesis have resulted in a novel class of polymer 

functionalized nanoparticles (NPs) exhibiting patch-formation and symmetry breaking surface 

patterning1–5. Such “patchy” NPs impose specific spatial and orientational interactions relative to 

their neighboring particles that disfavor “close-packed” configurations, producing complex and/or 

low-coordination NP structural orderings6–16. Typical morphologies include the formation of 

porous superlattices8–12,14, host-guest configurations15–20, and/or chiral supramolecular motifs21–23 

– all of which are of interest as they exhibit macroscopic properties ideal for modern day 

applications. For example, host-guest and/or porous lattices exhibit tunability in cavity sizes, 

relevant for cargo encapsulation and filtration-based transport processes. Similarly, chiral 

superstructures exhibit unique optical/photonic responses that make them amenable for use in 

sensing and optical computing devices. Combined, these findings have enabled access to tunable, 

open-lattice morphologies using nanoscale synthetic building blocks, expanding both the space of 

their programmable complexity beyond “close-packed” morphologies as well as their potential for 

application in previously inaccessible fields4,24–27. 

A grand challenge hindering the inverse design of patchy, anisotropic NP assemblies, 

however, lies in understanding how patch-patch interactions between NPs influence their 

equilibrium spatial and orientational configurations. Unlike colloids whose patch thicknesses are 

small relative to particle size13,28–32, NPs possess patch thicknesses with sizes similar to their 

insphere radius1,3. This difference in thickness results in patch-patch interactions that are 

significantly more rigid for colloids as compared to NPs. In fact, recent experimental findings have 

revealed that patch-patch interactions produce “bonds” between NPs that can twist, relax, and 

dynamically reconfigure on the seconds timescale33, in contrast to the hours to days relaxation 

times observed for colloids34,35. In short, patchy NP interactions are highly flexible and exhibit 

bond-like rotational behaviors. This means that predictions of patch-mediated NP assemblies must 

balance the interplay between entropic forces due to shape anisotropy and NP-NP connectivity 

resulting from the flexible “bonds” that arise between patch merging.

Through this lens, bonding interactions between patchy NPs are reminiscent of flexible 

polymers, suggesting that ideas from polymer physics can be employed to provide insights into 

their equilibrium behaviors. While preliminary works from the polymers community have 

elucidated the role of anisotropic, ribbon-like monomers on chain conformations36, a generalized 
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framework capable of accounting for arbitrarily shaped monomer geometries remains elusive. 

Here, we present one framework capable of predicting the equilibrium spatial and orientational 

behaviors for systems of anisotropic NPs that accounts for both entropic and bonding interactions. 

Specifically, we generalize the idea of entropic forces between anisotropic particles37 to account 

for bonding constraints between different locations on the NP surface, reflecting the high degree 

of molecular patterning currently accessible in experimental systems4,5. We then employ our 

framework to develop a scaling theory that accurately predicts equilibrium chain statistics for 

systems of polymeric NPs connected via patch-patch merging, validated using simulations. 

Furthermore, we apply our results to predict previously reported behaviors of patchy triangular 

prism33 and polymeric “bundlemers”38 in the literature, showcasing our theory’s generalizability 

to experimentally relevant systems. Our work not only provides a fundamental understanding of 

the underlying forces governing patchy, anisotropic NP interactions, but also presents a 

generalization of polymer theory to consider the effect of monomer geometry on chain 

conformations. The former serves as a critical step for inverse design of patchy NP assemblies 

while the latter generalizes predictions for polymer conformations to complex systems containing 

polyhedrally shaped (POSS, carborane, fullerene), conjugated, and/or aromatic monomers39.

Theory

Shape Anisotropy and Entropic Bonding Theory (EBT). To capture the interplay between inter-

NP connectivity and directional entropic forces resulting from particle geometry, we propose a 

generalization of entropic bonding theory37 (EBT). Here, it is instructive to describe the 

fundamental concepts of the original theory. Briefly, EBT quantifies the local excluded volume 

between neighboring NPs to compute their free energy of interactions. Excluded volume 

quantification employs the ansatz of pseudoparticles (pPs) to define a mean-field interaction 

potential (Eq. 1) between NPs and pPs that is then coupled with the Smoluchowski equation (Eq. 

2) to solve for the free energy (𝐸) of a given set of NP configuration37: 

𝛽𝑈𝑚(𝑟) = 𝑟―2 ln 𝜌𝑝𝑃(𝑟) ― 𝛽𝜇𝑝𝑃 +
𝑁

𝑖
𝛽𝑈𝑐𝑜𝑟𝑒(𝑟) (1)

∇2 + 𝛽∇2𝑈𝑚 ― (𝛽∇𝑈𝑚)2 𝜌𝑝𝑃 = 𝐸𝜌𝑝𝑃 (2)

where 𝑟 defines the pP-NP center-to-center separation, 𝜌𝑝𝑃 and 𝜇𝑝𝑃 are the density distribution 

and chemical potential of pPs, respectively, and 𝛽 = 1/𝑘𝑇. 𝑈𝑐𝑜𝑟𝑒(𝑟) represents a hard-core 
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repulsion between each NP and all pPs to prevent particle overlaps. Note that Eq. 1 defines the 

single reference NP limit. To generalize to multiple NPs, 𝜌𝑝𝑃 is constructed by summing over pP 

densities about each individual NP within the system. Furthermore, solutions to Eqs. 1 – 2 take 

advantage of change of variables into the coordinate spaces commensurate with particle 

geometries to define “shape harmonics” for NPs (Fig. 1a). In the case of spherical NPs, these shape 

harmonics are identical to the well-known spherical harmonics obtained as solutions to the 

homogenous, zero-potential form of Eq. 2 (i.e. ∇2𝜌𝑝𝑃 = 0). For this reason, when coupled with its 

corresponding radial solutions, such shape harmonics are defined as “shape orbitals” in analogy to 

the correspondence between spherical harmonics and atomic orbitals from quantum mechanics 

(QM). Through the lens of EBT, shape orbitals provide a metric for direct quantification of the 

Figure 1. Connectivity-Generalization for Entropic Bonding Theory (cEBT). Shape 
orbitals for a) cube and octahedron from EBT. b) Entropic bond potential (𝐸𝑏𝑜𝑛𝑑) from EBT 
between pairs of cubes and octahedra. 𝑟 is the center-to-center distance and 𝑑𝑖𝑛𝑠𝑝ℎ𝑒𝑟𝑒 is the 
insphere diameter of each shape. Visualization of the optimal orientations and relative center-
to-center spacing between the particles for c) cubes and d) octahedra reveals that orbital overlap 
drives energy minimization. Shape orbitals for e) 2D patchy triangle and 3D patchy cube using 
cEBT. cEBT calculations for pairs of triangles with the same relative orientation, but with f) 
aligned versus g) misaligned bonds reveal shifts in the pP equilibrium distributions. h) and i) 
show analogous bond alignment versus misalignment for patchy cubes. j) Predicted cEBT 
bonding energy between aligned (blue) vs misaligned (orange) configurations. k) Comparison 
of bonding potential predicted from cEBT and a FENE-WCA bond indicate an analogous 
functional form between both potentials. Red dots and arrows indicate the bonding sites.
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emergent directional interactions between NPs. Maximization of shape orbital overlaps between 

neighboring NPs minimizes their free energy of interaction to produce an “entropic bond,” 

analogous to how atomic orbital overlaps in QM drive covalent bond formation. An example of 

the minimization of the free energy (𝐸𝑏𝑜𝑛𝑑) between two neighboring cubes and two neighboring 

octahedra using EBT is shown in Fig. 1b-d. Note that the higher orbital overlap between octahedra 

produces both longer range and a net lower free energy. For its full derivation, we refer the reader 

to the original publication on EBT37.

Connectivity-Generalization of Entropic Bonding Theory (cEBT). To bridge the predictive 

capabilities of EBT to systems of connected, anisotropic NPs, we first note that shape orbitals (Fig. 

1a) are plots of 𝜌𝑝𝑃, which are the general solutions for the pP distribution from Eqs. 1 – 2. By 

definition, 𝜌𝑝𝑃, therefore, quantifies the local excluded volume imposed from the reference NP on 

its neighbors. Our connectivity-generalization to EBT (cEBT) assumes that connectivity imposes 

an additional excluded-volume constraint with other NPs: that is, the space between two bonded 

NP locations also cannot be occupied by other NPs. Physically, this assumption captures the fact 

that polymeric grafts must occupy the space between two merged patches and thus exclude all 

other NPs from occupying the same space. In a more general sense, even covalent bonding imposes 

a strong electron density inside the bonding orbitals between atoms that subsequently exclude other 

subatomic particles. Through this lens, adding effects of connectivity into EBT requires the 

inclusion of bonding directly in the construction of the shape orbitals for each respective particle 

geometry. 

We first define an effective NP composed of a central core whose shape is commensurate 

with the NP geometry and spherical patches of size 𝜎 placed at NP surface locations exhibiting 

patch-patch merging interactions. The construction of this composite particle captures the physical 

picture that the patches themselves impose excluded volume constraints and thus directly 

influences the pP distribution. This approach generalizes Eq. 1 to:

𝛽𝑈𝑚(𝑟) = 𝛽𝑈𝑝𝑃(𝑟) +
𝑁

𝑖
𝛽𝑈𝑐𝑜𝑟𝑒(𝑟) +

𝑀

𝑖
𝛽𝑈𝑝𝑎𝑡𝑐ℎ(𝑟𝑝) + 𝛽𝑈𝑝𝑃(𝑟𝑝) (3)

where 𝑀 indicates the total number of patches, 𝑈𝑝𝑎𝑡𝑐ℎ(𝑟) define the hard-core repulsion between 

pPs and spherical patches of size 𝜎, and 𝛽𝑈𝑝𝑃(𝑟) ≡  𝑟―2 ln 𝜌𝑝𝑃(𝑟) ― 𝛽𝜇𝑝𝑃  (for ease of notation). 

The first two terms in Eq. 3 account for the effect of the NP core on the pP distribution and carry 

over from EBT. The last two terms extend EBT to consider the effect of the patches on the resulting 
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pP distribution. Note that the 𝑟𝑝 coordinate indicates a relative distance to the patch locations with 

respect to the NP frame of reference. To account for patch-patch connectivity, we further extend 

Eq. 3 to sum over all pairwise bonding between patches, yielding:

𝛽𝑈𝑚(𝑟) = 𝛽𝑈𝑝𝑃(𝑟) +
𝑁

𝑖
𝛽𝑈𝑐𝑜𝑟𝑒(𝑟) +                                                         

𝑀

𝑖
𝛽𝑈𝑝𝑎𝑡𝑐ℎ(𝑟𝑝) + 𝛽𝑈𝑝𝑃(𝑟𝑝) +

𝑚
𝛽𝑈ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐(𝑟𝑏)

(4)

𝑈ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐(𝑟𝑏) = 𝑘ℎ(𝑟𝑏 ― 𝑟𝑜)2 (5)

where the final summation is over the set of 𝑚 pairwise bonds within the system, 𝑟𝑜 is the bond 

length arising between the merged patches, 𝑟𝑏 defines relative coordinate system between the pP 

and the two bonded patches, and 𝑘ℎ is the spring constant associated with the bond potential. For 

our derivations, we assume a simple harmonic potential for 𝑈ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 between merged patches 

(Eq. 5). By inspection, the first two terms in Eq. 4 only applies to the NP core and the last three 

terms only operate on the patches. Since the patches and core are independent particles within the 

effective NP, Eq. 4 suggests that the effective shape orbital for each patchy NP can be constructed 

via a superpositioning of individual pP distributions. In other words, the cEBT generalization 

defines the total 𝜌𝑝𝑃 as a composite pP density distribution that arises from adding together a pP 

distribution for only the core NP (𝜌𝑐𝑜𝑟𝑒) and a pP distribution for patches decorating the NP surface 

(𝜌𝑝𝑎𝑡𝑐ℎ): that is, 𝜌𝑝𝑃 = 𝜌𝑐𝑜𝑟𝑒 + 𝜌𝑝𝑎𝑡𝑐ℎ (Appendix A). This is analogous to constructing molecular 

orbitals via a linear combination of atomic orbitals (LCAO) commonly employed in QM 

calculations for molecules40,41. Fig. 1e shows the shape orbital obtained from cEBT for a single 

triangle and cube where connectivity locations are placed at the vertex of the shape, respectively. 

Similar to EBT, Eqs. 4 – 5 is for the limit of a single reference patchy NP. Generalization to 

multiple patchy NPs is a straightforward summation over individual 𝜌𝑝𝑃 corresponding to each 

NP within the system. Solving Eq. 4 for pairs of bonded triangles (Fig. 1f,g) and cubes (Fig. 1h,i) 

reveal the effect of connectivity on stable configurations between NPs, where the same relative 

NP orientation but with an overstretched bond produces a significantly higher net total free energy 

(less stable configuration) between particles (Fig. 1j). Furthermore, plotting the predicted bonding 

potential as a function of NP center-to-center separation (Fig. 1k) reveals a nearly identical 

functional form to the finitely extensible nonlinear elastic (FENE) potential commonly used for 
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flexible polymers42. These results indicate that cEBT can reproduce the flexible bonding that 

naturally arises from patch-patch merging between interacting NPs observed in experiments33.

Equilibrium Chain Conformation for Polymeric NPs. Results from pairwise calculations 

between bonded NPs immediately suggest that oligomers/polymers of connected NPs will also 

experience significant orientational constraints with respect to their equilibrium inter-NP 

orderings. Motivated by the polymer-like bonding potential between NPs (Fig. 1k), we borrow 

ideas from polymer physics to develop an analytical theory aimed at predicting the conformational 

behaviors for long chains of connected patchy NPs.  Specifically, it is well known that the 

equilibrium scaling behavior for chain size (𝑅) is 𝑅 ~ 𝑁1/2𝑏, where 𝑁 is the degree of 

polymerization and 𝑏 is the size of the Kuhn monomer43. This classical behavior, however, 

assumes that monomers are spherical and cannot capture shape-driven orientational orderings that 

dominate in the limit of anisotropic geometries44–46. To account for the effects of anisotropy in 

dictating chain conformation, we first note that the 𝑅 ~ 𝑁1/2 scaling relationship is obtained via a 

random-walk derivation. Here, we introduce a variant of a biased random walk model where a step 

left is different in size than a step right: that is, 𝑏𝑙𝑒𝑓𝑡 ≠ 𝑏𝑟𝑖𝑔ℎ𝑡. This model reflects the idea that 

different modes of bonding (i.e. vertex-vertex, edge-edge, or face-face) can result in uneven 

forward/backward steps due to geometric constraints imposed by the underlying particle shapes. 

Performing a statistical mechanical derivation of the equilibrium chain size for a 3D polymer 

composed of anisotropic monomers yields (Appendix B):

𝑅 ~ 𝑁(2―Λ)/2𝑏𝑃 (6)

where Λ is a value between 0 and 1 that accounts for different bonding locations and bond lengths 

between monomers, and 𝑏𝑃 defines the size of each NP monomer. Specifically, Λ = 0 corresponds 

to a bond that connects a monomer’s largest facet to the same facet on a neighboring monomer 

(face-face connected patches on a cube). Conversely, Λ = 1 corresponds to vertex-vertex bonding 

between monomers. Eq. 6 assumes that all the monomers have the same inter-monomer 

connectivity. In the limit of a spherical monomer, Λ = 1 as all surface bonding locations exhibit 

the same energy. By inspection, Eq. 6 reproduces the well-known gaussian chain statistics for a 

spherical monomer 𝑅 ~ 𝑁1/2𝑏𝑃. However, for anisotropic monomers where Λ is not uniformly 1, 

we immediately see that chains can exhibit a diverse suite of conformations that depends on 

bonding locations between monomers. Furthermore, we note that Eq. 6 is agnostic of length-scale. 
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This means that its predictions readily apply to nano/colloidal polymers composed of connected, 

anisotropic NPs/colloids as well as for traditional polymers containing monomers with more 

complex geometries such as conjugated/aromatic moieties or molecular polyhedra (POSS, 

carborane, and/or fullerenes). 

Experimental Validation of cEBT and Anisotropic Polymer Scaling

cEBT for Patchy Triangular Nanoprisms. Results from the experimental literature have shown 

that vertex-vertex connected triangular NPs mediated by patch-patch merging produce an 

equilibrium motif where edges are slanted towards each other (saw-tooth) as opposed to the 

expected tip-to-tip configuration (bowtie)33. Furthermore, the emergent inter-NP bonding arising 

from patch-patch merging are reported to be highly flexible and can freely rotate in solution33. 

Here, we employ cEBT (Eqs. 3 – 5) to provide a microscopic picture of the underlying driving 

force governing both the formation of the saw-tooth motif as well as the observed emergent bond 

flexibility. Fig. 2f shows a free energy surface for vertex-vertex connected NPs as a function of 

relative NP orientations for a patch size 𝜎 equal to 25% of the NP edge length (𝑠𝑁𝑃): that is, 0.25

𝑠𝑁𝑃. This patch size is commensurate to the experimentally measured polymeric patches that form 

on triangular NPs33. Results from cEBT calculations indicate that the lowest energy configuration 

between connected NPs is the saw-tooth motif, in agreement with experimental findings (Fig. 2f). 

The equilibrium configurations are plotted as inset in each of their respective free energy surface 

in Fig. 2 and their locations on each free energy surface are indicated by red stars. Inspection of 

the bonding orbitals between NPs clearly indicates that the saw-tooth configuration provides a 

higher overlap between shape orbitals located at the triangular edges. These edge-localized orbitals 

are entropic in nature since they arise due to particle geometry and not from patch-patch bonding 

interactions (Fig. 1). Therefore, the saw-tooth motif is unique to nanoscale patchy NPs and arise 

due to a direct competition of two counteracting forces: 1). directional entropic forces favoring 

edge-edge alignment and 2). patch-patch merging favoring vertex-vertex alignment. It is this 

delicate balance between opposing forces that breaks the symmetry intrinsic to the pre-

programmed vertex-vertex patchy interactions. 

Furthermore, the computed energy difference between different relative NP configurations 

is on the order of 1 𝑘𝑇 (Fig. 2f). This means that the bonds between NPs are not orientationally 

locked but can transition between one state versus another since their energetic differences are on 

the order of thermal noise. As such, cEBT predicts that the emergent inter-NP bonding resulting 
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from patch-patch merging is highly flexible, which is also congruent with experimental 

observations33. Combined, cEBT calculations provide a microscopic understanding of the 

underlying forces at play that govern both the emergent bond flexibility between NPs as well as 

their equilibrium saw-tooth configurations. 

The critical balance between entropy versus enthalpy in directing orientational ordering 

between NPs sits in direct contrast to traditional patchy colloids that have been reported in the 

literature13,28,30–32,35. In patchy colloids, patch-patch interactions are inflexible and uniquely define 

the directional interactions between particles: that is, a vertex patchy colloid can only produce 

Figure 2. cEBT Energy Surface for 2D Triangle. a) Definition of shape factor Ω to indicate 
surface site on triangle. Relative orientations between two triangles are indicated by the closest 
point of contact on the surface of each respective triangle (Ω1 and Ω2). Red points indicate the 
patch location. Free energy surface for edge-edge connected triangles with patch size b) 0.1
𝑠𝑁𝑃 and c) 0.3𝑠𝑁𝑃. Bonding energy indicates that edge-edge alignments become disfavors with 
larger patch sizes. Free energy surface for vertex-vertex connected triangles with patch size d) 
0.05𝑠𝑁𝑃, e). 0.15𝑠𝑁𝑃, and 0.25𝑠𝑁𝑃. Results show a shift from bowtie to sawtooth as the lowest 
energy structure with increasing patch sizes. Insets plot the lowest energy configuration 
between the bonded triangles and red stars indicate the location of the stable configuration on 
the free energy landscape.
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vertex-vertex assembly configurations. This is because patches for colloidal particles are small 

relative to the core size compared to their NP counterparts. As a result, patch-patch bonding in the 

colloidal limit experience high steric hinderances. Since cEBT is agnostic of scales, decreasing the 

patch size in our calculations should also capture the behaviors of patchy colloids. Indeed, 

reduction of the patch size to 0.15𝑠𝑁𝑃 shifts the equilibrium structure to the bowtie configuration 

(Fig. 2e). However, since the patch sizes are still roughly on par with the core size, the difference 

in energy between bowtie and saw-tooth configurations are still within thermal noise (Fig. 2e). 

Decreasing patch size further to 0.05𝑠𝑁𝑃 show a marked shift in the free energy surface, where the 

bowtie configuration is now highly energetically favored with energy differences on the order of 

3 𝑘𝑇 (Fig. 2d). In other words, transitions between the bowtie and sawtooth configurations are no 

longer favorable at this small patch size. This behavior converges cEBT calculations to the limit 

of patchy colloids where particle sizes are much bigger than patch sizes, indicating that cEBT can 

accurately model patchy interactions across multiple length scales. 

Since entropy-driven interactions favor edge-edge alignments between the triangular NPs, 

it is natural to expect that patch-mediated edge-edge connected NPs will favor only edge-edge 

alignments. Indeed, cEBT energy calculations at patch sizes equal to 0.1𝑠𝑁𝑃 reveal that only edge-

aligned NPs are favored (Fig. 2b). Furthermore, the total free energy between the equilibrium 

configurations is lower than those observed for vertex-vertex bonded NPs, indicating that entropic 

effects complement patch-patch connectivity in such edge-aligned cases. However, increasing 

patch size to 0.3𝑠𝑁𝑃 shows a shift away from edge-edge alignments between particles (Fig. 2c). 

Inspection of the bonding orbitals obtained from cEBT indicates that excluded volume interactions 

between larger patch sizes push NPs so far apart that a tilted state produces higher shape orbital 

overlaps relative to the edge-aligned configuration. These equilibrium configurations are shown 

in the inset for each free energy surface in Figs. 2b,c. In addition to triangular NPs, we computed 

the potential energy surfaces for several other vertex-vertex connected 2D geometries (Appendix 

D) including square (SI, Fig. D1a), pentagonal (SI, Fig. D1a), and hexagonal (SI, Fig. D1a) NPs. 

Analysis of the equilibrium configurations for patch sizes commensurate with particle edge lengths 

all reveal that directional entropic forces systematically break tip-to-tip alignments between NPs 

to favor tilted configurations between NPs at large patch sizes. 

cEBT and Scaling Prediction of Peptide Bundlemers. To further showcase the generalizability 

of cEBT and the developed anisotropic chain scaling theory, we apply our calculations to 
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covalently bonded coiled-coil bundles (bundlemers) previously reported in the literature38. Briefly, 

each bundlemer is a nanoscale unit constructed from 4 α-helical peptide oligomers that fold into 

well-defined, anti-parallel coiled-coil bundles roughly 4 nm in length and 2.5 nm in diameter. Each 

individual α-helix tail contains a maleimide or thiol group that can undergo a thiol-Michael 

reaction to form covalent bonds between neighboring bundlemers that are typically 0.2 nm in 

length. Based on the folded coiled-coil geometry, there are two covalent bonding sites at the top 

and two at the bottom of the long axis for each bundlemer (Fig. 3a). In essence, the effective 

geometry for this nanoscale building block is that of a cylinder with height ℎ and two patchy sites 

of size 0.05ℎ: one at the top cylinder face and one at the bottom cylinder face (Fig. 3a, top). 

Performing cEBT and scaling exponent calculations for these bundlemers reveal a linear, rod-like 

behavior with 𝑣 = 0.97 (Fig. 3a), in excellent agreement with experimentally observed formation 

of long, rigid rods. 

Furthermore, experiments reported the formation of more flexible bundlemer chains upon 

transitioning to a PETMP thiol linker between bundlemers. This new PETMP linker corresponds 

to a new patch size of 0.15ℎ between each NP (Fig. 3b, top). Predictions using the increased bond 

length in cEBT reveal a shift the equilibrium pairwise configuration to a tilted alignment between 

cylinders (Fig. 3b), which corresponded to a new scaling exponent of 𝑣 = 0.88. Combined, these 

results indicate that increasing bond flexibility shifts chain conformation from that of a rigid rod 

to a semiflexible chain, which matches experimental observations. Lastly, experiments also 

enabled a lateral bonding mode between bundlemers mediated via 2 nm gold NPs functionalized 

with maleimide (Fig. 3c, top). This new lateral bonding mode results in a mix between lateral and 

face-face aligned bundlemers in experiments (Fig. 3c). Within our cEBT model, the new NP linker 

corresponds to a 0.5ℎ patch size located at the rim of the cylinder. Performing calculations for this 

new patchy motif and visualizing the lowest energy configuration reveal similar relative 

orientations between bundlemers compared to those observed in experiments (Fig. 3c). More 

specifically, cEBT calculations indicate that the energy differences are on the order of 0.1𝑘𝑇, 

indicating that both motifs are thermodynamically favorable, providing a microscopic 

understanding of the emergent bonding behaviors. We additionally predict that the scaling 

exponents drops to 𝑣 = 0.75. This means that chains formed via lateral bonding between 
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bundlemers are much more flexible compared to their face-face bonded counterparts, in agreement 

with the experimentally reported chain conformations being more flexible and random relative to 

the above two cases. Not only do these findings provide additional validations of cEBT, but they 

Figure 3. cEBT Prediction of Polymeric Bundlemers. Equilibrium configuration predicted 
using cEBT sampling across all relative orientations between bundlemers (modelled as 
cylinders) for a) face-face connection using rigid linkers, b) face-face connection using flexible 
linkers, and c) edge-edge connection. For each panel, the top indicates how the experimental 
system is mapped to the cEBT model. All predicted cEBT prediction matches with the 
experimentally observed bonding motif between bundlemers. In the limit of edge-edge 
connection, the relative free energy different between tilted and face-face alignment is shown 
to be on the order of ~0.1𝑘𝑇, corroborating the mixed motif observed in experiments. All 
experimental images are reproduced with permission38.
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also emphasize the universality of our theories by showing that both cEBT (Eqs. 3 – 5) and 

anisotropic chain scaling (Eq. 6) applies to both inorganic NP monomers as well as biological, 

peptide-based polyhedral monomers. 

Simulation Methods

While comparison with established literature provide validation testbeds for specific limits 

of cEBT and anisotropic scaling predictions, we further seek to showcase the broad 

generalizability of our developed theory to arbitrary monomer geometry as well as bonding modes. 

Along this vein, we perform simulations for polymer chains consisting of anisotropic monomeric 

units using the HOOMD-Blue package47. Specifically, we consider two different types of bonding 

potentials – harmonic and FENE. These potentials are selected due to their usage across a wide 

range of coarse-grained polymer simulations. For example, the FENE potential is the model of 

choice for traditional bead-spring polymer simulation and has recently been shown to accurately 

capture the dynamics of bonded patchy NPs observed in simulations33. Common force fields such 

as CHARMM48, AMBER49, and MARTINI50,51 readily fit parameters to the harmonic potential to 

capture the behaviors of traditional polymers such as those containing conjugated and/or charged 

moieties. As such, validating predictions across these common coarse-grained models will ensure 

that our theory can be readily applied to a diverse range of both nano/colloidal as well as traditional 

polymeric systems.

Anisotropic Polymers Bonded via the FENE Potential. We employ molecular dynamics (MD) 

to characterize the equilibrium scaling behavior of polymeric chains made of anisotropic building 

blocks bonded via the FENE potential. Each system is set up on HOOMD-Blue as a single chain 

of bonded anisotropic particles immersed in an implicit-solvent with chain lengths varying from 

40 to 200. Simulations are carried out using an NVT ensemble at a temperature of 𝑘𝑇 = 0.9 and 

employ the Nosé-Hoover thermostat and the MTK equations52,53. We perform simulations for both 

spherical monomers as well as three different monomer geometries: cube, octahedron, and 

tetrahedron. Anisotropic particles are bonded together edge-edge, face-face, or vertex-vertex using 

patches that are rigidly attached to the core particle at each respective bonding location (Fig. 4). 

Bonds between patches use the FENE potential: 𝛽𝑉(𝑟) =  ― 0.5𝑘𝑟2
0ln 1 ― 𝑟 𝑟𝑜

2
+ 𝑉𝑊𝐶𝐴(𝑟) 

where 𝑉𝑊𝐶𝐴(𝑟) is the Weeks-Chandler-Andersen repulsive interaction54. The parameters 

employed in simulations are 𝑘 = 30 and 𝑟𝑜 = 1.5𝑎, with 𝑎 = 10. The core monomers are treated 

as repulsive hard-particles using the anisotropic Lennard-Jones potential55. A typical FENE bond 
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has an equilibrium bond length of 0.89𝑎. This translates to effective patch sizes of 10% of the 

insphere diameter (𝜎𝑖𝑛) of the cube and octahedron, and 20% of the insphere diameter (𝜎𝑖𝑛) of the 

tetrahedron. The step-size is 𝑑𝑡 = 5 × 10―4 for octahedra and cubes, and 2.5 × 10―4 for 

tetrahedra. All systems are run for 25,000 simulation time units.

Anisotropic Polymers Bonded via Harmonic Potential. We perform Monte Carlo simulations 

for four different types of particles – patchy spheres, tetrahedron, cube, and octahedron – bonded 

using the harmonic potential. For each shape, two different modes of bonding are performed: 

vertex-vertex and face-face. For vertex-vertex bonding, connection sites are placed along the 

polyhedron's diagonal (Fig. 4). For face-face bonding, connection sites are positioned at the center 

of opposing faces for each respective shape (Fig. 4). The bonding potential employed for the 

Metropolis algorithm56 is:

𝛽𝑉𝑏𝑜𝑛𝑑 =
𝑁―1

𝑠

3
2𝑟2

𝑜
𝑏2

𝑠 (7)

where 𝑁 is the chain length and 𝑏𝑠 is the 𝑠𝑡ℎ bond length. 𝑟𝑜 is the equilibrium bond length and is 

identical to the patch size from cEBT calculations. Larger values of 𝑟𝑜 correspond to larger bond 

Figure 4. Computational Model for Anisotropic Polymers. Schematic of simulated 
polymers constructed from anisotropic monomeric units: cube, octahedron, and tetrahedron. 
Bonds are explicitly constructed at the desired location bonding location (vertex-vertex, face-
face or edge-edge). Simulations are performed using both the harmonic and FENE potentials. 
𝑟𝑜 indicates the bond length and 𝑁 represents the degree of polymerization.
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lengths (patch sizes) between particles and more flexible bonds. For our simulations, we consider 

three different 𝑟𝑜 values of 0.1, 1, and 5, which correspond to 10%, 100%, and 500% of the 

insphere diameter (𝜎𝑖𝑛) for each respective monomer geometry. All other interactions between 

particles are set to be sterically repulsive. Simulations are performed for chains lengths ranging 

from 10 to 80. Maximum displacement and rotational trial moves are set equal to the equilibrium 

bond length (𝑟𝑜) and 0.5, respectively. The ratio between rotation and translation trial is equal to 

0.5. Each particle is selected four times to perform movements per HOOMD-Blue integration step. 

All simulations are run for approximately 1E7 Monte Carlo moves. Larger systems are run for up 

to 7E7 Monte Carlo moves for better statistics.

Computational Validation of cEBT and Anisotropic Polymer Scaling

Connections Between FENE and Harmonic Potential Simulation and cEBT. For clarity, we 

note that simulations using the FENE potential have effectively identical patch sizes to those for 

harmonic potential with 𝑟𝑜 = 0.1𝜎𝑖𝑛, where 𝜎𝑖𝑛 is the anisotropic particle’s insphere diameter. We 

define this as the “small patch” limit to connect to theoretical cEBT and scaling calculations for 

the same patch size of 𝜎 = 0.1𝜎𝑖𝑛. Similarly, harmonic potential simulations with 𝑟𝑜 = 0.5𝜎𝑖𝑛 are 

defined as the “medium patch” limit to enable a direct comparison with theory calculations for 

patch size of 𝜎 = 0.5𝜎𝑖𝑛. Lastly, the “large patch” limit refers to harmonic potential simulations 

with 𝑟𝑜 = 5.0𝜎𝑖𝑛, which corresponds to theory calculations for patch size of 𝜎 = 5.0𝜎𝑖𝑛. For ease 

of notation, we use FE and HR to indicate FENE and harmonic bonding, respectively. These 

connections are summarized in Table 1. Scaling exponents showing that our patchy bonding 

models reproduces known behaviors for traditional polymers with spherical subunits are reported 

in Appendix C of the SI.

Equilibrium Configurations and Chain Scaling for Cubic Monomer Geometry. We first 

discuss results for cubic monomer geometry. Here, we employ cEBT (Eqs. 3 – 5) to compute the 

free energy between vertex-vertex and face-face connected cubes. Across all bonding modes, 

Table 1. Connection Between Polymer Simulation and cEBT
Patch Size Simulation cEBT

        Small (S) 𝑟𝑜 = 0.1𝜎𝑖𝑛 𝜎 = 0.1𝜎𝑖𝑛

        Medium (M) 𝑟𝑜 = 0.5𝜎𝑖𝑛 𝜎 = 0.5𝜎𝑖𝑛

        Large (L) 𝑟𝑜 = 5.0𝜎𝑖𝑛 𝜎 = 5.0𝜎𝑖𝑛

𝒓𝒐: equilibrium bond length, 𝝈𝒊𝒏: monomer insphere diameter, 𝝈: patch size. 
FE: FENE bonding, HR: Harmonic bonding
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analysis of the lowest energy configuration reveals the formation of symmetry breaking 

orientational ordering between NPs. Similar to their 2D counterparts (Fig. 2), visualization of the 

bonding orbitals of the equilibrium NP configurations reveals that maximization of shape orbital 

overlaps serves as the dominant driving force underpinning the observed symmetry breakage in 

NP relative orientation (Fig. 5a,f). 

Starting with face-face bonded cubes, we employ cEBT (Eqs. 3 – 5) to compute the 

bonding free energy (𝐸𝑏𝑜𝑛𝑑) for all pairwise relative orientations between cubes indicated in Fig. 

5b. This large sweep ensures that we have properly sampled all possible orientations between 

cubes. Due to the high dimensionality of this phase space, we chose to compare the computed 

𝐸𝑏𝑜𝑛𝑑 between the two identified lowest energy configurations (face-face and face-edge) for small 

medium patches mediating face-face connections. Specifically, we plot the computed 𝐸𝑏𝑜𝑛𝑑 for 

face-face and face-edge configurations in the limit of small patches (left, Fig. 5a) and the same 

two configuration energy but in the limit of medium patches (right, Fig. 5a). Colors for each energy 

plot correspond to the color of the boxed relative orientations in Fig. 5a. Results indicate that face-

face aligned cubes are only favored in for small patches where the short bond length restricts bond 

flexibility, thereby preventing the system from rotating to seek additional shape orbital overlaps. 

Indeed, 𝐸𝑏𝑜𝑛𝑑 computed for face-edge oriented cubes in the limit of small patches shows that the 

total free energy is significantly higher compared to that of face-face alignment, indicating that it 

is less thermodynamically favored. Consequently, shifting to medium patches enhances bond 

flexibility and thus 𝐸𝑏𝑜𝑛𝑑 for face-face aligned cubes is now higher compared to face-edge aligned 

cubes due to additional overlaps between shape orbitals protruding from the cubes’ other faces. 

To compare simulations to cEBT pairwise calculations, we first compute the set of closest 

surface points between bonded monomers along the polymer backbone from simulations and plot 

their distribution on the surface of a reference monomer shape. Fig. 5c (top) shows the computed 

closest surface point distribution from simulations for face-face bonded cubes in the limit of small 

patches. Results indicate that the face-face alignment is the most dominant motif across all 

monomer-monomer relative orientations. These findings are in excellent agreement with pairwise 

cEBT energy calculations for small patches (Fig. 5a), where face-face aligned configurations are 

thermodynamically favored. To bridge pairwise calculations to the polymer limit, we measure the 
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end-to-end scaling exponent 𝑣 (𝑅𝑔 ~ 𝑁𝑣) for polymer chains constructed from face-face bonded 

Figure 5. Polymers with Cubic Monomeric Subunits. a) cEBT for small versus medium 
patches for face-face bonded cubic NPs. Yellow box shows the lowest energy configuration 
for small patches (face-face) and green box shows the lowest energy configuration for medium 
patches (face-edge). Plotted 𝐸𝑏𝑜𝑛𝑑 compares the energy of the predicted equilibrium 
configurations for small and medium patches. Bonding configuration and orbitals are 
visualized for the lowest energy configuration each respective patch size.  b) Set of all pairwise 
relative orientations utilized in cEBT calculations. c) Closest surface contact point distributions 
(𝑃𝑐𝑜𝑛𝑡𝑎𝑐𝑡) for face-face bonded cube with small (top) and medium patch sizes (bottom). d) 𝑅𝑔 
vs 𝑁 scaling fits for face-face and vertex-vertex bonded polymeric chain of cubes for small and 
medium patch sizes across both FENE and harmonic (HR) bonding potential simulations. e) 
Simulation snapshots for face-face bonded cubes for small and medium patch sizes. f) Similar 
cEBT analysis to panel a) for vertex-vertex bonded cubes. g) Simulation snapshots for vertex-
vertex bonded cubes for small and medium patch sizes. Abbreviation definition: face-face (FF), 
vertex-vertex (VV), face-edge (FE), edge-vertex (EV).
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cubic monomers from simulations. Fig. 5d shows an 𝑅𝑔 vs 𝑁 scaling exponent plot for simulation 

results using both harmonic and FENE bond potentials for cubic systems. For face-face bonding, 

small patches yield a scaling exponent of 𝑣 = 1.00 ± 0.00 and 𝑣 = 0.93 ± 0.00 for the FENE and 

harmonic potentials, respectively. These values suggest that chains are extended and experience a 

high degree of orientational constraints between neighbors. Indeed, theory prediction of the scaling 

exponent for face-face bonded cubes in the limit of small patches (Eq. 6) gives 𝑣 = 1, in agreement 

with simulations. Physically, a scaling exponent of 𝑣 = 1 indicates that chains exhibit rigid, rod-

like behaviors. Visualizations of chain conformation in this limit additionally confirm this 

interpretation as we only observe straight chains of face-face aligned cube across both FENE and 

harmonic potential simulations for small patch sizes (Fig. 5e). 

Increasing to the medium patch size limit for cubes yields scaling exponents of 

𝑣 = 0.61 ± 0.02 from simulations (Fig. 5d), which closely matches the theoretically predicted 

value of 𝑣 = 0.57. Similar to the small patch limit, we compare simulations to cEBT by computing 

closest surface points distribution between neighboring cubes and plotting the results on a 

reference particle (Fig. 5c, bottom). Results indicate a shift away from face-face aligned 

orientations to show a strong signature for face-edge alignments between neighboring monomers, 

in exact agreement with theory calculations from cEBT (Fig. 5a). Through the lens of increased 

rotational freedom between neighboring cubes, monomers effectively behave akin to overlapping 

spherical monomers whose radii are equal to the shape’s midsphere radii. This means that 

connected cubes partially feel the effect of sterically-driven excluded volume interactions for all 

relative orientations where the shape sits outside the volume occupied by its midsphere. By 

definition, this is a self-avoiding walk and thus the chain scaling matches the classically known 

exponent of 𝑣 = 0.6 for such systems. Visualization of chain conformation for face-face connected 

cubes in the limit of medium patch sizes further confirms the predictions from theory, where chains 

exhibit worm-like features intrinsic to self-avoiding conformations (Fig. 5e). Lastly, shifting 

further to the large patch size limit results in a scaling exponent of 𝑣 = 0.5 ± 0.003 for face-face 

bonded cubes (Appendix I), which is congruent with theory prediction for  𝑣 = 0.5. In this limit, 

the large patch size forces monomers so far apart that they do not feel the presence of their 

neighbors, enabling an unrestricted degree of rotational freedom between bonded cubes. In other 

words, particles lose knowledge of both their core geometry as well as bonding constraints with 

their neighbors and behave akin to highly overlapping spherical monomers. This is analogous to a 
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traditional random walk and thus the scaling exponents converge to the well-known gaussian 

scaling statistics43.

Fig. 5f shows an analogous analysis of cEBT pairwise calculations for vertex-vertex 

bonding between cubes, where we observe an orbital overlap driven shift from a vertex-vertex to 

an edge-vertex motif with a corresponding increase from small to medium patch size. Unlike face-

face bonding, the measured scaling exponents for both small and medium patch sizes yield similar 

values of 𝑣 ~ 0.6 (Fig. 5d), indicating that chains behave akin to self-avoiding walks between 

neighboring monomers. This difference relative to their face-face bonded counterparts arises due 

to the bonding location between neighboring cubes. If we trace the vertex of a cube spinning about 

its center of mass, the effective geometry that the vertex sweeps out is a sphere whose diameter is 

equal to the cube’s circumsphere. As a result, each cube perceives its neighbor not as a cube but 

rather as a sphere whose effective diameter is equal to the circumsphere diameter of its neighboring 

cube. However, since the cubes take up less space than their circumsphere, the neighboring 

circumspheres are not orientationally locked into a linear, vertex-vertex aligned motif, but can 

partially overlap with each other. This behavior is also akin to a self-avoiding walk, which is 

known to exhibit scaling exponent of 𝑣 = 0.6. Visualization of the equilibrium chain conformation 

for vertex-vertex bonded cubes for both small and medium patch sizes all reveal worm-like chain 

conformations, further corroborating the predicted self-avoiding walk scaling statistics (Fig. 5g). 

Similar to face-face bonding, the large patch limit for vertex-vertex bonding yields the trivial 

gaussian limit where monomer lose knowledge of both their geometry and bonding constraints. 

Analogous results are also obtained for edge-edge bonding between cubes and are reported in 

Table I1 and Appendix H of the SI.

Polymeric Chains with Octahedral and Tetrahedral Monomer Geometries. Additionally, we 

perform the same cEBT calculation for octahedra (SI, Fig. E1b,c) and tetrahedra (SI, Fig. E1d,e) 

for all connectivity – face-face, edge-edge, and vertex-vertex (Appendix E). Across all shapes and 

connectivity, the consistent cEBT prediction is that connectivity only locks particle configurations 

in the limit of small patches. Medium patches allow for higher bond flexibility, resulting in a 

complex interplay between connectivity constraints and directional entropic interactions to give 

rise to symmetry breaking orientations such as edge-vertex, face-edge, and face-vertex motifs. 

Similar to cubes, we compare cEBT pairwise calculations with the closest surface point 

distribution between bonded monomers measured from simulations. Fig. 6c shows the computed 
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distribution for face-face bonded octahedra and tetrahedra in the limit of small and medium 

patches. Octahedral monomers transition from face-face dominated to a face-vertex dominated 

distribution with increasing patch size. Similarly, tetrahedral monomers shift from a face-face 

dominated to a face-edge dominated motif. Both results are in agreement with cEBT predictions 

Figure 6. Polymers with Octahedral and Tetrahedral Monomeric Subunits. cEBT for 
small versus medium patches for face-face bonded a) octahedral NPs and b) tetrahedral NPs. 
Yellow box shows the lowest energy configuration for small patches and green box shows the 
lowest energy configuration for medium patches. c) Closest surface contact point distributions 
(𝑃𝑐𝑜𝑛𝑡𝑎𝑐𝑡) for face-face bonded octahedra and tetrahedra with small (top) and medium patch 
sizes (bottom). d) Comparison of all scaling exponents for all shapes and all bond lengths 
between simulations versus theory. e) Simulation snapshots for polymers of face-face bonded 
octahedral and tetrahedral NPs for small and medium patches. Abbreviation definition: face-
face (FF), face-edge (FE), face-vertex (FV).
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for each respective monomer geometry (Fig. 6a,b). Visualization of the shift in chain conformation 

with increasing patch sizes are shown for both octahedral and tetrahedral monomers in Fig. 6e. 

Measured scaling exponents for such systems also progressively shift from rigid rod to self-

avoiding walk to gaussian statistics as the patch size increases from small to medium to large, 

respectively. Analogous results are also obtained for vertex-vertex and edge-edge bonding 

between both octahedra and tetrahedra and are reported in Appendix F, G, and I of the SI. All the 

measured scaling exponents from simulations are accurately predicted using theory (Eq. 6). Fig. 

6d encapsulates and compares all the scaling exponents from FENE and harmonic potential 

simulations against theory prediction, numerical values are tabulated in Table I1 of the SI. The 

tight agreement across theory and simulation indicates that the interplay between directional 

entropic forces and flexible patch-patch bonding between anisotropic monomers readily 

propagates to the oligomeric and polymeric scales and plays a critical role in controlling the 

equilibrium chain conformation. These findings highlight the success of our theory in illuminating 

the intricate balance between shape-driven and bond-driven interactions and how they work 

together to sculpt both local monomer-monomer ordering as well as global chain conformational 

statistics. 

Conclusion

In summary, we elucidate how the interplay between patch-patch connectivity and shape-

driven entropic interactions sculpts the spatial and orientational orderings between anisotropic 

building blocks. We show that emergent entropic forces can break the symmetry of the pre-

programmed directional patchy (bonding) interactions between particles, especially in cases where 

patch sizes are more commensurate with NP core sizes. These results indicate that emergent 

entropic forces must be explicitly considered when designing patchy particles at the nanoscale as 

they can alter (or even break) the as-synthesized directional, patchy inter-NP interactions. Failure 

to consider such effects can produce situations where competing forces undermine the desired pre-

programmed directional interactions and result in kinetically arrested and/or disordered 

assemblies. Our proposed cEBT development provides a theoretical framework for a priori 

prediction of this emergent symmetry breaking by explicitly accounting for both monomer 

geometry and connectivity constraints between particles. We validate cEBT by showing that it 

reproduces known behaviors from established experimental systems: patchy triangular nanoprisms 

and peptide bundlemers. Additionally, we rigorously validate cEBT against simulations for 
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polymer chains containing different particle geometries with different inter-NP bonding modes. 

Our analysis shows that cEBT not only captures the correct local ordering between NPs but also 

their macroscopic mesoscale ordering. In short, our work shines light on the complex forces at 

play with respect to patchy nanoscale building blocks with anisotropic geometries. The excellent 

agreement across theory, simulation, and validation against the experimental literature indicate 

that cEBT has the potential to expand the applicability of shape as a handle for directing self-

assembly into the space of patchy NPs as well as molecular and colloidal polymers, opening newer 

doors for designing the self-assembly of novel soft, porous, and metamaterials.

Page 23 of 28 Molecular Systems Design & Engineering



23 | P a g e

Data Availability and Reproducibility Statement

Numerical data and results for structure and characterizations performed and shown in the 

main text are provided in the accompanying ZIP file with sample analysis scripts. Sample 

simulation scripts to perform both MC and MD simulations are included in the zip file. These 

analysis and simulation scripts will reproduce the data presented in all figures throughout the main 

text. We also provide sample simulation trajectory data (GSD file format) that represent the 

data/results that should come back from running the included files. All codes can also be found on 

our repository: https://github.com/VoGroupJHU/Anisotropic_Chain.git.
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Data Availability and Reproducibility Statement 

 Numerical data and results for structure and characterizations performed and shown in the 

main text are provided in the accompanying ZIP file with sample analysis scripts. Sample 

simulation scripts to perform both MC and MD simulations are included in the zip file. These 

analysis and simulation scripts will reproduce the data presented in all figures throughout the main 

text. We also provide sample simulation trajectory data (GSD file format) that represent the 

data/results that should come back from running the included files. All codes can also be found on 

our repository: https://github.com/VoGroupJHU/Anisotropic_Chain.git.  
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